
Accuracy, Scalability, Coverage – A Practical Configuration
Verifier on a Global WAN

Fangdan Ye⋆△‡, Da Yu§△‡, Ennan Zhai†, Hongqiang Harry Liu†, Bingchuan Tian×△, Qiaobo Ye†
Chunsheng Wang†, Xin Wu†, Tianchen Guo†, Cheng Jin†, Duncheng She†, Qing Ma†

Biao Cheng†, Hui Xu†, Ming Zhang†2, Zhiliang Wang⋆2, Rodrigo Fonseca§
†Alibaba Group ⋆Tsinghua University §Brown University ×Nanjing University

ABSTRACT
This paper presents Hoyan– the first reported large scale deploy-
ment of configuration verification in a global-scale wide area net-
work (WAN). Hoyan has been running in production for more
than two years and is currently used for all critical configuration
auditing and updates on the WAN. We highlight our innovative
designs and real-life experience to make Hoyan accurate and scal-
able in practice. For accuracy under the inconsistencies of devices’
vendor-specific behaviors (VSBs), Hoyan continuously discovers
the flaws in device behavior models, thus aiding the operators in
fixing the models. For scalability to verify our global WAN, Hoyan
introduces a “global-simulation & local formal-modeling” strategy
to model uncertainties in small scales and perform aggressive prun-
ing of possibilities during the protocol simulations.Hoyan achieves
near-100% verification accuracy after it detected and fixed O(10)
VSBs on our WAN. Hoyan has prevented many potential service
failures resulting from misconfiguration and reduced the failure
rate of updates of our WAN by more than half in 2019.

CCS CONCEPTS
• Networks→ Network reliability; • Theory of computation
→ Logic and verification;

KEYWORDS
Network Verification; Network Configurations; Reliability
ACM Reference Format:
Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng
She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, Rodrigo
Fonseca. 2020. Accuracy, Scalability, Coverage – A Practical Configuration
Verifier on a Global WAN. In Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication (SIGCOMM ’20), August 10–14,
2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3387514.3406217

‡Both authors contributed equally to the paper.
△Work done while these authors were interns at Alibaba Group.
2Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3406217

1 INTRODUCTION
Alibaba has a global network infrastructure to serve over one billion
customers world-widely with its online services, such as AliCloud
(cloud service), Taobao/Tmall/AliExpress (e-commerce), Alipay (Fin-
Tech), and so forth. It builds and operates a global wide area network
(WAN) to inter-connect its tens of data centers in four continents
and peer with external Internet Service Providers (ISPs). This WAN
contains hundreds of routers and realizes connectivity demands
of applications via complex static routes, border gateway proto-
col (BGP), and intermediate system to intermediate system (IS-IS)
configurations as well as access control list (ACL) rules.

Maintaining the reliability of such a large-scale and complicated
WAN is extremely challenging, and one major source of risk is
the obscure errors in routing configurations that violate operators’
reachability intent. To prevent incidents resulting from routing
configuration errors, we decided to adopt network verification
techniques as an automatic and systematic way to proactively audit
our configurations and prevent configuration-induced incidents.
Nonetheless, despite that there were multiple existing solutions [4,
11–13] when we started to build our WAN configuration verifier,
Hoyan, in late 2017, we found it was far from straightforward
to directly apply them into our WAN environment due to both
pragmatic challenges of usability and the fundamental trade-offs
faced by existing network verifiers.
Pragmatic challenges. The primary challenge is the accuracy of
control plane modeling. An essential precondition of the usefulness
of a configuration verifier is itself is correctly implemented, and
operators have confidence in its results. However, this issue is less
discussed by the previous literature. In practice, besides the poten-
tial bugs in software developments, the most crucial challenge of
accuracy is that the correctness of the behavior model of network
devices is hard to guarantee due to the existence of vendor-specific
behaviors (VSBs). Specifically, different vendors implement parts
of a protocol in various ways which might not be known for de-
velopers when building the verification tools. For example, in BGP,
remove-private-AS in Vendor A’s implementation means “remov-
ing all the private AS numbers”, but means “removing only private
AS numbers until the first non-private one” in Vendor B.1 Since
routing behaviors of devices are highly correlated, failing to catch
one or several VSBs can significantly invalidate the verification
results. For instance, before taking into account VSBs, the verifi-
cation accuracy of some prefixes in our network can be less than
20% (Figure 14). Therefore, without a systematic methodology that
continuously enhances the accuracy of our configuration verifier,
the verification result can hardly be trusted by operators.

1We use examples from real vendors, but omit the vendor names.

https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

Fundamental trade-offs. Prior work has a fundamental trade-off
between scalability and verification coverage (e.g., handling of fail-
ures, handling of route update racing, supported protocols, etc.). For
example, simulation-based verification systems (e.g., Batfish [12])
simulate the entire process of route propagation and convergence
on the control plane and check the forwarding tables (FIBs) over
a given network snapshot. Because these systems merely verify
one data plane under one topology each time, they have to run

(n
k
)

times to verify configurations under arbitrary k failures out of n
links [4], even though they archive good scalability in the k = 0
cases. Similarly, the simulation-based verification cannot check
configurations under different arrival orders of routes with good
scalability. Alternatively, logical-formula-based approaches (e.g.,
Minesweeper [4]) offer the capability of reasoning about arbitrary
k failures and all possible arrival orders of route updates. They are,
however, unscalable since they represent the configuration logic
of the entire (or a large part of the) network as a single, big logical
formula with diverse constraints – solving such a formula (even
with a modern SMT solver) is impractical [5, 24]. In addition, while
recent efforts improve the scalability of existing tools by taking
advantage of network topology symmetry [5, 23, 24], such a benefit
is limited on our WAN, as our WAN lacks this symmetry. While
graph-based tools, e.g., ARC [13], are fast, they are not able to en-
code complicated routing policies [4]. Therefore, scalability and
verification coverage (a.k.a. more advanced features) are hard to
co-exist in existing tools. (See more discussions in §2).

In this paper, we highlight several innovative designs and real-
life experiences that make our verification system, Hoyan, accurate
and scalable with sufficient coverage on uncertainties and protocols.
Accuracy. Hoyan continuously compares the routes it computes
with the actual ones in production, testbeds or emulations to detect
the flaws of its behavior models. One major challenge is how to
locate the root cause of a reachability mismatch to facilitate model
tuning. With existing network monitoring tools, it is possible to
locate the root cause of a wrong place because a VSB’s impact
typically appears far away from the actual location. To discover
differences between its model and the real device, Hoyan combines
all the attributes of a route relevant for routing into an extended
routing information base (RIB). Hoyan is able to locate the first
place the mismatch happens by comparing each of the attributes.
As a result, Hoyan can accurately locate a VSB within O(10) con-
figuration lines. After that, developers of Hoyan can easily find the
corresponding configuration block and produce patches to improve
the verification accuracy. Another challenge is the difficulty to vali-
date behavior models of Hoyan against the actual device behaviors
under arbitrary cases. Instead, our strategy is to validate behavior
models under all cases that appear in the production. For a given
device type, we find all places in production where the device type
sits and validate Hoyan ’s model with production data.
Scalability with sufficient coverage. Hoyan offers a globally
simulation-based & locally formal-modeling-based solution to si-
multaneously take advantage of the scalability of simulation-based
solutions and the ability to handle uncertainties of formal-modeling-
based solutions. Specifically, Hoyan runs overall simulations of all
protocols on the WAN which are fast and lightweight compared
with formal-modeling-based approaches. On the other hand,Hoyan

introduces small-scale logical formulas to encode all possibilities
when it encounters uncertainties within considerations and solves
small-scale SMT problems during or at the end of the simulations
to verify reachability under uncertainties as well as preserving
scalability. For example, when simulating the propagation of route
updates, Hoyan incrementally encodes, with a logical formula, the
topologies under which a route update can reach a device, or un-
der which a rule exists in the routing table. Hoyan leverages this
encoding for its substantial scalability improvements. For instance,
Hoyan traces the process of route update or packet propagation,
so that it can cut unnecessary propagation branches whose topol-
ogy condition is impossible or out of consideration (larger than k
failures). This pruning cannot be done by current formal-modeling-
based tools since the latter do not have access to the intermediate
states during route propagation.
Real-world deployment. Hoyan has been deployed on our WAN
for more than two years and prevented many incidents resulting
from misconfiguration. The overall rate of update-triggered net-
work incidents was cut by more than half in the second year of its
deployment. In §7, we share some representative cases of configu-
ration errors and the VSBs we found in practice and our experience
with other practical challenges.
Performance. In §8, we compare the performance of Hoyan with
representative alternatives (Batfish [12], Minesweeper [4], and
Plankton [24]), with realistic network setups. Hoyan outperforms
them by orders of magnitude in large scale production WAN.

2 RELATEDWORK
The core idea of network verification is leveraging formal methods
to validate the network behavior. Depending on how to model
network behaviors, there are three strategies.
Data plane verification. Data plane verification systems focus on
modeling FIB snapshots to logical formulas and then checking reach-
ability properties via solvers. There have been many data plane
verification systems, e.g., NoD [21], Anteater [7], Veriflow [19],
HSA [18], Delta-net [14], SymNet [27], and P-Rex [16]. Microsoft’s
RCDC [15], to the best of our knowledge, is the first publicly-
reported data plane verification system deployed in the data center
scale. We do not take this path because our goal is to proactively de-
tect errors before adopting potentially buggy configurations in the
network. Also, data plane verification does not provide solutions
to uncertainties, e.g., failures and non-deterministic errors.
Configuration verification. Configuration verification (or con-
trol plane verification) systems aim to comprehensively verify the
logics encoded by the configurations of diverse routing protocols.
Existing efforts can be classified into three categories:

(i) Simulation-based verification: Batfish [12], C-BGP [25], and
FastPlane [22] take as input network configuration and multiple
given environments, simulate the control plane, and finally gener-
ate the corresponding data planes. They, then, leverage the exist-
ing data plane work (mentioned above) to check misconfiguration.
Simulation-based efforts suffer from scalability issues to take into
account uncertainties (e.g., k-failure tolerance) in large networks,
because they have to enumerate all possible cases.

(ii) Formula-based verification: ERA [11] and Minesweeper [4]
build the network model based on the entire configuration and

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

IP_Prefix=10.0.1.0/24
Local_Preference=300
Weight = 0

AS 100BA

AS 200
IP_Prefix=10.0.1.0/24
Local_Preference=500
Weight = 0

C D

Egress Policy: change weight: 0à100

iBGP
Dropped by B

(a) Original Intent: Adding a rule to enlarge
the weight of the route update from A to B,
so B will select A as the next-hop rather than
D, and A and B will forward packets of
10.0.1.0/24 to C (larger weight overrides the
larger local preference).

E’s route
arrives at A first

AS 100BA

AS 200C D

Egress Policy: change weight: 0à100

iBGP
Dropped by A

IP_Prefix=10.0.1.0/24
Local_Preference=300
Weight = 0

IP_Prefix=10.0.1.0/24
Local_Preference=500
Weight = 0

(b) Error from route update racing: the
route from D arrives A before C’s, A selects
D’s route first and directly drops C’s, so that
C’s route gets no chance to hit the weight
changing rule. So, A and B still forward
packets of 10.0.1.0/24 to D.

F’s route
arrives at A first

(c) Meaning of the logical formulas: a route is
selected if its predecessor is selected and the routes
ranked higher are not selected. Multiple solutions
of the formulas imply ambiguous route
convergences. Solution (a) represents the case in
(a), and Solution (b) represents the case in (b).

Definitions:
𝑚"→$	is the route with propagation path 𝐴→ 𝐵	
𝐼"→$	 denotes whether 𝑚"→$	is the best route of 𝐵

𝐼)→$→"= 𝐼)→$
𝐼*→"=¬𝐼)→$→"

𝐼*→"→$= 𝐼*→"
𝐼)→$=¬𝐼*→"→$

Logical
formulas

𝑚*→"

𝑚*→"→$
𝑚)→$

𝑚)→$→"Ranking of
Routes Node Bhi

gh
er

pr

io
rit

y

Node A

Two Possible
Solutions

(a): 𝐼*→"= 𝐼*→"→$=true, 𝐼)→$ = 𝐼)→$→" =false
(b): 𝐼*→"= 𝐼*→"→$=false, 𝐼)→$ = 𝐼)→$→" =true

Figure 1: A simplified real example of configuration bug caused by non-deterministic route update racing.

then convert network properties verification into SMT and BDD
problems, respectively. These solutions suffer from scalability prob-
lems in the large network, because they encode the entire control
plane logic into a single SMT/BBD formula. This formula can eas-
ily be overly large for any SMT/BBD solver to compute within
a reasonable duration. Recent efforts improve the scalability of
formal-modeling tools by taking advantage of network topology
symmetry [5, 23]. While these proposals might work well in highly
symmetric networks such as data center networks (DCNs), their
benefits are limited on our WAN, as our WAN lacks this symmetry,
as other WANs might also do. Plankton [24] was recently proposed
to get better scalability with model checkers and some optimiza-
tions to reduce the problem size. It supports route update racing, but
it is not scalable to handle failures without topology symmetry. In
addition, Bagpipe [29] shares similar ideas, but only focuses on BGP
configuration verification. Microsoft’s SecGuru [15] and Alibaba’s
Jinjing [28] focus on ACL rules rather than routing configurations.

(iii) Graph-based verification: Efforts, e.g., ARC [13] and Tirami-
su [1], model configurations as a directed graph, and then use
graph-based algorithms to check the network properties. ARC is
limited to encode complicated BGP policies. Tiramisu improves
ARC to handle communities in BGP with multi-layered graphs, but
it cannot support route selections with route update racing.

Hoyan is the first reported large scale deployment of configura-
tion verification in production. It has two innovations that make it
pragmatic in the wild. First, it systematically handles VSBs to make
the verification result to be trustworthy, which is a foundation;
Second, it creates a “globally simulation & locally formal-modeling”
strategy to achieve good scalability with the ability to cover some
critical uncertainties, which is useful in practice (see details in §3.2).
Network emulation. Network emulators, e.g., CrystalNet [20],
run the real control plane software in emulated environments and
generate corresponding FIBs for validation purposes. It is essentially
an enhanced version of simulation-based verification which can
handle VSBs and other software bugs. Compared with verification,
network emulation has two issues which make the configuration
verification irreplaceable. First, the network emulation needs ven-
dors to provide their device firmware within virtual machines or
containers, while we found it is practically hard to get such support
from all vendors for all device models in Alibaba’s WAN at present.
Second, running real router software requires a large number of
computing resources (e.g., $100 per hour for emulating just one

data center [20]). As routers in WAN typically have much more
sophisticated firmware than data center switches, running emula-
tions for a WAN can be even more expensive. Therefore, emulation
is useful but not available all the time, and verification thus is still
an effective and lightweight tool to validate the logical correctness
of network configuration.

3 OVERVIEW
This section first introduces Alibaba’s global WAN (§3.1), and then
shows our motivations (§3.2) and goals (§3.3).

3.1 Alibaba’s global network infrastructure
Alibaba has a global scale infrastructure to support its various types
of online services (e.g., computation, storage, search, video, etc.),
which have more than one billion users in total. By January 2020,
this infrastructure has O(10) data centers, O(100) PoP (point of
presence) nodes, O(1000) edge sites across 20 geographical regions
over North America, Europe, Asia, and Oceania.

Alibaba operates a private WAN that interconnects all its data
center networks (DCNs) and peers with external ISPs around the
world. The DCNs and the WAN employ eBGP for interconnecting;
the WAN is a single AS that uses iBGP on top of IS-IS to inter-
nally redistribute routes learned from outside. The whole WAN has
O(100) routers, which are from multiple vendors, andO(1000) links.
Each router has O(1000) lines of configuration commands. There
are also O(10, 000) IP prefixes announced over the WAN. With the
fast growth of the application demands, our WAN doubles its scale
every year, and performs O(1000) update operations per month.

3.2 Our motivations
Two inherent characteristics of our WANs make it arduous to man-
age network configurations. First, our WAN is incrementally built
for years, so its current configuration is an accumulated set of
historical configuration updates from different operators in dif-
ferent scenarios as the WAN continuously grew into the current
one. Therefore, one big concern of us (and what we have seen in
practice) is the current configuration on the WAN might have some
hidden inconsistencies or bugs which can be triggered out of the
blue. Reasoning about the risks in existing configurations – espe-
cially finding unexpected reachability violations under hardware
(e.g., device and link) failures (called k-failure tolerance in Beckett
et al. [4]) – is extremely hard even for well-trained operators.

Second, we update the configurations of our WAN on a daily
basis because of either the applications’ footprint expansions or

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

Requirement Property of verification tool Batfish [12]
(Simulation)

Minesweeper [4]
(Formal-Modeling)

ARC [13] (Graph
Modeling)

Hoyan (Global Simulation & Local
Formal-Modeling)

Scalability of computations ✓ ✗ ✓ ✓
Mandatory Correctness with vendor’s heterogeneity ✗ ✗ ✗ ✓

Comprehensiveness of protocols ✓ ✓ ✗ ✓
Preferred Handling failures of router/link ✗ ✓ ✓ ✓

Handling route update racing ✗ ✓ ✗ ✓
Optional General route inputs ✗ ✓ ✗ ✗

Table 1: The properties of verification and representative solutions when Hoyan was designed in late 2017.

the optimizations of the WAN’s architecture or types of equipment.
Performing the updates on configurations correctly and quickly is
critical to our business, but it is also unsurprisingly hard and error-
prone. According to our operation experiences, severe incidents can
be triggered by even a tiny flaw in the new configuration, including
but not limited to incorrect policy designs, confusions of new or
abandoned features, VSBs, typos, and so forth. In addition, the new
configuration may have ambiguities due to the non-deterministic
orders of route update arrivals in update periods (shown in Figure 1),
which is extremely hard to trace manually.

Hence, as our WAN gets larger and more complex, and our appli-
cations change their requirements on networking more frequently,
we are strongly motivated to adopt verification as an automatic,
rapid and comprehensive way to (i) audit the current configuration
snapshot for hidden errors; and (ii) check correctness and incon-
spicuous ambiguities of new configurations in an update.

3.3 Our goals
Building a pragmatic and effective configuration verification tool
on a large-scale and complex WAN like ours requires systematic
reasoning about the trade-offs we face and what need be achieved
and what need not according to practical concerns. Based on the
experience of our operators, Table 1 lists six key properties for
configuration verification, and classifies them into three groups.
Mandatory. The properties in this group are the most essential
ones to make the whole system applicable to the WAN. For scalabil-
ity, our goal of the waiting time to get a verification result is nomore
than 24 hours on a standard commodity server. Simulation-based
solutions achieve good scalability, since simulating control plane
protocols is lightweight and easy to be parallelized. For instance,
Batfish can finish the verification of a configuration snapshot in
about 1 hour. But Minesweeper, as a classic formal-modeling based
solution, cannot finish within 24 hours even on a subnet smaller
than 10% in size of our WAN (§8.2), because its SMT formulations
become too large when the network has a large number of peering
sessions, per-interface policies, and IP prefixes.

The second mandatory property is the correctness of verification
results, especially under the heterogeneity of different vendors. In
practice, different vendors usually implement routing protocols
with their own understandings and definitions, which is hard to
know ahead of time. Such VSBs can trigger cascading errors in the
verification computations, resulting in verification results that are
far from trustworthy. For instance, before we consider the effects of
VSBs, our verification results have poor accuracy: 79% IP prefixes
have less than 60% accuracy rate compared with the ground-truth
(§6). Hence, a practical configuration verifier must effectively detect
VSBs and model the behaviors of devices in a vendor-specific way.
Unfortunately, no existing verification tool, we are aware of, clearly
demonstrates how to deal with the issues with VSBs.

The third property is protocol coverage. We aim to support eBGP,
iBGP, IS-IS, static route, and the route redistributions among these
protocols correctly so that efforts like ARC fall off the map.
Preferred. The properties in this group are features that are very
helpful to enhance the power of configuration verification, though
they are not fundamentally indispensable for a simple purpose of
verifying a static configuration snapshot.

The handling of uncertainty due to router and link failures is one
such a property. This property can enable operators to understand
the reachability of the network under some degree of failures (e.g.,
up to k link failures) and help to design more robust configurations.

Besides hardware failures, the non-deterministic racing of route
updates is another source of uncertainty, which operators are inter-
ested to understand. Specifically, operators find that some incorrect
configurations can result in different converged routes over the net-
work under different orders of route update arrivals. For instance,
Figure 1 (a) and (b) illustrate an iBGP configuration error triggered
by the race of route updates, which is a simplified version from a
real case. Therefore, if the configuration verifier can find the risks
caused by races of route updates, operators can control the routing
across the network more precisely and safely.
Optional. This group means the included properties are not neces-
sary to our network operations. They can be given up to make the
solution more lightweight or make other properties easier to realize.
General route inputs, as shown in Table 1, mean whether the veri-
fication methodology is able to check properties of interest under
arbitrary route conditions, such as “in what route inputs the BGP
route hijacking would occur” and “in what route inputs,A and B are
isolated”. To handle the general route inputs, the simulation-based
and graph-based verification systems (e.g., Batfish and ARC) need to
emulate all the cases which is very time-consuming. Minesweeper
is efficient in solving the general route inputs case since it can
encode the general route inputs into symbolic formulas.

4 HOYAN ARCHITECTURE
Hoyan offers verification services for network operators to check
whether a set of configurations meets some particular properties;
meanwhile, it constantly compares the routes it computes from
its current device behavior models (detailed in §4.2) and online
configurations against the routes in real networks, to find flaws in
its current behavior model, facilitating the operators to fix these
flaws. Hoyan thus has two parts, as shown in Figure 2.

In the frontend, the configuration verifier (§5), combines the cur-
rent online configuration and the proposed configuration changes
from operators to generate the target configuration to be verified.
According to the stock keeping unit (or SKU) of each device of
the network, it obtains each device’s behavior model and feeds
them with the target configuration to generate the target network

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Behavior Model
Validator

Property Verification
Verification

Result
(success or violation)

Target
Config

Configuration Updates
Behavior Models

Online Configurations

Online RIB,
Route Updates

Target Network Model

WAN
Online Network Model

Patch

The Hoyan System

M
odel Tuner

C
onfig Verifier

update
config
checking

online
config
auditing

M
an

ua
l

U
pd

at
es

Figure 2: Hoyan’s architecture.
model. After that, the verification block queries the target network
model to answer the operator’s verification questions.Hoyan offers
user-friendly interfaces for our operators to express the property
of interest. Based on our operation needs and experience, Hoyan
mainly focuses on verifying the properties of reachability and role
equality. Our WAN has no requirement for verifying properties
such as isolation issues or black holes which mainly exist in DCNs.

In the backend, the behavior model tuner (components in the gray
box) continuously collects online configurations and network in-
formation, including routing table (RIB) and route updates. Alibaba
has internal systems that record and maintain the above informa-
tion. The tuner, on one hand, passes these configurations to each
device’s behavior model to generate the online network model (for
the entire WAN). On the other hand, it calls the validator to check
whether there are any mismatches between the model it computes
and the network information it collects. When a mismatch is found,
the tuner localizes to a small configuration snippet, so that a human
can easily understand. Network operators normally write a small
patch to fix the flaw in corresponding device models (§6).

In the rest of this section, we first explain the key ideas behind
Hoyan design (§4.1), and then describe how Hoyan models device
and network (§4.2).

4.1 Key ideas behind Hoyan design
We choose to start from the strategy of simulation like Batfish,
because it can satisfy our needs in “Mandatory” if it is patched with
VSBs handling. Surprisingly, we also find that “Simulation” can also
be enhanced with “Formal-Modeling” to handle the uncertainties
(i.e., the k-failure tolerance and non-deterministic route updating
racing). We therefore call the design strategy of Hoyan as global
simulation & local formal modeling, and it can achieve all properties
in both “Mandatory” and “Preferred” as shown in Table 1.

Handling VSBs and uncertainties in simulation-based configura-
tion verifiers while keeping their scalability and comprehensiveness
are the two major innovations in Hoyan.
Handling VSBs. To perform its simulations, Hoyan needs models
of the behavior of routers. The key idea to make sure behavior
models align with the real implementation of vendors is to contin-
uously compare the RIB/FIB Hoyan gets from simulations and the
ground truth inside production networks and repair the behavior
models to approach the ground truth. To realize this idea, we must
(i) make sure all device types can be tested with sufficient cases; (ii)
provide enough hints for Hoyan to quickly locate the deficits of
the behavior models and repair them (detailed in §6).
Handling uncertainties. The reason formal-modeling-based ap-
proaches can handle uncertainties is that logical formulas can easily

FIB

Route Update
(control plane)

Packet
(data plane)

RIB

Ingress
Policy

Egress
Policy

Ingress
Policy

Egress
Policy

Ingress
Interface

Egress
Interface

Route
Selector

Route
Selector

Figure 3: A device behavior model.

encode “if-else” logics. For example, Minesweeper uses a binary
symbolic variable that indicates the liveness of a link and takes
it into the formula. The formula specifies what to do if the link
is up or down. Similarly, our key idea to handle uncertainties in
simulations is to use logical formulas to encode uncertainties in
some small steps during the simulations. Given the small scale of
encoded model in these steps (O(100) variables on average per for-
mula), an SMT solver – Hoyan employs Z3 [10] as its SMT solver
– can quickly get the results. This strategy thus is called Global
simulation & Local formal-modeling.

For link and router failures, when simulating the propagation
of route updates or packets, Hoyan constructs a logical formula to
encode the topologies under which a route update or packet can
reach a device, or under which a rule exists in the RIB/FIB. With
this encoding, Hoyan traces the process of route update or packet
propagation, so that it can cut unnecessary propagation branches
whose topology condition is impossible or out of consideration, e.g.,
larger than k failures. This pruning can significantly accelerate the
verification process (detailed in §5).

For non-deterministic route update racing, Hoyan uses binary
symbolic variables to indicate the orders of route update arrivals
on each router, so that it can encode the selected routes under
arbitrary arrival orders of route updates within a single simulation
process. At the end of the process, it just needs to solve an SMT
formulation to check whether there exist multiple arrival orders. If
so, that means non-deterministic route update racing exists.

4.2 Modeling devices and network
This section explains two important concepts: device behavior
model and network model.
Device behavior model. As shown in Figure 3, a device behavior
model consists of two pipelines for processing route updates on the
control plane and packets on data plane respectively (we use the
word “message” to refer to a route update or a packet). A concrete
device behavior model is generated from the device configuration
and the vendor specific behavior modeler of the device type.Hoyan
builds vendor specific configuration parsers and behavior modelers
for all types of devices that could appear in production networks.

Each processing pipeline has three components: ingress policy,
route selector, and egress policy, as shown in Figure 3. Ingress
and egress policies are essentially match-action tables that define
whether to forward or drop a message and/or how to modify a
message based on the pattern of the message. For instance, on
the control plane, a BGP router can have an ingress policy which
drops route updates from a particular peer, and on the data plane,
a router can have an egress ACL rule that drops UDP packets on
a particular interface. The route selector encodes the core logic of
routing protocols on the control plane or the forwarding logic on
the data plane. For instance, in a BGP router, the route selector

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

decides how to prioritize routes from different peers for the same
subnet and sends the best route to the peers of this router; on the
data plane, it matches a packet to a rule in the FIB based on longest
prefix or other built-in logic and selects next hop(s) to forward the
packet.

For different vendors and different device SKUs, the specific
behavior of ingress and egress policies and the logic inside route
selectors can be distinct. Therefore, Hoyan must build device be-
havior models adaptively.
Network model. After obtaining all the behavior models of net-
work devices, Hoyan connects them according to the network
topology. If two devices have a link between them, their ingress
and egress modules in their behavior models are connected together
in both directions. The resulting graph is called network model.

In a network model, Hoyan first makes route announcements
from the edges of the networkmodel. Each route update is processed
by the control plane pipeline it meets, so that it is propagated across
the network model. The RIB of each device is established once the
propagation process is done. The FIB then is derived from the RIB.
With the complete RIB and FIB, the reachability of a given message
can be easily evaluated by combining relevant logical rules along
the pipelines the message encounters.

5 VERIFICATION METHODOLOGY
This section shows how Hoyan performs reachability verifications
and achieves the tremendous improvement in scalability.

5.1 Reachability on control- and data-planes
According to the requirements from operators, Hoyan checks the
reachability of both routes and packets. On one hand, Hoyan jus-
tifies whether the route to a given subnet can reach a group of
network devices after the route propagation process. This is also
useful for debugging configurations such as BGP peering, routing
policies, etc. On the other hand, Hoyan can also check whether
packets towards a given subnet can start from a group of network
devices and reach the gateway router of the subnet. Note that “the
route of a subnet can reach device A” does not necessarily mean “a
packet can reach the subnet’s gateway router from A” because of
multiple reasons such as data plane ACL rules and longest prefix
matching.

5.2 Intuitive example of topology condition
We first use an intuitive example to explain the concept of topology
condition encoding, which is the key to Hoyan’s good scalability in
verification with failure cases.

Whether a device sends or receives a message depends on the
up or down status of particular links. Figure 4 shows a simple BGP
network. We use a tuple (Subnet, AS Path, Nexthop, TopoCond)
to denote a BGP update with corresponding topology condition.
A topology condition is a logic formula composed of binary link
aliveness variables (an). For example, a1 = True means Link1 is up.
At step ➀, C receives a BGP update that originated from A, (N, 100,
A, a1), if Link1 is alive. At this step, a1 is the topology condition
which must be true for C to get the route update from A. Similarly,
at steps ➁ and ➂, the route updates m2 and m3 also have their
topology conditions:m3’s topology condition is a2 ∧ a3, as B must
first receive the route under a2 and then forward to C under a3.

A
(AS100)

C
(AS300)

B
(AS200)

D
(AS400)Link 1

Link 2 Link 3

Link 4

Subnet N

m1=(N,100,A,a1)

m
2=(N,100,A,a

2)

m 3=
(N

,100-200,B,a 2∧
a 3)

r1=(N,100,A,a1)
r2=(N,100-200,B,a2∧a3)

C’s RIB

m4=(N,100-300,C,a1)
m5=(N,100-200-300,C,¬a1∧a2∧a3)

C’s egress messages

r3=(N,100-300,C,a1∧a4)
r4=(N,100-200-300,C,¬a1∧a2∧a3∧a4)

D’s RIB
1

2
4

5

3

6

Legend
an is a binary variable:

true means Link n is alive

Figure 4: Route update & RIB with topology conditions.

After receiving messages (m1 andm3), C writes them into its
routing table (RIB) (step ➃). Rules in the RIB are directly inherited
from the topology conditions in the messages. C’s RIB has two rules
(r1 and r2), whose topology conditions are inherited fromm1 and
m3 respectively. Following BGP, C ranks all received routes and
only forwards the best to its peer D (and B). In this case, C ranks r1
higher because it has a shorter AS Path. If r1 exists, C sendsm4 to
D. Otherwise, it sendsm5 (step ➄). Notem5’s topology condition is
the negation of r1’s in conjunction with r2’s. This means under the
case that r1 does not exist in C’s RIB but r2 does. Finally, D receives
m4 andm5 and builds its RIB (r3 and r4) with the corresponding
conditions (step ➅).

After this route propagation process, it is straightforward to
check the route reachability from A to D. For example, the topology
condition for D to receive at least one route for Subnet N is r3’s
topology condition or r4’s topology condition. It is also easy to find
the failure case with the least link failures which causes unreach-
ability from A to D. In this case, failure of Link 4 (¬a4) makes D
unreachable from A.

5.3 Topology condition encoding

Topology condition encoding in messages. Formally, given a
route updatem, we use a logical formula (I (m,A)) to decode the
topology condition that message (m) reaches the ingress pipeline of
deviceA. Similarly, we use E(m,A) to refer to the topology condition
that message (m) is sent to the egress pipeline of device A. I (m,A)
and E(m,A) are composed of the link aliveness variables.
Topology condition encoding in RIB/FIB. In real networks, a
device will select routes from what it receives to build up its RIB. In
Figure 4 example, we have two observations: (i) the ranking of the
routes only depends on the properties of the routes, independent
with the topology conditions; and (ii) a lower ranked route will be
selected if the ones in higher ranks are missing in the device. Thus,
we extend the real world RIB to have all received routes of a device
with ranking and their corresponding topology condition.

In Figure 4, an implicit condition for insertingm1 andm3 into
C’s RIB is that they pass C’s ingress policy. The ingress policy only
considers the attributes of the route updates and is independent of
topology conditions. Thus, r1 and r2 can keepm1 andm3’s topology
conditions respectively if they survive after C’s ingress filtering.

In general cases, a rule in RIB is directly derived from a route up-
date. However, in practice, route aggregation, which merges several
small subnet routes into a single larger subnet route, is common.
To handle route aggregation, Hoyan reads the trigger conditions
of route aggregation from configurations and separately handle
the cases with and without route aggregation. For instance, if the
configuration indicates that routes for “10.0.1.0/32” (with ingress

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

topology condition I1) and “10.0.1.1/32” (with ingress topology con-
dition I2) will be aggregated to a single route for “10.0.1.0/31” once
both of them are received. We put the following rules in the RIB:

ragg = (10.0.1.0/31, ∗, ∗, I1 ∧ I2)
rsub1 = (10.0.1.0/32, ∗, ∗, I1 ∧ ¬I2)
rsub2 = (10.0.1.1/32, ∗, ∗,¬I1 ∧ I2)

Note that ragg, rsub1, and rsub2 are exclusive with each other in
topology conditions. Despite in theory this method to handle route
aggregation can lead an exponential number of case combinations,
we find it works well in practice because operators usually explic-
itly write a moderate number of aggregation triggering cases in
the configuration and forbid automatic route aggregations for the
controllability to routes.

5.4 The reachability of routes
The reachability of a route r to a network device D means that
whether D can receive a route r ultimately when the control plane
protocols have converged. The operators can specify a particular
route, e.g., (“10.0.1.0/31”, 100-200-300, C), or a pattern representing
a group of routes, e.g., (“10.0.1.0/31”, *, *) which means any route
to subnet “10.0.1.0/31” no matter the AS path or the next-hop, to
verify the reachability.

The key design of Hoyan on (1) checking reachability under
failures and (2) detecting non-deterministic route update racing is
to derive topology conditions for each route update and rule in RIB.
Iteratively deriving topology conditions of routes. We use
three simple rules to iteratively derive the topology conditions
of all route updates, rules in RIB:
(i) FromRIB to egress: Suppose r i denotes a rule in RIB and r1, . . . , r i−1
are rules to the same destination subnet with higher priority than
r i . The topology condition to send a route update (mi) from r i to
egress policy pipeline is ¬R(r1) ∧ . . . ∧ ¬R(r i−1) ∧ R(r i), in which
R(r) is the topology condition of rule r in the RIB. For example, in
Figure 4, the topology condition ofm5 is computed according to
this rule. Note that one implicit condition for the transition from a
RIB rule to a route update is that the route selector decides to send
a route to the egress interface.
(ii) From egress to other side’s ingress: For a route update m with
topology condition E(m, S) in S ’s egress, the topology condition for
m to reach D’s ingress (D is a peer of S) is I (m,D) = E(m, S) ∧ al
where l is the link from S toD. For example, in Figure 4, the topology
condition ofm3 is derived fromm2 based on this rule. Note that
one implicit condition for the transition from egress to the other
side’s ingress is thatm passes the egress policy of S .
(iii) From ingress to RIB: For a route updatem with topology condi-
tion I (m,D) in D’s ingress, the route selector applies a route sorting
algorithm to put m into RIB as rule r i with topology condition
I (m,D) if no route aggregation is triggered. In Figure 4 example, r1
and r2’s topology conditions are fromm1 andm3. Otherwise, route
aggregation will be applied and new rules will be available in RIB
hereafter as described earlier. Again, one implicit condition for the
transition from ingress to RIB is thatm passes D’s ingress policy.

With the preceding three simple rules, starting from the con-
figured routes (with True topology condition) in the RIBs of the
gateway routers of all subnets, Hoyan can iteratively derive the

route updates and the RIBs with their corresponding topology con-
ditions. The whole route propagation process ends when no router
has any new route updates to send.

During the route propagation process, one critical issue is to
handle “late higher priority routes”. Specifically, the topology con-
dition of a route update generated from a low priority RIB rule
depends on high priority rules. Therefore, if a lower prioritized
rule arrives at a device first, it is possible that it is announced with
an incorrect topology condition. The solution to this issue is to
track the propagation of each route and make an adjustment to
the topology condition of the lower priority route by “anding” the
negation of the new, higher prioritized rule’s topology condition.
Then we announce the new rule with its new topology condition.
Computing route reachability under failures.When the route
propagation converges, it is easy to see whether a subnet exists in
the RIB of a device. Because every RIB rule inHoyan has a topology
condition, operators can also check whether there exists a failure
case that makes routes unreachable to a device under k failure
links. If there exists, we can conclude that the reachability is not
resilient with up to k link failures. Therefore, given the candidate
rules r1, . . . , rn and their topology conditions R(r1), . . . ,R(rn), the
topology conditionwhichmakes at least one rule exist isV = R(r1)∨
. . .∨R(rn). By leveraging logic solver (e.g., Z3 [10]), we can easily get
the minimum number of False variables to makeV be False [2, 3, 32].
For instance, in Figure 4, the topology condition for D to receive at
least one route to subnet N is V = (a1 ∧ a4) ∨ (¬a1 ∧ a2 ∧ a3 ∧ a4).
We can see that if a4 is False, V will be False.

Algorithm 1 in Appendix A details the workflow of the above
route reachability simulation.
Handling route update racing. Similarly to the failure handling,
we can also create logical formulas in route selections to judge
whether there is ambiguity in route convergence, which is the root
cause of vulnerability to non-deterministic route arrival orders.
For instance, in the example of Figure 1(c), for each IP prefix, we
propagate all of its route updates without dropping due to route
selection. After the simulation, each router will receive all routes
that ingress and egress filter policies permits. In this case,A receives
routesmD→B→A andmC→A, and B receives routesmC→A→B and
mD→B .A putsmD→B→A in higher priority because it has a higher
local preference, while B prefersmC→A→B because A enlarges its
weight at the egress port. We can encode the logical relationship
of the route selection process with a group of formulas. If we can
find more than one solution to the formulas, it means the route
convergence is ambiguous, and the configuration is buggy under
route update racing (see Appendix B for more details).

One might argue that in the worst case the route propagations
without route selection drops can be intractable in large networks.
However, in practice, since we have ingress and egress policies to
filter routes, the actual number of potential propagation paths for
a single IP prefix is moderate.
Supporting iBGP, IS-IS/OSPF, and static routes.By far the route
propagation process is designed for path-vector protocols like eBGP.
For iBGP, the existence of a peering session depends on whether the
routes of peers are reachable to each other. The reachability of iBGP
peers is provided by IS-IS protocol on our WAN. Therefore, Hoyan
first computes routes from IS-IS (OSPF follows the same process),

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

A
(AS100)

C
(AS300)

B
(AS200)

D
(AS400)

Subnet N

r3=(N,100-300,C,a1∧a4)
r4=(N,100-200-300,C,¬a1∧a2∧a3∧a4)

r1=(N,100,A,a1)
r2=(N,100-200,B,¬a1∧a2∧a3)

C’s FIB

D’s FIB

p1=[N, a1∧a4]
p2=[N, ¬(a1∧a4) ∧ (¬a1∧a2∧a3∧a4)]

=[N, ¬a1∧a2∧a3∧a4]

p5=[N, ((a1∧a4)∧a4)∧a1]
p6=[N, ((¬a1∧a2∧a3∧a4)∧a4)∧a1]

Always False

Link 1

Link 2 Link 3

Link 4

1

2
3

p1 and p2 pass link 4,
arriving C and generating

ingress p3 and p4

Legend
an is a binary variable:

true means Link n is alive

p0=[N, True] matches r3 and r4 in D’s
FIB, generating egress p1 and p2

p3=[N, (a1∧a4)∧a4]
p4=[N, (¬a1∧a2∧a3∧a4)∧a4]

4

p3 and p4 match r1 in C,
generating egress p5 and p6

Figure 5: Packet & FIB with topology conditions.

then decides the peering sessions of iBGP, and finally propagates
BGP routes over eBGP and iBGP sessions. To compute the topology
conditions of IS-IS, we transfer IS-IS into a path-vector protocol and
make sure each node selects routes based on the weighted shortest
path. The weights on links are consistent with IS-IS configurations.
Based on our more-than-one-year experience, the final converged
RIBs from the converted protocol are identical to original IS-IS.
Therefore, the RIBs from IS-IS has topology condition encoded. The
topology condition of an iBGP session is a combination of the topol-
ogy conditions of the IS-IS routes the iBGP session uses, and routes
propagated over an iBGP session keeps the topology condition of
the iBGP session. Incidentally, static routes are added to their orig-
inal routers’ RIBs without any initial topology conditions. Please
see Appendix C for more details about IS-IS and iBGP supports.

5.5 The reachability of packets
Our operators also need to reason about the reachability of a packet
with a destination from a group of network devices to the gateway
of the destination subnet. Although route reachability does not
mean packet reachability, route reachability to a destination is the
necessary condition of packet reachability. Specifically, after the
route reachability simulation, Hoyan gets RIBs on each device in
which each rule has its own topology condition, and it merges the
RIBs from different protocols and static routes into FIBs. Rules in
FIBs inherent and combine the topology conditions of their corre-
sponding RIB rules. To exam the reachability of a packet, Hoyan
makes a symbolic execution over the FIBs and drops the packet if
the topology condition is False under up to k failures. Finally, if the
packet can reach the destination, it means “reachable” under up
to k failures. Figure 5 illustrates the process of packet reachability
verification from D to A following the example of Figure 4. Please
see Appendix D for more details about the reachability of packets.

5.6 Optimizations for scalability
One potential concern is that tracing topology conditions in the
route or packet propagation could grow exponentially, due to the
logic implications of multiple paths, route aggregations, or ECMP.
However, we take the following strategies that make Hoyan scale
substantially. Section 8.1 shows the effectiveness of these optimiza-
tions at the scale of our full WAN.
Dropping more-than-k-failure conditions. If the topology con-
dition of a route has already contained more than k negation of link
aliveness, the route will be dropped because we only care about
the failure cases with no more than k link failures. Since k is small
(e.g., k=3) comparedwith the total number of links, this optimization
significantly reduces the number of branches to explore.

Dropping impossible conditions. It is also easy to judge whether
a formula is always False for further pruning. For example, in Fig-
ure 5, we stop considering p6 at step ➃ because its topology condi-
tion is always False.
Simplifying condition formulas. There are at most the number
of links variables in a topology condition formula. In addition,
a route update or a packet usually only passes through a small
number of links. Hence, the number of independent variables in a
topology condition is typically small, so that a topology condition
can be simplified to a short formula. We can achieve great memory
efficiency from such simplification.

Another concern in the pruning strategies is the impact of “late
high ranked rules”. Specifically, if we announce a low ranked rule
first and make the amendment to its topology condition later,
whether the pruning decisions we have already made before are still
valid. Fortunately, the answer is yes: suppose r is the low ranked
rule, and R(r ,D) is its old topology condition when it is first an-
nounced. Later, after the high ranked route r ′ comes, r ’s topology
condition will be modified to R(r ,D) ∧ ¬R(r ′,D). If r has already
been dropped at D, R(r ,D) has either more than k negative vari-
ables or is always False. Modifying R(r ,D) to R(r ,D) ∧ ¬R(r ′,D)
can neither reduce the number of negative variables nor make
R(r ,D) ∧ ¬R(r ′,D) be True (if R(r ,D) is False). Therefore, the prun-
ing decisions remain valid after topology condition amendments.

6 BEHAVIOR MODEL TUNER
In §5, we see the accuracy of network models serves as the foun-
dation of verification correctness: even a small logic flaw in the
network model is likely to cause incorrect results (see §7). This
section describes how Hoyan uses its model tuner to continuously
detect flaws caused by VSBs and offers high fidelity verification.

To build a model tuner, we employ a black-box testing approach
to compare the behaviors of our model with real devices, as vendors
typically do not share the details of their implementations. The basic
idea to find flaws in current device behavior models is to compare
whether the model can have the same output with the same input
as a real device in different network environments. Nevertheless,
there are several critical challenges to realize this simple idea:
Unpredictable VSB areas. Despite that our operators may know
some VSBs based on their experience, we still need to broadly check
the behavior models and detect new VSBs. Hence, we aim to create
various environments to check our models rather than constructing
several special cases for particular VSBs. We also try to localize the
root cause if a mismatch between our model and real devices is
found rather than assuming it is caused by any known VSBs.
Coverage of comparison cases. A device needs a context to per-
form a behavior. For instance, a BGP router needs to receive proper
routes to perform route aggregation. Or it needs to get updates
with private ASes in the path to perform remove-private-AS. Even
for a single type of device and a single route protocol, there are too
many cases to cover in general to fully validate whether a device
behavior model matches the actual behavior of real devices.

Our pragmatic strategy to address the coverage issue is to make
sure we first cover all cases that a device faces in production. There-
fore, the behavior model validator (Figure 2) keeps monitoring the
online configuration and the route propagation of the production

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

router r1
as 100
nw 10/8
nw 20/8

peer r2
r1 to r2 egress

policy r1 to r2:
if any:

add community 920

router r2
as 200

peer r1
peer r3

router r3
as 300

peer r2
r2 to r3 ingress
peer r4

policy r2 to r3:
if prefix == 20/8:

add community 920

router r4
as 400

peer r3
r3 to r4 ingress

policy r3 to r4:
if community != 920:

deny

R1
(Vendor A)

BGP updates R2
(Vendor B)

R3
(Vendor A)

R4
(Vendor A)

R1 to R2 BGP updates:
net=10/8,aspath=100,nexthop=R1,cmty=920
net=20/8,aspath=100,nexthop=R1,cmty=920

R2 to R3 BGP updates:
net=10/8,ap=100-200,nh=R2,cmty=920
net=20/8,ap=100-200,nh=R2,cmty=920

R3 to R4 BGP updates:
net=10/8,aspath=100-200-300,nexthop=R3,cmty=-
net=20/8,aspath=100-200-300,nexthop=R3,cmty=920

R2
(Vendor B)

VSB

(a) Routers and their configurations.

Real Case

Our Model

R1

R1

R2 R3 R4

R2 R3 R4

prefix as
path

community

10/8 i -

20/8 i -

prefix as
path

community

10/8 100 920

20/8 100 920

prefix as
path

community

10/8 200 -

100 -

20/8 200 920

100 -

prefix as
path

community

20/8 300 920

200 -

100 -

prefix as
path

community

10/8 i -

20/8 i -

prefix as
path

community

10/8 100 920

20/8 100 920

prefix as
path

community

10/8 200 920

100 -

20/8 200 920

100 -

prefix as
path

community

10/8 300 920

200 -

100 -

20/8 300 920

200 -

100 -

Normal RIB

Ext-RIB

(b) Comparing ext-RIB in real and our model.
Figure 6: A simplified real example of a latent VSB: Vendor A does not remove the community value from its BGP updates by
default, while Vendor B does. Our model follows Vendor A’s behavior.

network and continuously compares the route propagation it com-
putes from the current behavior model with the real network. Alerts
are raised if a difference is detected. Then the behavior model val-
idator localizes the root cause of this difference. We observe that
this strategy works very well in practice.
Localization of root causes. First, it is possible to localize root
causes at a wrong place if we merely use existing monitoring meth-
ods and data to detect mismatches. Because a VSB’s impact might
only be observed far from the real root cause place. For instance, in
Figure 6(a), R2 (Vendor B) by default removes communities from
the BGP updates it sends, while other routers (Vendor A) do not.
Figure 6(b) shows the RIBs of the four routers. Prefix 10/8 in the
RIBs of both R3 and R4 do not match the real case, but R2’s is identi-
cal. Naturally, one might think the root cause is R3 or R4. However,
it is R2, which can only be discovered if we look at the community
of each route in R2 and R3’s RIBs. In order to accurately locate
the root cause, we create a concept called “extended RIB (ext-RIB)”
which includes all attributes of each route that can make impacts in
route selection. We compare ext-RIBs rather than real RIBs directly
from devices for root cause localization.

Second, even with ext-RIBs, some VSBs are still latent. For ex-
ample, in Figure 6(b), ext-RIBs for prefix 20/8 are identical in all
routers. If 10/8 does not exist, the only way to detect the VSB is in
the route updates from R2 to R3 (Figure 6(a)); thus, besides ext-RIB,
we also collect route updates received by the routers and use BGP
monitoring protocol [26] to check the process details. This enables
the tuner to precisely locate VSBs between ingress policy and route
selector. After that, our operators write patches embedded in cor-
responding device behavior models to make them accurate. All of
these methodologies are necessary to accurately locate the root
causes, since VSBs are prevalent in all steps of route processing.
Scalability of model validation. Comparing all IP prefixes’ prop-
agation process is not traceable in our network. We split configu-
rations into blocks that each presents a single policy or behavior.
We then build an automatic way to suggest a moderate number of
prefixes that can cover most configuration blocks, similar to the
“equivalent class” idea in ATPG [31].

7 DEPLOYMENT EXPERIENCE
Hoyan has been deployed in production and used on a daily basis
on our WAN. Figure 7 presents the monthly configuration error it

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Se

p Oct Nov Dec

2018 2019

0
4
8

12

18

Co
nf

. E
rro

r
(a) Online configuration auditing (Jan 2018 – Dec 2019).

Jan Feb Mar Apr May Jun Jul Aug Se
p Oct Nov Dec

2019

0
2
4
6

9

Co
nf

. E
rro

r

(b) Configuration update validation (Jan 2019 – Dec 2019).
Figure 7: # of Errors found by Hoyan in production.

finds for two-year online configuration audits (Figure 7(a)) and one-
year configuration update validations (Figure 7(b)). Also, Table 2
summarizes the realistic VSBs in Table 2 that boosted Hoyan’s
accuracy from < 10% to > 99%. The bursty phenomena in Figure 7
correlates to our internal network configuration updates, which
were mainly caused by our business events such as multiple services
upgrading and new cluster launching.

To specific, we present two real cases for preventing uncertainties
before updates in §7.1, two real cases for online configuration audits
in §7.2, and real detected VSBs in §7.3.

7.1 Detecting uncertainties before updates
This section presents two real-world “detecting update errors” ex-
amples: (1) preventing outages before updates, and (2) avoiding
impacts of route update racing ahead of time.
Preventing outages before updates. In one of the network up-
grades, our operators aimed to change the static-route preference
on all the provider-edge (PE) routers – one of the most important
roles of routers on our WAN – from 1 to 150. However, there were
two old PE routers whose eBGP preferences were configured as 30
due to the specific business reason. Before the upgrade, the static
route worked smoothly because its preference is higher, i.e., 1 > 30,

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

VSB Description Affected dev. # patch-lines
default ACL Whether permitting data packets that match no explicit ACL. 87.5% 40

default route policy Whether accepting route updates that match no explicit policy. 82.83% 39
(ext) community Whether including (extended) communities in route updates by default. 63.91% 46

route redistribution Whether redistributing default route (0.0.0.0/0). 13.26% 30
AS loop Whether allowing AS number repetitions in AS Path. 8.63% 26

remove private AS Whether removing all private ASes from AS path. 7.38% 66
self-next-hop Whether using self as next-hop when announcing iBGP updates to VPN peers. 6.52% 13

local AS Whether adding new AS into AS path during AS migration. 1.32% 17

Table 2: Detected VSBs and their impacts.

but if the updated configurations are committed, the eBGP pref-
erence would become higher, i.e., 30 > 150, thus blocking all the
static routes of those two routers from being activated. It is hard
for our operators to notice this error ahead of time because they
needed to update hundreds of PE routers but only two of them had
the above risk. Fortunately, before our operators committed this
update, they checked whether this update met the intended reacha-
bility property by Hoyan. Hoyan accurately simulated routes in
the updated network and pointed out the potential violations.
Route update racing. Hoyan can also detect potential configura-
tion errors caused by non-deterministic BGP update racing. Figure 1
is a real example that occurred in Alibaba WAN. Specifically, our
operators produced a route update plan, where multiple nodes
announced a prefix 10.0.1.0/24. Unbeknownst to the operators, if
router B receives the BGP update from A, as shown in Figure 1(a),
then B would select A as the next-hop rather than D; on the con-
trary, suppose before A sends the BGP update to B, a BGP update
has been sent from B toA, as shown in Figure 1(b). B would become
the next-hop of A. Such a misconfiguration is very tricky, because
it may lead to multiple routing cases depending on arrival orders
of routes. Most of the existing verification systems, e.g., Batfish,
cannot detect this type of errors. With Hoyan, our operators detect
this update plan may potentially violate our reachability intent
ahead of time, preventing a severe service outage.

7.2 Online configuration audits
We present two real examples: (1) online configuration audits, and
(2) k-failure tolerance audits.
IP address conflict resulting from misconfiguration. IP ad-
dress conflicts typically lead to serious service disruptions, because
the traffic that should have been sent to router A was actually
sent to router B, making A unreachable. Given the complexity of
our WAN and the diversity of our hosted businesses, it is much
more challenging for the operators to avoid IP address conflicts
on our WAN. In one of our WAN expansion events, our operators
configured IP addresses for many PE routers. Due to the misun-
derstanding of the IP address recovery information, our operators
configured one of PE routers P with an IP address that had been
assigned to a metropolitan-area routerM . Coincidentally, they did
not import traffic immediately to the PEs; thus, nobody noticed this
misconfiguration. However, once our operators import traffic to the
PE router P , the traffic would be forwarded toM and immediately
crashM and its services, since the metropolitan-area routers, on our
WAN, can carry much less traffic than the PE router. Fortunately,
Hoyan periodically audits the propagation scope of some critical
IP addresses. We found this conflicted IP appeared in some down-
stream routers that should have it blocked by BGP filters. Hoyan
successfully detected this risk before it results in serious outages.

Auditing k-failure tolerance. Our WAN relies on the redundant
routers within the same BGP group to avoid common-mode fail-
ures; thus, correctly configuring these BGP peers as equivalent
roles presents an important property for our WAN. Equivalent role
property means routers in the same device group should always
receive the same route updates and have the same network state.
However, due to the high-churn network updates, many BGP peers’
configurations are frequently changed to meet diverse business
needs; before Hoyan was developed, our operators manually check
whether a multitude of updates is correctly configured without in-
troducing any side effects. Note that the misconfigured equivalent
role property does not lead to the service disruption immediately,
but it introduces potential single-point failure risks to our WAN.
Once the bottlenecked links or routers are down, it would result
in cascading failures across the entire network. We used Hoyan to
proactively detect many configuration errors violating the equiva-
lent roles by running k-failure (e.g., k = 1 and k = 2) verification on
our WAN. The majority of these errors were side-effects introduced
by the daily WAN updates. Our experience also indicates that MAN
routers (i.e., the edge routers connecting WAN and DCNs) account
for the largest percentage of violating the equivalent role property.

7.3 Real-world vendor-specific behaviors
Table 2 lists major VSBs Hoyan found in production which signifi-
cantly influences the accuracy of verification results. The “Affected
dev.” column shows the fraction of devices that potentially have the
corresponding VSBs, and “# patch-lines” means the lines of code to
patch the behavior model. Our behavior model is designed to be
highly modulized to embrace VSBs. In most cases, for a new discov-
ered VSB, the operators can write a new patch in O(10) minutes to
eliminate future impacts. We pick some example VSBs from Table 2
to explain their impact.
Default policy. “default ACL” and “default route-policy” affect
the most of devices on our WAN. Both of them refer to the ven-
dor’s default action (permit or deny). If a route update (or packet)
does not match any explicit route-policy or ACL rule in a device’s
configuration, permitting or denying this route update (or packet)
depends on the default implementation of this device vendor.
The community in BGP updates. The VSB example in Figure 6
is the “(ext) community” VSB. Some vendors drop the extended
communities at default, while others keep. Unaware of this type
of VSB, a verification tool may generate a RIB different from the
real-world one, like R4’s RIB in Figure 6.
AS migration. The configuration of “local AS” is designed to
change a router’s AS number (i.e., AS migration). At the begin-
ning of an AS migration, operators typically want to keep the old
AS number to a router’s existing peers for maintaining the BGP

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

101 102 103 104 105

Time (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

k=0
k=1
k=2
k=3

Figure 8: Time to simulate one IP pre-
fix with different k .

101 102 103 104

Time (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

k=0
k=1
k=2
k=3

Figure 9: Time to verify one IP prefix
with system overhead.

102 103 104 105

Time (ms)
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

k=0
k=1
k=2
k=3

Figure 10: Turnaround time to verify
one IP prefix.

101 102 103

Max length
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

k=1
k=2
k=3

Figure 11: Max length of the topology
condition formula of each prefix.

1 2 3
K failure links

0

20

40

60

80

100

B
ch

.
d
ro

p
p
e
d
.(

%
)

Remain

Policy

More than K

Impossible

Figure 12: Effectiveness of pruning
with different k .

100 101 102 103 104 105
Length

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

k=1
k=2
k=3

Figure 13: Formula length for reacha-
bility checking per prefix.

Network properties Route reachability Packet reachability

Reachability
k = 0 481s 245s
k = 1 770s 304s
k = 2 1523s 715s
k = 3 10496s 3989s

Role equivalence 13s -
Route update racing 3800 − 4400s -

Table 3: Time to verify our entire WAN with Hoyan.
session. They configure the old AS number as “local AS”. In the BGP
updates of the router under migration, some vendors just put the
old AS number in the BGP path, but others put both new and old.
This affects the length of AS path which is used in many routers
as a metric to select the best route. Therefore, this VSB ultimately
affects the reachability decision when verifying an AS migration.
iBGP peering via VPN. If a routerA1 learns a route with next-hop
B from its iBGP peer A2, B would become the next-hop for one
of the items in A1’s RIB. However, due to automatically-enabled
“self-next-hop” VSB in some vendor, A1 may learn A2 as the next
hop instead of B. Such a VSB directly causes our simulated model
to be inaccurate.

8 PERFORMANCE EVALUATION
In this section, we present some key performance numbers directly
from the deployed system to unveil the real running status ofHoyan.
We also compare the verification performance of Hoyan with three
state-of-the-art verification tools in conducted experiments. We
run all evaluations on a server with Intel(R) Xeon(R) CPU E5-2682
v4 @ 2.50GHz (32 logical cores), 256GB RAM and 1T SSD. Note that
Hoyan could be run in a distributed way to get better performance,
but our experience shows one machine should be enough.

8.1 Hoyan’s performance in the wild

Verification performance. Figure 8 shows the CDF of the time
to simulate the propagation process of one IP prefix in Hoyan over
our entire WAN. Specifically, 98% IP prefixes can be done within
one second. When k becomes large (e.g., k = 3), the 90% time cost
increases to around 17 seconds.

Once the simulation is done for all prefixes, operators can verify
whether network properties are held under normal and failure cases
by solving the encoded topology conditions. Figure 9 shows the
CDF of the time to verify route reachability queries by the solver.

0 20 40 60 80 100
Prefix accuracy (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Pre-depl. of tuner

6 Months after

Figure 14: Verification accuracy tuning.

It includes the time on verifying the logical formula by the solver
and system overhead (e.g., RPC, data loading, and parsing time). We
observe Hoyan can answer these queries in a quite light-weight
way after the initial route propagation. The most complicated query
under the failure case (k = 3) is answered within 8 seconds. Fig-
ure 10 shows the end-to-end latency for verifying one IP prefix.
Even for k = 3 the median is less than 10 seconds.

Pruning (§5) keeps the logic formula simple in the topology en-
coding. The length of the topology condition formula can good
evaluate the complexity, since it indicates how many link-aliveness
determines the route reachability. As shown in Figure 11, the max-
imum topology length in Hoyan was O(10, 000) during the route
propagation process. Moreover, as shown in Figure 12, when k = 3,
on average, only 2% conditions survive during the propagation pro-
cess. 61%, 27% and 10% of conditions are cut due to larger-than-k ,
impossible conditions and policies respectively. Finally, once the
simulation is complete, Figure 13 shows the formula length that
Hoyan feeds into the solver for the end-to-end verification result
of every prefix. As we can see, the longest formula is only 137, 078.

Besides the performance evaluation for individual IP prefixes,
we also show the overall performance in real-life verification sce-
narios. We evaluated the end-to-end verification latency in two
scenarios: (i) route reachability verification with network opera-
tors’ expectations and packet reachability verification for all pairs
of devices; (ii) equivalence verification of two devices. These two
scenarios verified two properties (route reachability under k-failure
and device equivalence) that our operators care the most before
pushing network updates to the devices in the real world. Hoyan
took 30 seconds on average to load all topology and configuration
information. Table 3 shows it can finish all-pair packet reachability
verification around 4 hours even with k = 3. The device equivalence
verification is super fast, which is about 13 seconds on average.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

Verification accuracy. We measured the verification accuracy by
comparing Hoyan’s outputs with the operator’s expectation and
figuring out the wrong side if a mismatch happens. We define “accu-
racy” as x/y, where x is # of simulation results that are the same as
the actual routing tables, andy is # of simulation/verification results.
Figure 14 shows the CDF of prefix accuracy in our WAN. We ob-
serve that before we deploy the behavior model tuner, the accuracy
of verification is fairly low: 50% of the prefixes have 50% accuracy
or lower. The verification accuracy was significantly boosted six
months later. After Hoyan discovered and fixed many VSBs, 95%
of our prefixes have reached 100% accuracy. The remaining inaccu-
racy is caused by incomplete data input fed by the external system,
rather than the quality of Hoyan’s behavior model.
Model tuner performance.We also evaluatedmodel tuner. Please
see Appendix E for more details.

8.2 Comparing Hoyan with existing tools
We comparedHoyanwith Batfish [12], Minesweeper [4], and Plank-
ton [24] on verification performance with conducted experiments.

Due to the scalability issue, the alternatives cannot verify our
entire WAN with failure coverage. We thus picked two subnets
from our WAN – a small one with 20 routers and a medium one
with 80 routers – and used these three tools to verify them for
performance comparison.

We evaluated two types of reachability properties. The first is
k-failure packet reachability. We verified packet reachability be-
tween each pair of routers in the network. We used 50 threads to
perform verification of different device pairs in parallel for all three
approaches. The second is device equivalence. We verified if two
selected routers build the same RIBs. We used a single thread in this
scenario. Due to limited space, we put detailed comparison results
and discussions in Appendix F.
Packet reachability. In the small subnet, Hoyan and Batfish took
3 and 28 seconds to finish the verification, respectively; however,
Minesweeper spent 1555 seconds. When k = 3, however, Batfish
and Plankton have timed out, and Minesweeper took more than
two hours; on the contrary, Hoyan only needed 14 seconds. In the
medium subnet, Hoyan performed orders of magnitude efficient
than all alternatives (see Appendix F for details).
Device equivalence.Given two devices,Hoyan can verifywhether
they receive the same route updates and build the same RIB/FIBs. In
both small- and medium-subnets, Hoyan took less than 4 seconds
to finish the verification, whereas Minesweeper needed 203 seconds
and more than one day respectively. We did not evaluate Batfish or
Plankton since their code does not have this feature.

9 DISCUSSION AND LESSONS

The accuracy and correctness of Hoyan. In principle, as a net-
work configuration verifier, Hoyan’s goal is to check whether the
configuration of interest meets the intent expressed by the opera-
tors; thus, Hoyan’s correctness means there is, compared with the
actual cases (e.g., RIBs and packet reachability), no false positive or
false negative in Hoyan’s reasoning results. While Hoyan’s verifi-
cation algorithms are not proved in a mathematical way, but based
on our recent-one year experience Hoyan has never performed
false positives or false negatives.

Lessons and practical issues. Besides VSBs, another major prac-
tical issue influencing the accuracy is the lack of high fidelity con-
figuration parsers to merge incremental updates with an existing
snapshot of configurations. Existing solutions need a complete con-
figuration snapshot for verification. However, what operators write
are incremental command lines into devices. It is hard for operators
to manually and correctly generate the complete configuration of
each device for update verifications. On the other hand, automat-
ically generating configuration snapshot is difficult because it is
also arduous to write configuration parsers for all types of devices
and make sure they behave in the same way as real devices. We
have developed many templates for automatically mapping the
“operator-input” incremental command lines to the complete config-
uration “fed” into Hoyan. It spent too much time and many efforts
on developing these templates.

In addition, it is also hard to precisely know the all detailed reach-
ability intent/properties on such a large scale WAN which carries
multiple businesses that have complex reachability relationships
among each other. It is encouraging to see that this problem has
drawn attention to the community [6, 8, 9, 17, 30], and we would
try these ideas in Hoyan in the future.
Can verified router implementation avoid VSBs? The key rea-
son for VSBs, in fact, is non-transparency of commercial routers,
rather than whether the router implementation is verified or not.
Because it is hard for us to know what default behaviors the router
vendors implemented, VSBs can always exist in the future. This
is also the reason we need to develop a timely model tuner to
proactively detect VSBs hidden in routers. However, if some router
vendor can fully verify their router implementation and release
their behavior specifications, that would be definitely helpful to
avoid VSBs, because Hoyan can build its behavior model by just
following the vendor released specifications.

10 CONCLUSION
This paper presents Hoyan, the first-ever reported practical con-
figuration verification system deployed on Alibaba’s global-scale
WAN. We introduce the challenges on accuracy, scalability, and cov-
erage to build a configuration verifier in production WAN. Hoyan’s
innovation has two folds First, it is the first configuration verifier
that considers VSBs and achieve near-100% accuracy in the produc-
tion environment; Second, it has good scalability to verify networks
under uncertainties, thanks to its novel “global simulation & local
formal-modeling” design. Our operators have used it on a daily
basis for two years.

This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank our shepherd, Olivier Bonaventure, and SIGCOMM re-
viewers for their insightful comments. We also thank Yahui Li for
her efforts on the earlier version of this work. Fangdan Ye and
Zhiliang Wang are with Institute for Network Sciences and Cy-
berspace of Tsinghua University and Beijing National Research
Center for Information Science and Technology. Fangdan Ye and
Zhiliang Wang are supported in part by the National Key R&D
Program of China 2018YFB1800205. This work was supported by
Alibaba Group through Alibaba Innovative Research Program.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast and General Network Verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

[2] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2009. Solving (weighted)
partial MaxSAT through Satisfiability Testing. In 12th International Conference
on Theory and Applications of Satisfiability Testing (SAT).

[3] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2010. A new algorithm for
weighted partial MaxSAT. In 24th Conference on Artificial Intelligence (AAAI).

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general
approach to network configuration verification. In ACM SIGCOMM (SIGCOMM).

[5] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018. Control
plane compression. In ACM SIGCOMM (SIGCOMM).

[6] Ryan Beckett and Ratul Mahajan. 2019. Putting network verification to good use.
In 18th ACM Workshop on Hot Topics in Networks (HotNets).

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.
2016. Don’t mind the gap: Bridging network-wide objectives and device-level
configurations. In ACM SIGCOMM (SIGCOMM).

[8] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin T. Vechev.
2018. Net2Text: Query-guided summarization of network forwarding behaviors.
In 15th USENIX Conference on Networked Systems Design and Implementation
(NSDI).

[9] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin T. Vechev.
2020. Config2Spec: Mining network specifications from network configurations.
In 17th USENIX Conference on Networked Systems Design and Implementation
(NSDI).

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS).

[11] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient network reachability analysis using
a succinct control plane representation. In 12th USENIX Conference on Operating
Systems Design and Implementation (OSDI).

[12] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. 2015. A general approach to network config-
uration analysis. In 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI).

[13] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.
2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM (SIGCOMM).

[14] Alex Horn, Ali Kheradmand, and Mukul R. Prasad. 2017. Delta-net: Real-time
network verification using atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[15] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhar-
gava, Paul-Andre C. Bissonnette, Shane Foster, Andrew Helwer, Mark Kasten,
Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pin-
namraju, Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating
datacenters at scale. In ACM SIGCOMM (SIGCOMM).

[16] Jesper Stenbjerg Jensen, Troels Beck Krøgh, Jonas Sand Madsen, Stefan Schmid,
Jiří Srba, and Marc Tom Thorgersen. 2018. P-Rex: Fast verification of MPLS
networks with multiple link failures. In 14th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT).

[17] Siva Kesava Reddy K., Alan Tang, Ryan Beckett, Karthick Jayaraman, Todd D.
Millstein, Yuval Tamir, and George Varghese. 2020. Finding network misconfigu-
rations by automatic template inference. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[18] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space
analysis: Static checking for networks. In 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI).

[19] Ahmed Khurshid, Xuan Zhou, Whenxuan Zhou, Matthew Caesar, and
Philip Brighten Godfrey. 2013. VeriFlow: Verifying network-wide invariants
in real time. In 10th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI).

[20] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet:
Faithfully emulating large production networks. In 26th Symposium on Operating
Systems Principles (SOSP).

[21] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking beliefs in dynamic networks. In 12th USENIX
Symposium on Networked System Design and Implementation (NSDI).

[22] Nuno P. Lopes and Andrey Rybalchenko. 2019. Fast BGP Simulation of Large
Datacenters. In 20th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI).

[23] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and
George Varghese. 2016. Scaling network verification using symmetry and surgery.
In 43rd ACM Symposium on Principles of Programming Languages (POPL).

[24] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification
through model checking. In 17th USENIX Symposium on Networked System Design
and Implementation (NSDI).

[25] Bruno Quoitin and Steve Uhlig. 2005. Modeling the routing of an autonomous
system with C-BGP. IEEE Network 19, 6 (2005), 12–19.

[26] J. Scudder, R. Fernando, and S. Stuart. 2016. BGP Monitoring Protocol (BMP). RFC
7854. IETF. http://tools.ietf.org/rfc/rfc7854.txt

[27] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable symbolic execution for modern networks. In ACM SIGCOMM (SIG-
COMM).

[28] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,
Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen
Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and automatically updat-
ing in-network ACL configurations with intent language. In ACM SIGCOMM
(SIGCOMM).

[29] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable verification of border gateway
protocol configurations with an SMT solver. In ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA).

[30] Da Yu, Yibo Zhu, Behnaz Arzani, Rodrigo Fonseca, Tianrong Zhang, Karl Deng,
and Lihua Yuan. 2019. dShark: A general, easy to program and scalable framework
for analyzing in-network packet traces. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[31] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Automatic test packet generation. In 8th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT).

[32] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian,
Bo Song, and Haoliang Zhang. 2020. Check before you change: Preventing
correlated failures in service updates. In 17th USENIX Symposium on Networked
System Design and Implementation (NSDI).

APPENDIX
Appendices are supporting material that has not been peer re-

viewed.

A ROUTE REACHABILITY REASONING
Algorithm 1 details our route reachability reasoning (§5.4) for a
given prefix. The workflow in Algorithm 1 exactly corresponds
to what we describe in §5.4. We want to emphasize the topol-
ogy condition encoding occurs in Line 20 in Algorithm 1, i.e., the
update_condition() function, and the “late higher priority routes”
case is handled by the withdraw function (Line 24-32 in Algo-
rithm 1), i.e., the withdraw() function.

In addition, Line 21 in Algorithm 1 builds a propagation tree,
thus enabling us to track all the route messages via this tree. In the
withdraw() function, for a route message to be withdrawn,m, its
child nodes would be deleted fromm’s RIBs, as shown in Line 26 in
Algorithm 1, and such removal would lead to cascading effects to the
lower-priority items in these child nodes, as shown in Lines 27-31
in Algorithm 1.

B HANDLING ROUTE UPDATE RACING
Non-deterministic route update racing is a tough problem during
the process of route convergence. Figure 1 has shown an example
our operators met in practice. Similarly to the approach for the
“route reachability under failures” case, Hoyan creates logical for-
mulas in route selections to judge whether there is ambiguity in
route convergence, which is the root cause of non-deterministic
route arrival orders. The algorithm processes as the following steps.
(i) For each IP prefix p, we simulate its route update propagations
without taking into account any route deny policy.

http://tools.ietf.org/rfc/rfc7854.txt

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

Algorithm 1: Route reachability for a given prefix
Input :A is the announcement node of given prefix
Input :Q is an empty queue

1 Function RouteReachability():
2 foreach p ∈ the peer set of A do
3 Q.Push(mA→p);
4 while Q is not empty do
5 mi→j ← Q.Pop();
6 if j .check_ingress(mi→j) = DENY then
7 continue;
8 j .route_selection(mi→j);
9 j .RIB← j .update_RIB(mi→j);

10 S = ∅;
11 /* Loop below handles the late higher priority case */
12 foreach d ∈ j .RIB do
13 if d.priority is lower than i then
14 S .Push(d);
15 d .withdraw(Q);

16 S .Push(i); // If i is the lowest priority, S only contains i
17 foreach k ∈ the peer set of j do
18 foreach d ∈ S do
19 if j .check_egress(md→j) = ACCEPT then
20 mj→k .update_condition(rd→j ∧ aj→k);
21 mi→j .son_set.add(mj→k); // Propagation tree
22 Q.Push(mj→k);

23 /* By far, all the node’s RIBs for the given prefix have been simulated */
Input :Route Messagemi→j

24 Function withdraw():
25 foreach sonj→k ∈ the son set ofmi→j do
26 k .delete_from_RIB(sonj→k);
27 foreach f ∈ k .RIB do
28 if f.priority is lower than sonj→k then
29 f .update_condition();
30 Q .Push(f);
31 f .withdraw(Q);

32 sonj→k .withdraw(Q);

(ii) Until the above simulation for p finishes, each router receives
p’s route updates, generating its RIB based on its own route se-
lection policy. For example in Figure 1(c), router A receives routes
mD→B→A andmC→A, and B receives routesmC→A→B andmD→B .
A puts mD→B→A in higher priority in its RIB because it has a
higher local preference, while B prefersmC→A→B in B’s RIB be-
causemC→A→B ’s weight is enlarged when it passes through A’s
egress port.
(iii) We encode the logical relationship of the route selection process
for each router via exactly same way as the topology condition
deriving process mentioned earlier. For example in Figure 1(c),
router A’s RIB is encoded as ID→B→A ∨ IC→A, and router B’s RIB
is encoded as IC→A→B ∨ ID→B .
(iv) We finally get a big formula by connecting all routers’ formulas
with ANDs, and solve this big formula via SMT solver. If we can
find more than one solution from the solver, it means the route
convergence is ambiguous, and the configuration can lead to non-
deterministic route update racing. For example in Figure 1(c), the
big formula is ID→B→A∨IC→A∧IC→A→B ∨ID→B . If we solve this
formula, we get two solutions: (1) IC→A→B = IC→A = True and
ID→B = ID→B→A = False; and (2) IC→A→B = IC→A = False and

ID→B = ID→B→A = True. These two solutions exactly correspond
to the cases shown in Figure 1(a) and (b), respectively.

C SUPPORTING IS-IS AND IBGP
In general, we address IS-IS reachability verification by reducing
it to the problem of checking BGP reachability (detailed in §5.4).
Algorithm 2 shows the entire workflow of reasoning about the IS-IS
route reachability.

In particular, within the same Level 1 (or L1), our key idea is to
translate each IS-IS node into a BGP node with weight attribute, and
then leverage the Shortest Path First (SPF) algorithm to compute
the optimal paths, thus getting the IS-IS routing table for each IS-IS
node. Such a design enables us to directly use the topology condition
encoding approach (§5.4) to verify the reachability properties (e.g.,
k-failure tolerance) for IS-IS protocol.
Mapping an IS-IS node to a BGP node. We translate an IS-IS
protocol network into a BGP network model (e.g., Figure 4) based
on the following two steps:
(i) Each IS-IS node in our network model is constructed the same as
a BGP node (i.e., the device node in §5.4). But each IS-IS node just
has one more attribute than a BGP node, the transitive IS-IS weight
attribute (called ISIS-weight). ISIS-weight has a higher priority than
the AS number attribute in the route selection process. For ISIS-
weight, its default value is zero, the smaller the value, the higher
the priority.
(ii) The neighbor of each IS-IS node is the same as the one in the
BGP case. The weights of links between IS-IS neighbors are stored
as the egress policy of BGP peers. In this way, each IS-IS node
sending an IS-IS route increases its weight by its corresponding
IS-IS weight.

After the above transformation of IS-IS nodes and links, we ob-
tain a BGP network model that represents our current IS-IS network
reachability. We can then use the topology condition encoding ap-
proach (detailed in §5.4) to check the properties of interest in the
original IS-IS network.

As shown in Algorithm 2, the propagation process of IS-IS pro-
tocol in Hoyan is quite similar to how Hoyan simulates the propa-
gation of BGP routes. The key difference is Line 13 in Algorithm 2
increases the weight of messages because the new route selection
function in IS-IS model needs to select the best route based on
these weights. In other words, there are two differences between
RouteReachability and RouteISISReachability: (1) Line 26 in-
creases the weight of messages during the propagation, and (2)
Line 15 is the new route selection function which selects routes by
taking into account IS-IS weights. The above design enables us to
verify the k-failure tolerance property in IS-IS network model by
the approach similar to the topology condition encoding in §5.4.
Route redistribution simulation. Because both topology con-
dition encodings of BGP and IS-IS networks are independent, we
obtain two independent routing tables for each node. We thus can
get the eventual simulated routing tables by simulating the regular
routing distribution between the two tables (i.e., BGP and IS-IS
routing tables).
Handling the L1-L2 case. So far, what we did is to simulate IS-IS
network within the same L1. Nodes within the same L1 cannot send

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Algorithm 2: IS-IS route reachability for a given prefix
Input :BGP network model B
Input :A is the announcement node of given prefix

1 Function MapBGPtoISIS():
2 foreach n ∈ B do
3 Use AS number of n as its unique ID;
4 Add a new route selection policy ISIS-weight in route_selection();
5 Set the priority of ISIS-weight higher than AS path;
6 /* The new route selection is based on the weight*/

RouteISISReachability();
7 /* By far, all the node’s IS-IS RIBs for the given prefix have been

simulated */
8 Function RouteISISReachability():
9 foreach p ∈ the peer set of A do
10 Q.Push(mA→p);
11 while Q is not empty do
12 mi→j ← Q.Pop();
13 if j .check_ingress(mi→j) = DENY then
14 continue;
15 j .route_selection(mi→j); // route selection based on ISIS-weight
16 j .ISIS-RIB← j .update_RIB(mi→j);
17 S = ∅;
18 foreach d ∈ j .ISIS-RIB do
19 if d.priority is lower than i then
20 S .Push(d);
21 d .withdraw(Q);

22 S .Push(i);
23 foreach k ∈ the peer set of j do
24 foreach d ∈ S do
25 if j .check_egress(md→j) = ACCEPT then
26 m.isis_weight += get_ISIS_weight(j → k);
27 mj→k ← rd→j ∧ aj→k ;
28 Q.Push(mj→k);

routes to nodes in other L1. All L1 routes are sent to L2 through
the L1/L2 routers, if the route penetration is configured. We thus
decide to use the community in BGP to mimic the route penetration
in IS-IS. Specifically, in our IS-IS simulation, we use the commu-
nity to control whether L1 can communicate with L2. As shown
in Algorithm 2, because the entire IS-IS route reachability reason-
ing has been reduced to the problem of BGP route reachability,
the reachability between L1 and L2 can perfectly be solved by us-
ing community control. In fact, Alibaba network controls L1/L2
communication in IS-IS by binding it with the community in BGP.
Simulating iBGP. In Alibaba, iBGP is run upon IS-IS; thus, iBGP
protocol is easily simulated as long as we can support IS-IS pro-
tocol. Specifically, the topology condition of an iBGP session is a
combination of the topology conditions of the IS-IS routes the iBGP
session uses, and routes propagated over an iBGP session keeps
the topology condition of the iBGP session. It is straightforward
for us to generate the topology conditions for route reflectors (or
RRs). RR nodes are just treated as regular BGP nodes with special
RR’s route selection policies. As shown in Algorithm 2, RR’s route
selection policies can be added in Line 15, and the entire algorithm
workflow does not need to be changed.

D THE REACHABILITY OF PACKETS
Operators also need to judge the reachability of a packet with a
destination from a group of network devices to the gateway of the

destination subnet. Although, as we mentioned, route reachability
does not mean packet reachability, route reachability to a destina-
tion is the necessary condition of packet reachability. Hence, the
first step to verify packet reachability is to finish the route prop-
agation process and generate FIB from RIB in each device. As we
presented in §5.3, each FIB rule takes the topology condition from
its corresponding RIB rule. Figure 5 shows the packet propagation
process with topology conditions. We omit packets from C to A
through B due to space limit. As we can see, every device’s FIB
inherits its RIB’s topology conditions as in Figure 4.
Iteratively deriving topology conditions of packets. Similar
to a route update, a packet also has a topology condition to reach
the ingress or the egress of a device behavior model’s data plane
pipeline. The topology condition of packets can also be derived
iteratively with two simple rules:
(i) From FIB to egress: Suppose r1, . . . , rn are rules that match a
packet p’s destination, and they are ranked from high priority to
low 2. p will hit the highest ranked rule and get forwarded to the
rule’s nexthop – if it is an ECMP rule with multiple nexthops,
each nexthop will have a copy of p. Suppose I (p, S) is the topology
condition for p to enter S’s ingress, and R(r i , S) is the topology
condition of r i for existing in S , the topology condition for p to
enter S’s egress interface indicated by r i is E(p, S)i = I (p, S) ∧
¬(R(r1, S) ∨ . . . ∨ R(r i−1, S)) ∧ R(r i). For example, at Step ➀ in
Figure 5, a packet p0 from D to subnet N can hit two rules in D’s
FIB, and p1 and p2 represent p0 with different topology conditions
by hitting different rules.
(ii) From egress to otherside’s ingress: For a packet p with topology
condition E(p, S) in S ’s egress, the topology condition for p to reach
nexthop D’s ingress is I (p,D) = E(p, S)∧al where l is the link from
S to D. For example, at step ➁ in Figure 5, p3 and p4 are generated
by this rule.

FIB’s topology condition is fixed during the packet propaga-
tion, since packets, unlike route updates, cannot change RIB/FIB in
routers. Hence, similar to Step➀,p3 andp4 hit r1 in C, generatingp5
and p6 at step ➂. Note that in Hoyan a packet can also be symbolic.
The only difference is that topology conditions are attached to each
packet branch during symbolic execution.
Computing packet reachability under failures. After the packet
propagation process, there can be multiple copies of the packet with
different topology conditions reaching the gateway of the destina-
tion subnet. Similarly, we can combine all topology conditions and
check whether there exists a failure case with less than k failures
which eliminates the reachability of the packet.
About equal-cost multi-path routing (ECMP). Current Hoyan
does not support ECMP-level packet reachability reasoning due to
the following reasons. First, in Alibaba’s WAN architecture, ECMP
is only configured within the same device groups. A device group
consists of multiple redundant routers with the same forwarding
behaviors. Under such an architectural assumption, the targets of
ECMP must be within the same device group, so that the forward-
ing behavior of any packet should be equivalent. Second, Alibaba

2There can be rules with different subnet granularity matching the destination. Based
on the longest prefix matching strategy, we first rank rules based on their subnet
granularity and put smaller subnet granularity to higher priority. We keep the rank of
the rules in the same subnet as what they are in the RIB.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Ye et al.

0 100 200 300 400 500 600 700 800
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 15: Ext-RIB loading.

0 300 600 900 1200 1500 1800
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 16: VSB localizing time.

employs another internal system specific to ensure the targets of
ECMP are configured correctly within the same device groups. We
leave the ECMP reasoning support to the future work.

E PERFORMANCE OF MODEL TUNER
To present the overhead of our behavior model tuner, we pick 200
IP prefixes in our WAN. These prefixes not only cover the most
important services of our company, but also are active to serve for
millions of users. We measure each prefix in detail to show the
performance and overhead of the behavior model tuner.

Figure 15 shows the CDF of the time to load ext-RIB from a real
device. In this process, Hoyan needs to contact the target router
and pull the network state back. As we can see, the loading time is
222 milliseconds and 382 milliseconds in 50% and 90% percentile
respectively. Even for the prefix with the largest propagation scope,
the loading time is less than 800 milliseconds.

We measure the memory cost of this process. Loading ext-RIB
for one IP prefix from one device is around 1 KB. The total memory
cost for all these 200 prefixes is around 840 MB.

After the ext-RIBs are loaded, Hoyan checks and locates VSBs.
We evaluate the time cost of this process in Figure 16. In most (90%)
cases, Hoyan takes less than 1 second.

F COMPARINGWITH EXISTING TOOLS
We comparedHoyanwith Batfish [12], Minesweeper [4], and Plank-
ton [24] on verification performance with conducted experiments.
Experiment setup. Because the alternatives cannot verify our
entire WAN with failure coverage due to the scalability issue, we
pick two subnets from our WAN – a small one with 20 routers and
a medium one with 80 routers – and use the three tools to verify
them for performance comparison.

We perform two types of reachability verifications. The first
is k-failure packet reachability. We verify packet reachability be-
tween each pair of routers in the network. We use 50 threads to
perform verification of different device pairs in parallel for all three
approaches. The second is device equivalence. We verify if two
selected routers receive the same routes and build the same RIB.
We use a single thread in this scenario.

Network properties Hoyan Minesweeper Batfish Plankton

Reachability
k = 0 3s 1555s 28s -
k = 1 4s 3573s 6299s 50s
k = 2 5s 4733s > 24h 3369s
k = 3 14s 7430s > 24h > 24h

Role equivalence 3s 203s - -
Table 4: Time comparison in the small subnet.

Network properties Hoyan Minesweeper Batfish Plankton

Reachability
k = 0 14s 84043s 683s -
k = 1 22s > 24h > 24h 835s
k = 2 43s > 24h > 24h > 24h
k = 3 176s > 24h > 24h > 24h

Role equivalence 4s > 24h - -
Table 5: Time comparison in the medium subnet.

Packet reachability. Table 4 shows the result in the small subnet.
In the k = 1 case, Hoyan takes 4 seconds to finish the reachabil-
ity verification whereas Minesweeper, Batfish, and Plankton need
3573 seconds, 6299 seconds, and 50 seconds respectively. When
considering failure cases with different k , time cost for Hoyan are
increasing slightly to 14 seconds. The time cost for the other two
works increases dramatically. For instance, Minesweeper needs
thousands of seconds and Batfish takes more than 24 hours when
k = 3.

In the medium subnet, Hoyan performs orders of magnitude
faster than all alternatives. Batfish, Minesweeper, and Plankton
(when k ≥ 2) need more than one day under different k as shown
in Table 5.

We also evaluate the maximum length of the topology condi-
tion formula of each prefix in these two networks. Answering the
reachability of a given route, in most cases, Hoyan needs to solve
logic formulas of size 242 and 543 when k = 3 in the small and
medium subnets respectively while Minesweeper reaches 230,403
and 4,786,577.

The above evaluation results demonstrate the huge advantage of
Hoyan in scalability to verify network configuration with failure
cases.
Device equivalence. Given two devices,Hoyan can verifywhether
they receive the same route updates and build the same RIB/FIB.
The equivalence property needs not to consider the failure case
since verifying this property is not required to be valid under fail-
ures. Table 4 and Table 5 show Hoyan takes less than 4 seconds to
verify this property whereas Minesweeper needs 203 seconds and
> 24 hours respectively. We did not evaluate Batfish or Plankton
since their code does not have this feature.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Alibaba's global network infrastructure
	3.2 Our motivations
	3.3 Our goals

	4 Hoyan Architecture
	4.1 Key ideas behind Hoyan design
	4.2 Modeling devices and network

	5 Verification Methodology
	5.1 Reachability on control- and data-planes
	5.2 Intuitive example of topology condition
	5.3 Topology condition encoding
	5.4 The reachability of routes
	5.5 The reachability of packets
	5.6 Optimizations for scalability

	6 Behavior Model tuner
	7 Deployment Experience
	7.1 Detecting uncertainties before updates
	7.2 Online configuration audits
	7.3 Real-world vendor-specific behaviors

	8 Performance Evaluation
	8.1 Hoyan's performance in the wild
	8.2 Comparing Hoyan with existing tools

	9 Discussion and Lessons
	10 Conclusion
	References
	A Route reachability reasoning
	B Handling route update racing
	C Supporting IS-IS and iBGP
	D The reachability of packets
	E Performance of Model Tuner
	F Comparing with existing tools

