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Abstract
Delta synchronization (sync) is crucial for network-level
efficiency of cloud storage services. Practical delta sync
techniques are, however, only available for PC clients
and mobile apps, but not web browsers—the most per-
vasive and OS-independent access method. To under-
stand the obstacles of web-based delta sync, we imple-
ment a delta sync solution, WebRsync, using state-of-
the-art web techniques based on rsync, the de facto delta
sync protocol for PC clients. Our measurements show
that WebRsync severely suffers from the inefficiency of
JavaScript execution inside web browsers, thus leading
to frequent stagnation and even hanging. Given that the
computation burden on the web browser mainly stems
from data chunk search and comparison, we reverse the
traditional delta sync approach by lifting all chunk search
and comparison operations from the client side to the
server side. Inevitably, this brings considerable computa-
tion overhead to the servers. Hence, we further leverage
locality-aware chunk matching and lightweight check-
sum algorithms to reduce the overhead. The resulting so-
lution, WebR2sync+, outpaces WebRsync by an order of
magnitude, and is able to simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance based on a Dropbox-like system architecture.

1 Introduction
Recent years have witnessed considerable popularity of
cloud storage services, such as Dropbox, SugarSync,
Google Drive, iCloud Drive, and Microsoft OneDrive.
They have not only provided a convenient and perva-
sive data store for billions of Internet users, but also be-
come a critical component of other online applications.
Their popularity brings a large volume of network traf-
fic overhead to both the client and cloud sides [28, 37].
Thus, a lot of efforts have been made to improve their
network-level efficiency, such as batched sync, deferred
sync, delta sync, compression and deduplication [24, 25,
27, 37, 38, 46]. Among these efforts, delta sync is of par-
ticular importance for its fine granularity (i.e., the client
only sends the changed content of a file to the cloud, in-
stead of the entire file), thus achieving significant traffic
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savings in the presence of users’ file edits [29, 39, 40].
Unfortunately, today delta sync is only available for

PC clients and mobile apps, but not for the web—the
most pervasive and OS-independent access method [37].
After a file f is edited into a new version f ′ by users,
Dropbox’s PC client will apply delta sync to automati-
cally upload only the altered bits to the cloud; in contrast,
Dropbox’s web interface requires users to manually up-
load the entire content of f ′ to the cloud.1 This gap sig-
nificantly affects web-based user experiences in terms of
both sync speed and traffic cost.

Web is a fairly popular access method for cloud stor-
age services: all the major cloud storage services sup-
port web-based access, while only providing PC clients
and mobile apps for a limited set of OS distributions and
devices. One reason is that many users do not want to in-
stall PC clients or mobile apps on their devices to avoid
the extra storage and CPU/memory overhead; in com-
parison, almost every device has web browsers. Spe-
cially, for the emerging cloud-oriented systems and de-
vices (e.g., Chrome OS and Chromebook) web browsers
are perhaps the only option to access cloud storage.

To understand the fundamental obstacles of web-
based delta sync, we implement a delta sync solution,
WebRsync, using state-of-the-art web techniques includ-
ing JavaScript, WebSocket, and HTML5 File APIs [14,
18]. WebRsync implements the algorithm of rsync [15],
the de facto delta sync protocol for PC clients, and works
with all modern web browsers that support HTML5. To
optimize the execution of JavaScript, we use asm.js [4] to
first implement the client side of WebRsync in efficient
C code and then compile it to JavaScript. To unravel the
performance of WebRsync from the users’ perspective,
we further develop StagMeter, an automated tool for ac-
curately quantifying the stagnation of web browsers, i.e.,
the browser’s not responding to user actions (e.g., mouse
clicks) in time, when applying WebRsync.

Our experiments show that WebRsync is severely af-

1In this paper, we focus on pervasive file editing made by any
applications that synchronize files to the cloud storage through web
browsers, rather than specific web-based file editors such as Google
Docs, Microsoft Word Online, Overleaf, and GitHub online editor.
Technically, our measurements show that the latter usually leverages
specific data structures (rather than delta sync) to avoid full-content
transfer and save the network traffic incurred by file editing.



fected by the low execution efficiency of JavaScript in-
side web browsers. Even under simple (or says one-
shot) file editing workloads, WebRsync is slower than PC
client-based delta sync by 16–35 times, and most time
is spent at the client side for performing computation-
intensive chunk search and comparison operations.2

This causes web browsers to frequently stagnate and
even hang (i.e., the browser never reacts to user actions).
Also, we find that the drawback of WebRsync cannot be
fundamentally addressed through native extension, par-
allelism, or client-side optimization (§4).

Driven by above observations, our first effort to-
wards practical web-based delta sync is to “reverse” the
WebRsync process by handing all chunk search and com-
parison operations over to the server side. This effort also
enables us to re-implement these computation-intensive
operations in efficient C code. The resulting solution
is named WebR2sync (Web-based Reverse rsync). It
significantly cuts the computation burden on the web
client, but brings considerable computation overhead to
the server side. To this end, we make two-fold additional
efforts to optimize the server-side computation overhead.
First, we exploit the locality of users’ file edits which
can help bypass most (up to ∼90%) chunk search op-
erations in real usage scenarios. Second, by leverag-
ing lightweight checksum algorithms, SipHash [20] and
Spooky [17] instead of MD5, we can reduce the com-
plexity of chunk comparison by ∼5 times. The final so-
lution is referred to as WebR2sync+, and we make the
source code of all our developed solutions publicly avail-
able at https://WebDeltaSync.github.io.

We evaluate the performance of WebR2sync+ using
a deployed benchmark system based on a Dropbox-like
system architecture. We show that WebR2sync+ out-
paces WebRsync by an order of magnitude, approaching
the performance of PC client-based rsync. Moreover,
WebR2sync+ is able to simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance under regular workloads 3. Even under intensive
workloads, a standard VM instance with WebR2sync+
deployed can simultaneously support 740 web clients.

2 Delta Sync Support in State-of-the-Art
Cloud Storage Services

In this section, we present our qualitative study of delta
sync support in state-of-the-art cloud storage services.
The target services are selected for either their popularity
( Dropbox, Google Drive, Microsoft OneDrive, iCloud
Drive, and Box.com), or representativeness in terms of

2In contrast, when a user downloads a file from the cloud with a
web browser, the client-side computation burden of delta sync is fairly
low and thus would not cause the web browser to stagnate or hang.

3Detailed description of simple, regular, and intensive workloads
we use in this work is presented in §6.2.

Service PC Client Mobile App Web Browser
Dropbox Yes No No
Google Drive No No No
OneDrive No No No
iCloud Drive Yes No No
Box.com No No No
SugarSync Yes No No
Seafile [16] Yes No No
QuickSync [25] Yes Yes No
DeltaCFS [51] Yes Yes No

Table 1: Delta sync support in 9 cloud storage services.

techniques used (SugarSync, Seafile, QuickSync, and
DeltaCFS). For each service, we examined its delta sync
support with different access methods, using its latest-
version (as of April 2017) Windows PC client, Android
app, and Chrome web browser. The only exception oc-
curred to iCloud Drive for which we used its latest-
version MacOS client, iOS app, and Safari web browser.

To examine a specific service with a specific access
method, we first uploaded a 1-MB 4 highly-compressed
new file ( f ) to the cloud (so the resulting network traffic
would be slightly larger than 1 MB). Next, on the user
side, we appended a single byte to f to generate an up-
dated file f ′. Afterwards, we synchronized f ′ from the
user to the cloud with the specific access method, and
meanwhile recorded the network traffic consumption. In
this way, we can reveal if delta sync is applied by measur-
ing the traffic consumption—if the traffic consumption
was larger than 1 MB, the service did not adopt delta
sync; otherwise (i.e., the traffic consumption was just
tens of KBs), the service had implemented delta sync.

Based on the examination results listed in Table 1, we
have the following observations. First, delta sync has
been widely adopted in the majority of PC clients of
cloud storage services. On the other hand, it has never
been used by the mobile apps of any popular cloud stor-
age services, though two academic services [25,51] have
implemented delta sync in their mobile apps and proved
the efficacy. In fact, as the battery capacity and en-
ergy efficiency of mobile apps grow constantly, we ex-
pect delta sync to be widely adopted by mobile apps in
the near future [36]. Finally, none of the studied cloud
storage services supports web-based delta sync, despite
web browsers constituting the most pervasive and OS-
independent method for accessing Internet services.

3 WebRsync: The First Endeavor
WebRsync is the first workable implementation of web-
based delta sync for cloud storage services. It is imple-
mented in JavaScript based on HTML5 File APIs [18]
and WebSocket. It follows the algorithm of rsync and
thus keeps the same behavior as PC client-based ap-

4We also experiment with files much larger than 1 MB in size, i.e.,
10 MB and 100 MB, and got the same results.

https://WebDeltaSync.github.io
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Figure 1: Design flow chart of WebRsync.

proaches. Although it is not a practically acceptable so-
lution, it points out the challenges and opportunities of
supporting delta sync under current web frameworks.

3.1 Design and Implementation
We design WebRsync by adapting the working proce-
dure of rsync to the web browser scenario. As demon-
strated in Figure 1, in WebRsync when a user edits a
file from f to f ′, the client instantly sends a request to
the server for the file synchronization. On receiving the
request, the server first executes fixed-size chunk seg-
mentation and fingerprinting operations on f (which is
available on the cloud side), and then returns a checksum
list of f to the client. Except for the last chunk, each
data chunk is typically 8 KB in size. Thus when f is 1
MB in size, its checksum list contains 128 weak 32-bit
checksums as well as 128 strong 128-bit MD5 check-
sums [15]. After that, based on the checksum list of f ,
the client first performs chunk search and comparison
operations on f ′, and then generates both the matching
tokens and literal bytes. Note that search and comparison
operations are both conducted in a byte-by-byte manner
on rolling checksums; in comparison, segmentation and
fingerprinting operations are both conducted in a chunk-
by-chunk manner so they incur much lower computation
overhead. The matching tokens indicate the overlap be-
tween f and f ′, while the literal bytes represent the novel
parts in f ′ relative to f . Both of them are sent to the
server for constructing f ′. Finally, the server returns an
acknowledgment to the client to conclude the process.

We implement the client side of WebRsync based on
the HTML5 File APIs [18] and the WebSocket protocol,
using 1500 lines of JavaScript code. Following the com-
mon practice to optimize the performance of JavaScript
execution, we adopt the asm.js language [4] to first write
the client side of WebRsync in C code and then compile it
to JavaScript. The server side of WebRsync is developed
based on the node.js framework, with 500 lines of node.js
code and 600 lines of C code; its architecture follows
the server architecture of Dropbox (as an example of the
state-of-the-art industrial cloud storage services). Sim-
ilar to Dropbox, the web service of WebRsync runs on

a VM server rent from Aliyun ECS [2], and the file con-
tent is hosted on object storage rent from Aliyun OSS [3].
More details on the server, client and network configura-
tions are described in §6.1 and Figure 14.

3.2 Performance Benchmarking
We first compare the performance of WebRsync and
rsync. We perform random append, insert, and cut 5

operations of different edit sizes (ranging from 1 B, 10
B, 100 B, 1 KB, 10 KB, to 100 KB) upon real-world files
collected from real-world cloud storage services. The
dataset is collected in our previous work and is publicly
released [37], where the average file size is nearly 1 MB.
One file is edited for only once, and it is then synchro-
nized from the client side to the server side. For an insert
or cut operation, when its edit size reaches or exceeds 1
KB, it is first dispersed into a certain number of (typically
1–20) continuous sub-edits 6 to simulate the practical sit-
uation of a user edit, and then synchronized to the server.
For each of the three different types of edit operations,
we first measure its average sync time corresponding to
each edit size, and then decompose the average sync time
into three stages: server, network, and client. Moreover,
we measure its average CPU utilization on the client side
corresponding to each edit size.

As shown in Figure 2, for each type of file edit oper-
ations the sync time of WebRsync is significantly longer
than that of rsync (by 16–35 times). In other words,
WebRsync is much slower than rsync on handling the
same file edit. Among the three types of file edits, we
notice that syncing a cut operation with WebRsync is al-
ways faster than syncing an append/insert operation (for
the same edit size), especially when the edit size is rela-
tively large (10 KB or 100 KB). This is because a cut op-
eration reduces the length of a file while an append/insert
operation increases the length of a file.

Furthermore, we decompose the sync time of rsync
and WebRsync into three stages: at the client side, across
the network, and at the server side, as depicted in Fig-
ures 3a and 3b. For each type of file edits, around 40% of
rsync’s sync time is spent at the client side and around
35% is spent at the network side; in comparison, the
vast majority (60%–92%) of WebRsync’s sync time is
spent at the client side, while less than 5% is spent at the
network side. This indicates that the sync bottleneck of
WebRsync is due to the inefficiency of the web browser’s
executing JavaScript code. Additionally, Figure 3c illus-
trates that the CPU utilization of each type of file edits in
WebRsync is as nearly twice as that of rsync, because
JavaScript programs consume more CPU resources.

5Here “cut” means to remove some bytes from a file.
6A continuous sub-edit means that the sub-edit operation happens

to continuous bytes in the file. More details are explained in § 5.2,
especially in Figure 12 and Figure 13.
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Figure 2: Average sync time using WebRsync for various sizes of file edits (including append, insert, and cut) under a
simple workload. The error bars show the minimum and maximum values at each point.
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Figure 3: Breakdown of the sync time of (a) rsync and (b) WebRsync for append operations, as well as the corre-
sponding average client-side CPU utilizations. The situations for insert and cut operations are similar.

3.3 Measuring Stagnation with StagMeter
As discussed in §3.2, WebRsync not only leads to more
sync time, but also costs more computation resources at
the client side. The heavy CPU consumption causes web
browsers to frequently stagnate and even hang. To quan-
titatively understand the stagnation of web browser per-
ceived by users, we develop the StagMeter tool to mea-
sure the stagnation time by automatically integrating a
piece of JavaScript code into the web browser 7. Stag-
Meter periodically 8 prints the current timestamp on the
concerned web page (e.g., the web page that executes
delta sync). If the current timestamp (say t) is success-
fully printed at the moment, there is no stagnation; oth-
erwise, there is a stagnation and then the printing of the
current timestamp will be postponed to t ′ > t. Therefore,
the corresponding stagnation time is calculated as t ′− t.

Using StagMeter, we measure and visualize the stag-
nations of WebRsync (on handling the three types of file
edits) in Figure 4. Note that StagMeter only attempts
to print 10 timestamps for the first second. Therefore,
spaces between consecutive timestamps represent stag-
nation, and larger spaces imply longer stagnations. As
indicated in all the three subfigures, stagnations are di-
rectly associated with high CPU utilizations.

7We can also directly use the native profiling tool of the Chrome
browser to visualize the stagnation, whose results we found more com-
plicated to interpret than those of StagMeter.

8By default we set the period as 100 ms, so as to simulate the mini-
mum intervals of common web users’ operations.

4 Native Extension, Parallelism, and
Client-side Optimization of WebRsync

This section investigates three approaches to partially ad-
dressing the drawback of WebRsync. For each approach,
we first describe its working principle, and then evaluate
its performance using different types of file edits.

WebRsync-native. Given that the sync speed of
WebRsync is much lower than that of the PC client-based
delta sync solution (rsync), our first approach to opti-
mizing WebRsync is to leverage the native client [13] for
web browsers. Native client is a sandbox for efficiently
and securely executing compiled C/C++ code in a web
browser, and has been supported by all mainstream web
browsers. In our implementation, we use the Chrome
native client to accelerate the execution of WebRsync on
the Chrome browser. We first use HTML5 and JavaScript
to compose the webpage interface, through which a user
can select a local file to synchronize (to the cloud). Then,
the path of the selected local file is sent to our devel-
oped native client (written in C++). Afterwards, the na-
tive client reads the file content and synchronizes it to the
cloud in a similar way as rsync. When the sync process
finishes, the native client returns an acknowledgement
message to the webpage interface, which then shows the
user the success of the delta sync operation.

Figure 5 depicts the performance of WebRsync-native,
in comparison to the performance of original WebRsync.
Obviously, WebRsync-native significantly reduces the
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Figure 4: Stagnation captured by StagMeter for different edit operations and the associated CPU utilizations. The
stagnation time is illustrated by the discontinuation of the timestamp on the sync process time.
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Figure 5: Average sync time using WebRsync-native for various sizes of file edits under a simple workload.

sync time of WebRsync, in fact close to the sync time
of rsync. Accordingly, the CPU utilization is de-
creased and the stagnation of the Chrome browser is fully
avoided. Nevertheless, using native client requires the
user to download and install extra plug-in components
for the web browser, which essentially impairs the us-
ability and pervasiveness of WebRsync-native.

WebRsync-parallel. Our second approach is to use
HTML5 web workers [10] for parallelism or threading.
Generally speaking, when executing JavaScript code in
a webpage, the webpage becomes unresponsive until
the execution is finished—this is why WebRsync would
lead to frequent stagnation and even hanging of the web
browser. To address this problem, a web worker is a
JavaScript program that runs in the background, inde-
pendently of other JavaScript programs in the same web-
page. When we apply it to WebRsync, the original single
JavaScript program is divided to multiple JavaScript pro-
grams that work in parallel. Although this approach can
hardly reduce the total sync time (as indicated in Fig-
ure 6) or the CPU utilizations (as shown in Figure 7, the
upper part), it can fully avoid stagnation for the Chrome
browser (as shown in Figure 7, the lower part).

WebRsync+. Later in §5.2 we describe in detail how we
exploit users’ file-edit locality and lightweight hash algo-
rithms to reduce server-side computation overhead. As a
matter of fact, the two-fold optimizations can also be ap-

plied to the client side. Thereby, we implement the two
optimization mechanisms at the client side of WebRsync
by translating them from C++ to JavaScript, and the re-
sulting solution is referred to as WebRsync+. As illus-
trated in Figure 8, WebRsync+ stays between WebRsync
and WebR2sync+ in terms of sync time, which is ba-
sically within our expectation. Further, we decompose
the sync time of WebRsync+ into three stages: at the
client side, across the network, and at the server side,
as depicted in Figure 9. Comparing Figure 9 with Fig-
ure 3b (breakdown of the sync time of WebRsync into
three stages), we find that the client-side time cost of
WebRsync+ is remarkably reduced thanks to the two op-
timization mechanisms. However, WebRsync+ cannot
fully avoid stagnation for web browsers; instead, it can
only alleviate the stagnation compared to WebRsync.

Summary. With the above three-fold efforts, we con-
clude that the drawback of WebRsync cannot be funda-
mentally addressed via solely client-side optimizations.
That is to say, we need more comprehensive solutions
where the server side is also involved.

5 WebR2sync+: Web-based Delta Sync
Made Practical

This section presents WebR2sync+, the practical so-
lution for web-based delta sync. The practicality of
WebR2sync+ is attributed to multi-fold endeavors at both
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Figure 6: Average sync time using WebRsync-parallel for various sizes of file edits under a simple workload.
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Figure 7: Although WebRsync-parallel is unable to reduce the CPU utilizations (relative to WebRsync), it can fully
avoid stagnation for the Chrome web browser by utilizing HTML5 web workers.
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Figure 8: Average sync time using WebRsync+ for various sizes of file edits under a simple workload.
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Figure 9: Breakdown of the sync time of WebRsync+ (shown in Figure 8) for different types of edit operations.

client and server sides. We first present the basic so-
lution, WebR2sync, which improves WebRsync (§5.1),
and then describe the server-side optimizations for miti-
gating the computation overhead (§5.2). The final solu-
tion that combines both WebR2sync with the server-side
optimizations is referred to as WebR2sync+ in §5.3.

5.1 WebR2sync
As depicted in Figure 10, to address the overload is-
sue, WebR2sync reverses the process of WebRsync (c.f.,
Figure 1) by moving the computation intensive search
and comparison operations to the server side; mean-
while, it shifts the lightweight segmentation and finger-
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Figure 10: Design flow chart of WebR2sync.

printing operations to the client side. Compared with
the workflow of conventional web-based delta sync, in
WebRsync, the checksum list of f ′ is generated by the
client and the matching tokens are generated by the
server, while the literal bytes are still generated by the
client. Note that this allows us to implement the search
and comparison operations in C rather than in JavaScript
at the server side. Therefore, WebR2sync can not only
avoid stagnation for the web client, but also effectively
shorten the duration of the whole delta sync process.

5.2 Server-side Optimizations
While WebR2sync significantly cuts the computation
burden on the web client, it brings considerable com-
putation overhead to the server side. To this end, we
make two-fold additional efforts to optimize the server-
side computation overhead.

Exploiting the locality of file edits in chunk search.
When the server receives a checksum list from the client,
WebR2sync uses a 3-level chunk searching scheme to
figure out matched chunks between f and f ′, as shown
in Figure 11 (which follows the 3-level chunk searching
scheme of rsync [15]). Specifically, in the checksum list
of f ′ there is a 32-bit weak rolling checksum (calculated
by the Adler32 algorithm [26]) and a 128-bit strong MD5
checksum for each data chunk in f ′. When this check-
sum list is sent to the server, the server leverages an ad-
ditional (rolling checksum) hash table whose every entry
is a 16-bit hash code of the 32-bit rolling checksum [15].
The checksum list is then sorted according to the 16-bit
hash code of the 32-bit rolling checksums. Note that a
16-bit hash code can point to multiple rolling and MD5
checksums. Thereby, to find each matched chunk be-
tween f and f ′, the 3-level chunk searching scheme al-
ways goes from the 16-bit hash code to the 32-bit rolling
checksum and further to the 128-bit MD5 checksum.

The 3-level chunk searching scheme can effectively
minimize the computation overhead for general file-edit
patterns, particularly random edits to a file. However,
it has been observed that real-world file edits typically
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Figure 11: The three-level chunk searching scheme used
by rsync and WebR2sync.
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(a) An edit consists of several continuous sub-edits.

A File

(b) The worst case of a file edit in terms of locality.

Figure 12: An example of continuous sub-edits due to
the locality of file edits: (a) the relationship between a
file edit and its constituent continuous sub-edits; (b) the
worst-case scenario in terms of locality.

follow a local pattern rather than a general (random) pat-
tern, which has been exploited to accelerate file compres-
sion and deduplication [41,47–49]. To exemplify this ob-
servation in a quantitative manner, we analyze two real-
world fine-grained file editing traces with respect to Mi-
crosoft Word and Tencent WeChat collected by Zhang et
al. [51]. The traces are fine-grained since they leveraged
a loopback user-space file system (Dokan [7] for Win-
dows) to record not only the detailed information (e.g.,
edit type, edit offset, and edit length) of users’ file oper-
ations but also the content of the updated data. In each
trace, a user made several continuous sub-edits to a file
and then did a save operation, and this behavior repeated
for many times. Here a continuous sub-edit means that
the sub-edit operation happens to continuous bytes in the
file, as demonstrated in Figure 12. Our analysis results,
in Figure 13, show that in nearly a half (46%) of cases
a user saved 1–5 continuous sub-edits, thus indicating
fine locality. Besides, in over one third (35%) of cases
a user saved 6–10 continuous sub-edits, which still im-
plies sound locality. On the other hand, in only a minor-
ity (5%) of cases a user saved more than 16 continuous
sub-edits, which means undesirable locality.

The locality of real-world file edits offers us an oppor-
tunity to bypass a considerable portion of (unnecessary)
chunk search operations. In essence, given that edits to a
file are typically local, when we find that the i-th chunk
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Figure 13: A real-world example of file-edit locality. The
number of continuous sub-edits is highly clustered.

of f ′ matches the j-th chunk of f , the (i+ 1)-th chunk
of f ′ is highly likely to match the ( j + 1)-th chunk of
f . Therefore, we “simplify” the 3-level chunk searching
scheme by directly comparing the MD5 checksums of
the (i+ 1)-th chunk of f ′ and the ( j+ 1)-th chunk of f .
If the two chunks are identical, we simply move forward
to the next chunk; otherwise, we return to the regular 3-
level chunk searching scheme.

Replacing MD5 with SipHash in chunk comparison.
By exploiting the locality of users’ file edits as above, we
manage to bypass most chunk search operations. After
that, we notice that the majority of server-side compu-
tation overhead is attributed to the calculations of MD5
checksums. Thus, we wonder whether the usage of MD5
is necessary in chunk comparison. MD5 was initially de-
signed as a cryptographic hash function for generating
secure and low-collision hash codes [43], which makes
it computationally expensive. In our scenario, it is not
necessary to use such an expensive hash function, be-
cause our purpose is just to obtain a low collision prob-
ability. In fact, we can employ the HTTPS protocol for
data exchange between the web client and server to en-
sure the security. Driven by this insight, we decide to re-
place MD5 with a lightweight pseudorandom hash func-
tion [22] in order to reduce the computational overhead.

Quite a few pseudorandom hash functions can satisfy
our goal, such as Spooky [17], FNV [9], CityHash [5],
SipHash [20], and Murmur3 [12]. Among them, some
are very lightweight but vulnerable to collisions. For ex-
ample, the computation overhead of MD5 is around 5
to 6 cycles per byte [8] while the computation overhead
of CityHash is merely 0.23 cycle per byte [19], but the
collision probability of CityHash is quite high. On the
other hand, some pseudorandom hash functions have ex-
tremely low collision probability but are a bit slow. As
listed in Table 2, SipHash seems to be a sweet spot — its
computation overhead is about 1.13 cycles per byte and
its collision probability is acceptably low. By replacing
MD5 with SipHash in our web-based delta sync solu-
tion, we manage to reduce the computation complexity
of chunk comparison by nearly 5 times.

Hash Function Collision Probability Cycles Per Byte
MD5 Low (< 10−6) 5.58
Murmur3 High (≈ 1.05×10−4) 0.33
CityHash High (≈ 1.03×10−4) 0.23
FNV High (≈ 1.09×10−4) 1.75
Spooky High (≈ 9.92×10−5) 0.14
SipHash Low (< 10−6) 1.13

Table 2: A comparison of candidate pseudorandom hash
functions in terms of collision probability (on 64-bit hash
values) and computation overhead (cycles per byte).

Although the collision probability of SipHash is ac-
ceptably low, it is slightly higher than that of MD5. Thus,
as a fail-safe mechanism, we make a lightweight full-
content hash checking (using the Spooky algorithm) in
the end of a file synchronization, so as to deal with pos-
sible collisions in SipHash chunk fingerprinting. We se-
lect the Spooky algorithm because it works the fastest
among all the candidate pseudorandom hash algorithms
(as listed in Table 2). If the full-content hash checking
fails for the synchronization of a file (with an extremely
low probability), we will roll back and re-sync the file
with the original MD5 chunk fingerprinting.

5.3 WebR2sync+: The Final Product
The integration of WebR2sync and the server-side op-
timization produces WebR2sync+. The client side of
WebR2sync+ is implemented based on the HTML5 File
APIs, the WebSocket protocol, an open-source imple-
mentation of SipHash-2-4 [1], and an open-source im-
plementation of SpookyHash [11]. In total, it is writ-
ten in 1700 lines of JavaScript code. The server side of
WebR2sync+ is developed based on the node.js frame-
work and a series of C processing modules. The former
(written in 500 lines of node.js code) handles the user
requests, and the latter (written in 1000 lines of C code)
embodies the reverse delta sync process together with the
server-side optimizations.

6 Evaluation
This section evaluates the performance of WebR2sync+,
in comparison to WebRsync, WebR2sync and (PC client-
based) rsync under a variety of workloads.

6.1 Experiment Setup
To evaluate different sync approaches, we set up a
Dropbox-like system architecture by running the web
service on a standard VM server instance (with a quad-
core Intel Xeon CPU @2.5GHz and 16-GB memory)
rent from Aliyun ECS, and all file content is hosted
on object storage rent from Aliyun OSS. The ECS VM
server and OSS storage are located at the same data cen-
ter so there is no bottleneck between them. The client
side of WebR2sync+ was executed in the Google Chrome
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Figure 14: Experiment setup in China.

browser (Windows version 56.0) running on a laptop
with a quad-core Intel Core-i5 CPU @2.8GHz, 16-GB
memory, and an SSD disk. The server side and client
side lie in different cities (i.e., Shanghai and Beijing) and
different ISPs (i.e., China Unicom and CERNET), as de-
picted in Figure 14. The network RTT is ∼30 ms and
the network bandwidth is ∼100 Mbps. Therefore, the
network bottleneck is kept minimal in our experiments
so that the major system bottleneck lies at the server
and/or client sides. If the network condition becomes
much worse, the major system bottleneck might shift to
the network connection.

6.2 Workloads
To evaluate the performance of WebR2sync+ under vari-
ous practical usage scenarios, as compared to WebRsync,
WebR2sync, and rsync, we generate simple (i.e., one-
shot), regular (i.e., periodical), and intensive workloads.
To generate simple workloads, we make random append,
insert, and cut operations of different edit sizes against
real-world files collected from real-world cloud storage
services. The collected dataset is described in §3.2. One
file is edited for only once (the so-called “one-shot”), and
it is then synchronized from the client side to the server
side. For an insert or cut operation, when its edit size ≥
1 KB, it is first dispersed into 1–20 continuous sub-edits
and then synchronized to the server.

Regular and intensive workloads are mainly employed
to evaluate the service throughput of each solution. To
generate regular workloads, we still make a certain type
of edit to a typical file but the edit operation is executed
every 10 seconds. To generate a practical intensive work-
load, we use a benchmark of over 8755 pairs of source
files taken from two successive releases (versions 4.5 and
4.6) of the Linux kernel source trees. The average size
of the source files is 23 KB and the file-edit locality is
generally stronger than that in Figure 13 (as shown in
Figure 15). Specifically, we first upload all the files of
the old version to the server side in an FTP-like man-
ner. Then, we synchronize all the files of the new version
one by one to the server side using the target approaches
(including rsync, WebRsync, WebR2sync, WebR2sync
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Figure 15: File-edit locality in the source files of two
successive Linux kernel releases (versions 4.5 and 4.6).

with SipHash, and WebR2sync+). There is no time inter-
val between two sequential file synchronizations.

6.3 Results
This part presents our experiment results in four aspects:
1) sync efficiency which measures how quick a file oper-
ation is synchronized to the cloud; 2) computation over-
head which explains the difference in sync efficiency of
the studied solutions; 3) sync traffic which quantifies how
much network traffic is saved by each solution; and 4)
service throughput which shows the scalability of each
solution using standard VM server instances.

Sync efficiency. We measure the efficiency of
WebR2sync+ in terms of the time for completing the
sync. Figure 16 shows the time for syncing against dif-
ferent types of file operations. We can see that the sync
time of WebR2sync+ is substantially shorter than that of
WebR2sync (by 2 to 3 times) and WebRsync (by 15 to
20 times) for every different type of operations. Note
that Figure 16 is plotted with a log scale. In other words,
WebR2sync+ outpaces WebRsync by around an order
of magnitude, approaching the speed of PC client-based
rsync. Furthermore, we observe that the sync time of
WebR2sync with SipHash always lies between those of
WebR2sync and WebR2sync+. This confirms that nei-
ther of our server-side optimizations (SipHash and local-
ity exploiting, refer to §5.2) is indispensable.

Similar as Figure 3b, we further break down the sync
time of WebR2sync+ into three stages as shown in Fig-
ure 17. Comparing Figure 17 and Figure 3b, we notice
that the majority of sync time is attributed to the client
side for WebRsync, while it is attributed to the server
side for WebR2sync+. This indicates that the computa-
tion overhead of the web browsers in WebRsync is sub-
stantially reduced in WebR2sync+, which also saves web
browsers from stagnation and hanging.

Computation overhead. Moreover, we record the
client-side and server-side CPU utilizations in Fig-
ure 18 and Figure 19, respectively. On the client side,
WebRsync consumes the most CPU resources while
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Figure 16: Average sync time of different delta sync approaches for various sizes of file edits under a simple workload.
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Figure 17: Breakdown of the sync time of WebR2sync+ (shown in Figure 16) for different types of edit operations.
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Figure 18: Average client-side CPU utilization of different delta sync approaches under a simple workload.
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Figure 19: Average server-side CPU utilization of different delta sync approaches under a simple workload.

WebR2sync+ consumes the least. PC client-based rsync
consumes nearly a half CPU resources as compared
to WebRsync, and the CPU utilization of WebR2sync
lies between rsync and WebR2sync+. Owing to the
moderate (< 30%) CPU utilizations, both the clients of
WebR2sync and WebR2sync+ do not exhibit stagnation.

On the server side, WebR2sync consumes the most
CPU resources because the most computation-intensive
chunk search and comparison operations are shifted from

the client to the server. On the contrary, WebR2sync+
consumes the least CPU resources, which validates the
efficacy of our two-fold server-side optimizations.

Sync traffic. Figure 20 illustrates the sync traffic con-
sumed by the different approaches. We can see that for
any type of edits, the sync traffic (between 1 KB and
120 KB) is significantly less than the average file size
(∼1 MB), confirming the power of delta sync in improv-
ing network-level efficiency of cloud storage services.
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Figure 20: Sync traffic of different sync approaches for various sizes of file edits under a simple workload.
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Figure 21: Number of concurrent clients supported by a single VM server instance (as a measure of service throughput)
under regular workloads (periodically syncing various sizes of file edits).
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Figure 22: Number of concurrent users supported by
a single VM server instance under intensive workloads
(syncing two versions of Linux source trees).

For the same edit size the sync traffic of an append op-
eration is usually less than that of an insert operation,
because the former would bring more matching tokens
while fewer literal bytes (refer to Figure 1). Besides,
when the edit size is relatively large (10 KB or 100 KB),
a cut operation consumes much less sync traffic than an
append/insert operation, because a cut operation brings
only matching tokens but not literal bytes.

Service throughput. Finally, we measure the service
throughput of WebR2sync+ in terms of the number of
concurrent clients it can support. In general, as the num-
ber of concurrent clients increases, the main burden im-
posed on the server comes from the high CPU utilizations
in all cores. When the CPU utilizations on all cores ap-
proach 100%, we record the number of concurrent clients

at that time as the service throughput. As shown in Fig-
ure 21, WebR2sync+ can simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance under regular workloads. This throughput is as
3–4 times as that of WebR2sync/rsync and as∼15 times
as that of NoWebRsync. NoWebRsync means that no
web-based delta sync is used for synchronizing file edits,
i.e., directly uploading the entire content of the edited
file to the cloud. Also, we measure the service through-
put of each solution under intensive workloads (which
are mixed by the three types of edits, refer to §6.2). The
results in Figure 22 indicate that even under the inten-
sive workloads, WebR2sync+ can simultaneously sup-
port 740 web clients’ delta sync using a single VM server
instance.

7 Related Work
Delta sync, also known as delta encoding or delta com-
pression, is a way of storing or transmitting data in the
form of differences (deltas) between different versions
of a file, rather than the complete content of the file [6].
It is particularly useful for network applications where
file modifications or incremental data updates frequently
happen, e.g., storing multiple versions of a file, distribut-
ing consecutive user edits to a file, and transmitting video
sequences [33]. In the past 4 decades, a variety of delta
sync algorithms or solutions have been put forward, such
as UNIX diff [32], Vcdiff [34], WebExpress [31], Op-
timistic Deltas [21], rsync [15], and content defined
chunking (CDC) [35].



Due to its efficiency and flexibility, rsync has become
the de facto delta sync protocol widely used in practice.
It was originally proposed by Tridgell and Mackerras in
1996, as an algorithm for efficient remote update of data
over a high-latency, low-bandwidth network link [45].
Then in 1999, Tridgell thoroughly discussed its design,
implementation, and performance in [44]. Being a stan-
dard Linux utility included in all popular Linux distribu-
tions, rsync has also been ported to Windows, FreeBSD,
NetBSD, OpenBSD, and MacOS [15].

According to a real-world usage dataset [37], the
majority (84%) of files are modified by the users for
at least once, thus confirming the importance of delta
sync on network-level efficiency of cloud storage ser-
vices. Among all mainstream cloud storage services,
Dropbox was the first to adopt delta sync (more specif-
ically, rsync) in around 2009 in its PC client-based file
sync process [39]. Then, SugarSync, iCloud Drive, and
Seafile followed the design choice of Dropbox by utiliz-
ing delta sync (rsync or CDC) to reduce their PC clients’
and cloud servers’ sync traffic. After that, two academic
cloud storage systems, namely QuickSync [25] and
DeltaCFS [51], further implemented delta sync (rsync
and CDC, respectively) for mobile apps.

Drago et al. studied the system architecture of Drop-
box and conducted large-scale measurements based on
ISP-level traces of Dropbox network traffic [28]. They
observed that the Dropbox traffic was as much as one
third of the YouTube traffic, which strengthens the ne-
cessity of Dropbox’s adopting delta sync. Li et al. in-
vestigated in detail the delta sync process of Dropbox
through various types of controlled benchmark experi-
ments, and found it suffers from both traffic and com-
putation overuse problems in the presence of frequent,
short data updates [39]. To this end, they designed an
efficient batched synchronization algorithm called UDS
(update-batched delayed sync) to reduce the traffic us-
age, and further extended UDS with a backwards com-
patible Linux kernel modification to reduce the CPU us-
age (recall that delta sync is computation intensive).

Despite the wide adoption of delta sync (particularly
rsync) in cloud storage services, practical delta sync
techniques are currently only available for PC clients
and mobile apps rather than web browsers. To this end,
we introduced the general idea of web-based delta sync
with basic motivation, preliminary design, and early-
stage performance evaluation using limited workloads
and metrics [50]. In this paper, our work is conducted
based on [50] while goes beyond it in terms of tech-
niques, evaluations, and presentations.

8 Conclusion and Future Work
This paper presents a series of efforts towards a practical
solution of web-based delta sync for cloud storage ser-

vices. We first leverage the state-of-the-art techniques
(including rsync, JavaScript, HTML5 File APIs, and
WebSocket) to develop an intuitive web-based delta sync
solution named WebRsync. Despite not being practically
acceptable in terms of performance, WebRsync effec-
tively helps us understand the obstacles to support web-
based delta sync. Particularly, we observe that the ineffi-
ciency of JavaScript execution significantly stagnates the
sync process of WebRsync. Thereby, we propose and im-
plement WebR2sync+, a practical web-based delta sync
solution by moving expensive chunk search and compar-
ison operations from the client side to the server side. It
combines with optimizations at the server side that ex-
ploit the locality of users’ file edits and uses lightweight
pseudorandom hash functions to replace the traditional
expensive cryptographic hash function. WebR2sync+
outpaces WebRsync by an order of magnitude, and is
able to simultaneously support around 6800–8500 web
clients’ delta sync using a standard VM server instance
under a Dropbox-like system architecture.

We are investigating the following aspects as the fu-
ture work. First, we are looking for a seamless way
to integrate the server-side design of WebR2sync+ with
the back-end of commercial cloud storage vendors (like
Dropbox and iCloud Drive). Specifically, WebR2sync+
needs to cooperate with data deduplication, compres-
sion, bundling, etc. [23, 27]. Moreover, we would like
to explore the benefits of using more fine-grained and
complex delta sync protocols, such as CDC and its vari-
ants [30, 42, 49]. In addition, we envision to expand the
usage of WebR2sync+ for a broader range of web service
scenarios, not limited to web browsers and cloud storage
services. For example, when a user wants to use a web-
based app to upload a file f ′ to a common web server
(such as Apache, Nginx, or IIS) which has already stored
an old version of the file ( f ), web-based delta sync has
the great potential to reduce network traffic and operation
time. In this case, the major challenge lies in the require-
ment of modifying the web server implementation; min-
imizing the modification efforts is under investigation.
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