
Evolution of Aegis: Fault Diagnosis for AI Model Training Service in Production
Jianbo Dong∗, Kun Qian∗, Pengcheng Zhang∗, Zhilong Zheng, Liang Chen, Fei Feng, Yichi Xu,

Yikai Zhu, Gang Lu, Xue Li, Zhihui Ren, Zhicheng Wang, Bin Luo, Peng Zhang, Yang Liu, Yanqing Chen,
Yu Guan, Weicheng Wang, Chaojie Yang, Yang Zhang, Man Yuan, Hanyu Zhao, Yong Li, Zihan Zhao,
Shan Li, Xianlong Zeng, Zhiping Yao, Binzhang Fu, Ennan Zhai, Wei Lin, Chao Wang, Dennis Cai

Alibaba Cloud

Abstract
Despite the success of diagnosis systems in traditional cloud
computing, these systems are not suitable for pinpointing
faults in AI model training cloud scenarios due to the dif-
ferences in computing paradigms between traditional cloud
computing and model training. As one of the largest cloud
providers, we present Aegis, a fault diagnosis system specif-
ically designed for AI model training service. We share our
experience in the motivation, design, and evolution of Aegis.
Keeping easy-to-deploy as the primary principle, Aegis Phase-
1 started by enhancing existing general-purpose diagnosis
systems. After several months of evolution, Aegis Phase-2
cogitatively customized the collective communication library
for sophisticated failure localization in runtime without mod-
ifying customer code. Besides the failure localization, we
further equipped Aegis with the capabilities on handling per-
formance degradation and failure checking before delivery.
Aegis has been deployed in our production training cloud
service for one year. Aegis decreases more than 97% of the
idle time wasted by diagnosis, 84% of the training task restart
count, and 71% of the performance degradation.

1 Introduction
The AI model training has brought about tremendous revolu-
tions to today’s cloud services. In a typical AI model training
scenario, the customer (i.e., model designer) submits the AI
model as a task to the training cluster maintained by a training
cloud service provider (e.g., AWS, Azure and Google). The
hosts within the training cluster perform model computation,
then synchronize intermediate results via collective communi-
cation, then perform model computation, and continue. Even-
tually, these hosts finish a training process (typically lasting
weeks) based on the above synchronization way.

Reliability is important. The reliability of the training cluster
is crucial to both the training service provider and customers.
If a failure occurs during model training, the entire training
process should be restarted, resulting in a significant loss of
time and money [36, 45, 60]. As the scale of the AI model

* Equal Contribution.

increases, maintaining the reliability of the training cluster
becomes increasingly more important and challenging.

Why maintaining the reliability is challenging? The large-
scale AI model training clusters are equipped with tens
of thousands of high-tier GPUs (e.g., NVIDIA A100 [13]
and H100 [16]) to cooperate through high-speed network
connections (including rail-optimized network [1] and
NVLINK [17]) to achieve high-throughput training. Nev-
ertheless, the failure rates of these high-performance com-
ponents (both hardware and network) are much higher than
regular ones such as CPU and Clos network used in general
cloud computing scenario (see §2.1.1 for more details). Even
worse, due to the synchronization nature of model training,
the single-point failures resulting from the high-performance
GPUs within one host can lead to a cascading failure across
all hosts in this training task. The diagnosis systems used
in traditional cloud computing [23–26, 28, 29, 31, 32, 34, 35,
37–43, 46–48, 50–55, 57–59, 61, 63, 64], in principle, localize
the root causes by tracing back the source-destination path
through the sequence of system component calls such as the
5-tuples or devices of given faults; however, in the model
training, task failures spread from a single point to the entire
cluster, causing the culprit to be hidden among error reports
from all hosts. As a result, the diagnosis systems used for
traditional cloud computing are not suitable for localizing the
root causes in model training cluster.

The state-of-the-art efforts. To fill this gap, some diagno-
sis systems for the model training scenarios were proposed,
such as SuperBench [60] deployed in Microsoft and MegaS-
cale [36] deployed in ByteDance. SuperBench provides a
comprehensive benchmark suite for gray failure checking
before the cluster deployment. While useful, it is hard to lo-
calize the root causes of faults occurred in the model training
runtime. On the other hand, MegaScale identifies failures by
monitoring CUDA events from “critical code segments” in
customer model. This is only suitable for scenarios where the
model designer and model training service providers belong to
the same party; otherwise, no model designer (i.e., customer)

is willing to allow the training service provider to monitor
or modify their code. Such an assumption is impractical to
public model training service providers.

Our approach: Aegis. As one of the largest model training
service providers in this world, we decided to build a prac-
tical diagnosis system that achieve our key goal: diagnosing
root causes of failures in service runtime without modifying
customer code. This goal is important to public model train-
ing service providers like us, because (1) we need to cover
failures during the entire lifecycle, not only the cluster deploy-
ment phase and (2) our diagnosis system should be general
and transparent for various customers. To this end, we build
Aegis. This paper shares our experience in the motivation
(§2), design (§3), and evolution (§4) of Aegis.

Driven by our in-production investigation and motivation
(detailed in §2), we started the design of Aegis. In the Phase-1
of Aegis (§4.1), we enhanced our existing diagnosis system
with the training-output log and a diagnosis procedure fitting
in the large-scale model training scenario. This enhancement
enabled us to narrow the entire task-level failure down to
specific error devices in major failure cases. For more sophis-
ticated cases, we employ offline diagnosis as the backstop.

While Aegis Phase-1 constructs a comprehensive diagnosis
system handling various failures in our model training sce-
nario, once the offline diagnosis is involved, all used hosts
in this large-scale AI model training task need to be isolated,
greatly complicating the scheduling of the training cluster
and harming the overall cluster utilization. Therefore, Aegis
evolved to Phase-2 (§4.2). Phase-2 focused on diagnosing
most failure cases directly at runtime. We conducted a com-
prehensive investigation of the possible runtime information
sources. Adhering to the principle of minimizing customers’
perceptions, we chose to customize the Collective Communi-
cation Library (or CCL) to acquire runtime status because of
the following two reasons. (1) in mainstream training frame-
works (e.g., Megatron [49] and DeepSpeed [8]), CCL is in-
tegrated as an independent plugin. Customizing CCL would
not introduce any code modification in customers’ models
or training frameworks. (2) CCL “sits at the boundary” of
computation and communication, making it a perfect place
for generating ideal failure diagnosis information. Through
defining appropriate CCL metrics and constructing the corre-
sponding runtime diagnosis system, we improve the runtime
diagnosis ratio from 77% to close 100%.

Besides failure diagnosis, significant performance degrada-
tion is another crucial problem. Based on our experience, we
further develop the basic-metric correlating diagnosis and en-
hanced procedure-aware diagnosis to discover the root cause
of performance degradation (§5).

Other than solving issues during the training procedure, we
note that more than 73% of tasks failed at the initialization
phase. This phenomenon indicates errors already existed in
the cluster before the model training tasks start. To minimize
unnecessary retries from customers, we deploy Check Before

1 2 3 4 5 6 7 8 9 10
Week Number

0

100

200

300

Fa
ilu

re
 C

ou
nt

Hardware
Software
Network

Figure 1: Failures in a representative cluster.
Delivery (CBD) to conduct essential checks before delivering
hosts to customers (§6).

We present the diagnosis efficiency on our training clusters
during the evolution of Aegis (§7). For confidential reasons,
we use the statistics from our in-house LLM training project as
a representation. During the last 16 months, the training scale
of our project increased by more than 40×. Impressively, with
the deployment of Aegis Phase-1, the GPU idle time caused
by failure diagnosis is decreased by 71%. With the deploy-
ment of Aegis Phase-2, almost all model training task failures
can be diagnosed in runtime. The GPU idle time is further
reduced by 91%. For handling performance degradation, with
the gradual deployment of the correlation diagnosis and en-
hanced procedure-aware diagnosis, the degree of performance
degradation is decreased by 71%. With the deployment of
CBD, the training task restart count is decreased by 84%.

2 Motivation
2.1 Challenges Introduced by Model Training
Large-scale model training is fundamentally different from
traditional cloud computing. As shown in Figure 1, we studied
the repairing tickets from one of our largest training clusters
(containing O(1K) hosts with O(10K) GPUs) in production
during the last ten weeks. Each week, 100-230 critical failures
occurred in the training cluster, which is orderly higher than
that in general cloud computing data centers. If not pinpointed
and fixed on time, these failures may contribute to model
training task crashes. This subsection presents our findings on
why more failures occur and why failure diagnosis is harder
in large-scale model training.
2.1.1 Higher hardware failure ratio
Large-scale model training introduces unique challenges, par-
ticularly in terms of hardware reliability.
High failure rate of high-tier GPUs. High-tier GPUs (e.g.,
NVIDIA A100 [13] and H100 [16]), the most fundamental
component of the large-scale model training cluster, exhibit
a significantly higher failure rate than traditional computing
hardware. For instance, our statistical data show that an A100
GPU, on average, fails after approximately 400 days of opera-
tion, whereas an H100 GPU has an even shorter mean time to
failure of around 200 days. Given a large-scale training task
involving thousands of GPUs, this failure rate is orders higher
than that of general cloud computing scenarios. As shown in
Figure 2, 45.6% of failures are caused by GPU-related reasons
(i.e., GPU execution error, GPU driver error, GPU memory
error, CUDA error, NVLINK error and GPU ECC error).

CPU error (13.7%)
PCIe error (10.4%)

Disk error (1.6%)

Memory error
(9.1%)

Power & fan error
(3.7%)

NIC error (9.1%)

Optic module &
fiber error (6.7%) GPU ECC error (10.2%)

NVLINK error (9.2%)

CUDA error (3.3%)

GPU memory error
(8.6%)

GPU driver error (1.2%)

GPU execution error
(13.1%)

Figure 2: Types of failures encountered in production.

N
I
C
1

G
P
U
1

N
I
C
2

G
P
U
2

PCIe Switch 1

CPU 1
UPI

CPU 2

Backend Network

NIC0

Frontend
Network

N
I
C
3

G
P
U
3

N
I
C
4

G
P
U
4

PCIe Switch 2

N
I
C
5

G
P
U
5

N
I
C
6

G
P
U
6

PCIe Switch 3

N
I
C
7

G
P
U
7

N
I
C
8

G
P
U
8

PCIe Switch 4

High-bandwidth Intra-host Network

Figure 3: Intra-host network topology.
Complex intra-host network topology. As shown in Fig-
ure 3, each host in the our training cluster is equipped with
eight GPUs and eight NICs, interconnected via PCIe. GPUs
in the same host also utilize NVLINK for inter-GPU com-
munication, which, while enhancing performance, introduces
more complex forwarding paths and higher failure rates. Our
operational experience has revealed 9.2% issues related to
NVLINK failures, as well as 10.4% performance anomalies
due to PCIe error. These intra-host network problems are very
rare in general cloud computing scenarios.

More link failures in large-scale model training cluster. To
maximally utilize the high bandwidth provided by the intra-
host network, rail-optimized networking [45] is widely de-
ployed in construction training clusters. While this approach
improves performance, as shown in Figure 4, compared with
the traditional single-ToR topology, the rail-optimized con-
nections require long-distance links. It necessitates using the
optic modules and optic fiber to overcome the distance lim-
itations of copper cables. However, optic modules and fiber
have a higher failure ratio [18]. Statistics from our production
reveal that optic modules and fiber can introduce a 1.2 ∼ 10×
higher failure ratio compared with DAC, which varies accord-
ing to different vendors and link speeds. Although we have
implemented the dual-ToR design proposed in HPN [45] to
mitigate these issues, the inherently higher failure rates still
introduce significant operational challenges. While one of the
two dual-ToR links fails, the entire training task may not crash,
but may encounter significant performance degradation.

2.1.2 Lacking direct root cause indicators
Besides the high failure ratio, the specific workload of large-
scale model training differs from general cloud computing

Host1
1 8

Host2

TOR1 TOR2

1 8

TOR1 TOR2 TOR15 TOR16

< 5M > 10M

(a) Single-ToR access (b) Rail-optimized access

Host1
1 8

Host2
1 8

Rail 1 Rail 8

Figure 4: Different types of host accessing topology.

tasks, further introducing difficulties in diagnosing the root
cause of failures. The limited diagnostic information provided
by mainstream training frameworks adds additional difficulty
to the failure diagnosis. In traditional general cloud comput-
ing scenarios, a failure only affects several specific hosts, with
clear fault localization indicators (e.g., the specific 5-tuple
connection encounters high RPC completion time). In con-
trast, in the model training, task failures spread from a single
point (e.g., a host or a link) to the entire cluster, causing the
culprit to be hidden among all the faulty tasks.

In addition, the entire large-scale model training proce-
dure heavily relies on collective communication to cooperate
with all GPUs. Usually, the failure is observed throughout
the entire training task crash (e.g., most hosts concurrently
encounter the same CCL timeout error). While there are many
potential root causes, the CCL timeout is often the first signal
to identify the occurrence of a failure. As a result, diagnosing
the problem typically begins with the network, but the root
cause may not be in the network.

2.2 Why Our Existing Systems Do Not Help?
We have three diagnosis tools used in our data center networks
for general cloud computing.

Tool 1: Network monitoring and analysis. During the run-
ning of training tasks, each NIC and switch continuously gen-
erates logs recording their runtime status, especially warning
and error messages. Furthermore, a series of statistic-based
monitors are deployed in hosts and switches (e.g., RX/TX
throughput, Out-of-order number, ECN mark number on each
port). This diagnosis system is primarily designed to collect
and analyze logs and statistical data from NICs and switches.
By matching specific network failure patterns (e.g., critical
errors shown in the log and abnormal statistics), it can auto-
matically identify the failure node and isolate it.

Tool 2: RDMA Pingmesh. In the general cloud computing
scenario, we have deployed TCP Pingmesh service on a large
scale, and we have transformed it into RDMA Pingmesh dur-
ing the support of high-performance block storage service,
which is similar to R-Pingmesh [41]. RDMA Pingmesh can
actively probe the network to diagnose connectivity and high
latency issues.

Tool 3: Inband network diagnosis. The above two systems
are responsible for end-to-end information to diagnose the
faulty device in the training cluster. However, in some com-
plex failure scenarios, we also need hop-by-hop statistics,

rather than end-to-end information, to discover the root causes
of failures. We build such a system, which can conduct col-
oring on specific packets and trace their forwarding status
among each single switch.

The procedure: Tool1+Tool2+Tool3. The entire diagnosing
procedure (combining the above three tools) works as follows.
When application monitors report an abnormal event, this ab-
normal event points to a clear source-destination pair. Our net-
work monitoring and analysis system is triggered to analyze
whether critical errors occur among the source-destination
pair. If so, devices with critical errors would be isolated. If
there is no such clear conclusion, Pingmesh results are used to
verify whether abnormal packet loss and high latency occur in
the network. If so, the in-band diagnosis system is triggered to
color specific traffic that passes through the source-destination
path hop-by-hop to determine the location of the failure.

Limitations. This diagnosis system works well in general
cloud computing scenarios; however, it is not suitable in the
model training scenario due to the following two reasons.

Reason 1: Focusing on the network itself. In general cloud
computing scenarios, a failure notification points to a clear
source-destination path. Therefore, existing diagnosis systems
only need to focus on identifying faults inside the network.
However, serving model training in the cloud is quite different.
It heavily relies on collective communication to cooperate
with all GPU hosts. Any single failure would cause a cascad-
ing task crash across all participating hosts. Therefore, a large
number of secondary issue errors may overshadow the root
cause error. We encounter numerous false positives in the
diagnostic results by directly employing existing diagnosis
systems in model training production.

Reason 2: Focusing on single request/response. Our tra-
ditional diagnosing systems diagnose faults in the request-
response way, focusing on the issues of individual connec-
tions. In contrast, large-scale model training requires correlat-
ing information from multiple devices to accurately diagnose
faults, necessitating an automated localization system that is
vacant in the previous procedure.

2.3 Limitations of State-of-the-Art Efforts
State-of-the-art general-purpose diagnosis systems [23–26,
28,29,31,32,34,35,37–43,46–48,50–55,57–59,61–64] move
a step towards handling failures beyond the network. Some
of them further consider the correlation between different
devices to improve the analysis accuracy [29, 30, 33, 35, 44].
However, due to the lack of taking into account model training-
specific features such as collective communication, they are
unable to cover many failures in the model training scenario.
For example, in LLM training, each single collective com-
munication forces dozens or even hundreds of GPUs in syn-
chrony. Simply extending these correlation-analyzing meth-
ods to such a large scale forces the comparison among many
nodes. According to our experience, it leads to an increase in
unacceptable diagnosis latency and accuracy loss. We, there-

Fa
ilu

re
Co

ve
ra

ge

Easy to Deploy in Cloud

MegaScale (coupling with model code)

SuperBench (entirely offline diagnosis)

R-PingMesh

ChameleMon

Aegis

Network-level diagnosis

Infra-level diagnosis

Task-level diagnosis

Bet
te

r

Aegis (Phase-1)

Murphy

DeepFlow

Fathom

OmniWindow RD-Probe

Figure 5: Limitations of state-of-the-art solutions.

fore, turn to investigate whether there is any diagnosis system
specifically designed for the model training scenario. There
are two representative diagnosis solutions built for model
training clusters and large-scale deployed in production (i.e.,
SuperBench [60] deployed in Microsoft and MegaScale [36]
deployed in ByteDance). Unfortunately, as shown in Figure 5,
both cannot perfectly fit the demands in the model training
cloud scenario due to the following reasons.

Time-consuming offline diagnosis is insufficient. Super-
Bench constructs a comprehensive benchmark suite, includ-
ing computation/communication microbenchmarks and typ-
ical end-to-end model training benchmarks. By executing
this benchmark suite before delivering the training cluster to
production, SuperBench can proactively figure out possible
issues. We have deployed a similar procedure during each
host’s online procedure. However, failures may happen during
the entire life cycle of the cluster, not only before the online
procedure.

It is also impractical to execute SuperBench after any fail-
ures. Initializing a single model training benchmark would
take tens of minutes, making the entire SuperBench execution
lasting hours. Employing this system as the only diagnosis
method would introduce a great waste of computation re-
sources and a bad user experience (i.e., prolong waiting time
after each failed training).

Deep coupling with customers’ code is inappropriate.
MegaScale, on the contrary, proposes a fully runtime method
to execute failure diagnosis. It monitors the executions of
CUDA events in “critical code segments” to diagnose training
issues. It is a proper solution for companies that train models
for their own use (e.g., ByteDance and Meta). However, it is
not suitable for us who offer public AI training services for
customers. The reasons are twofold.

First, MegaScale needs a clear definition of “critical code
segments”. However, as a cloud service provider, we offer
training services for various customized models from differ-
ent customers. Each model may have different architectures
and implementations, leading to varying definitions of “crit-
ical code segments”. Requiring clients to explicitly define

Pre-online CBD (§6)

Phase 1: Offline Diagnosis (§4.1.2)

Training log

System log
NIC log

Online

Offline

Switch log

Metric-based analysis Pingmesh

Error Region Isolation

Phase 1: Basic Error Diagnosis (§4.1.1)

CCL info

Inband Diagnosis Existing System

Task Failure (§4) Performance Degradation (§5)

Basic Correlation Diagnosis (§5.1)

Enhanced Procedure-aware Diagnosis (§5.2)Phase 2: Procedure-aware Diagnosis (§4.2)

Figure 6: Aegis overview.

the “critical code segments” they use is also impractical, as
many model details are highly confidential. Therefore, we
need a generic and efficient solution that introduces minimal
intrusion on customers.

Second, monitoring CUDA events requires initializing a
customized monitor module exactly in the same thread these
CUDA events are called. It means this initialization can only
be explicitly called in customers’ model code. Deploying a
new tool that forces modifying customers’ model code is hard.
The negotiation between our salesman and customers mainly
bottlenecks the entire deploying procedure.

3 Aegis Overview
We decided to build a diagnosis system (named Aegis) for
the AI model training scenario. Aegis achieves our key goal:
diagnosing the culprit of failures in service runtime without
modifying customer code. Notice that, in production, when
a failure happens, the most urgent issue is timely locating
which device is introducing this failure/degradation. Then, we
can isolate this device and go on the training. The root cause
analysis is conducted offline (i.e., after the isolation), which
is another big topic and not covered in Aegis. Figure 6 shows
the overview of Aegis. Aegis focuses on two types of abnor-
malities: training failure and performance degradation. Train-
ing failure is the first critical disease we need to cure. Aegis
has experienced a two-phase evolution for handling training
failure. Considering the limitations of our existing diagnosis
system as discussed in §2.2, in Aegis Phase-1, we further in-
volve the error information from the training log and construct
a training-specific runtime diagnosis procedure (§4.1.1). We
also design a comprehensive offline diagnosis backstop for
hardcore cases that cannot be handled in runtime diagnosis
(§4.1.2). During the operation, we find that a non-negligible
number of failure cases need an offline diagnosis, which leads
to unsatisfied GPU utilization. Therefore, we evolve Aegis
Phase-2 to get more training-specific information through
customizing CCL to conduct the training procedure-aware di-
agnosis (§4.2). For handling performance degradation, based
on previous experience, we design both metric correlation
diagnosis (§5.1) and enhanced procedure-aware degradation
diagnosis (§5.2). To further improve user experience, we add
a new “pre-online” process conducting efficient cluster check-

ing before delivering it to the customer (§6).

4 Task Failure Diagnosis
This section illustrates the evolution of Aegis. We start by
enhancing existing diagnosis systems and then move to con-
structing a better runtime diagnosis system.

4.1 Phase-1: Enhancing Existing Systems
4.1.1 Basic error diagnosis
In most failure cases, there are no clear indicators even to de-
termine the scope of the failure. Therefore, diagnosis begins
with identifying whether the current issue originates from
the endpoint or the network. At the very beginning of our
diagnosis practice, most failures are located through manual
diagnosis. Our engineers filter error and warning logs on each
host and switch through different sources (e.g., OS dmesg [9],
training log, CCL log, NIC driver, switch syslog [5] and cus-
tomized counters) and analyze the time-sequence relationship
between these abnormal reporters with the actual failure. Af-
ter dealing with hundreds of online failure cases, a series
of critical errors are summarized and transformed into our
initial automated task failure diagnosing system. Two main
challenges are faced and conquered in this procedure.

Not all reported errors are critical. Error logs are
widespread during the entire training process. Not all errors
deterministically lead to task failures or performance degra-
dation. Considering ECC errors as an example, there are mul-
tiple types of ECC errors. Only double-bit ECC errors (e.g.,
XID 48 Error [21]) and uncorrectable ECC errors (e.g., XID
94/95 Error) are root causes of failures. Other single-bit ECC
errors (e.g., XID 92 Error) and correctable ECC errors (e.g.,
XID 63/64 Error) indicate HBM memory errors, but do not
trigger failures. However, widespread errors are reported from
different hosts near the task’s crash time. If all these hosts
were directly isolated, the entire utilization of the training
cluster would be greatly damaged.

Our solution first involves identifying critical errors that
intrinsically lead to task anomalies, such as GPU missing,
PCIe lane drops, or NVLink issues. When such issues are
detected, the corresponding host is directly isolated. This
method covers only a portion of potential anomalies.

In the early stages of operating LLM training clusters, our
engineers devoted much effort to handling online training
failures. They summarized other error patterns that certainly
lead to task failure. This experience formed the foundation for
our critical error diagnosis: CriticalError(). Critical errors
contain several categories in production: (1) hardware failure
(e.g., double-bit ECC error, link down, GPU/NVLink/NIC
missing, fan error, and power error) (2) unrecoverable soft-
ware failure (e.g., GPU/NIC driver error) and (3) unbearable
performance degradation (e.g., GPU/host overheat).

Not all critical errors point to a clear location. Besides
the clear critical errors, which can directly indicate failure
location, many other errors do not point to specific nodes. A

widely encountered example is the crash of network connec-
tions (e.g., “connection reset by peer”). These failures can
trigger NCCL error handlers, causing the corresponding train-
ing thread to exit and leading to cascading thread crashes in
other hosts. We also construct a distributed error list to record
these errors: DistError().

We enhance our fault diagnosis process with the above
experience, as shown in Appendix A (Algorithm 1).

• If a machine encounters critical errors, it is isolated, and
the task is restarted.

• If distributed errors appear on only two hosts, it means
errors occur on these hosts. They are isolated, and the task
is restarted. There is a trade-off behind this process logic.
When the potential culprit host set is small enough, it is more
efficient to directly isolate all nodes in this list to accelerate
the diagnosis procedure. However, the side-effect is that some
normal hosts in this set are also isolated, introducing resource
wastage. In production, we take the size of this potential
culprit host set to 2 to achieve the sweet point.

• For distributed errors across multiple machines,
RootDiag() analyzes the reported errors to identify if they
can be clustered by the source or destination. If GPU G j is
the root cause of the failure, then connections from G j and
connections to G j crash the first time. Therefore, RootDiag()
can precisely determine the faulty G j. If not, it means that the
root cause is not on the host-side. Then, network components
need to be further checked.

• If errors are distributed without a clear pattern, systemic
issues are most likely, such as network or configuration prob-
lems. We develop ConfigCheck() and NetDiag() to conduct
further diagnosis. ConfigCheck() maintains a checklist and
corresponding scripts to identify various causes of configu-
ration errors. NetDiag() is constructed by the existing DCN
diagnosing system illustrated in §2.2.

• If all the above procedures cannot pinpoint the root cause
of the failure, then all hosts used in this training task need to
be isolated and conduct offline diagnosis (details in §4.1.2).

Lesson: Exhausting host-side critical failures first is the
most efficient way to diagnose. In large-scale model train-
ing, host-side issues may be misinterpreted as network issues.
In practice, 71% distributed failures turn out to be irrele-
vant to the network. Therefore, in environments with mixed
network-side and host-side faults, solving host-side issues
first is important and efficient.

4.1.2 Offline failure diagnosis
After the entire diagnosis procedure, some issues still cannot
be directly diagnosed with the available runtime information.
To locate the root cause of these failures, we have designed
an offline failure localization mechanism. It isolates and di-
agnoses all suspicious hosts used in the current training task.
Unlike SuperBench [60] monopolizes the entire cluster for
multiple hours of testing, our offline system diagnoses fail-
ures in parallel for targeting hosts. After ensuring each host

is problem-free, this host is returned to online service.
Parallelized offline failure localization. To expedite the of-
fline localization process, we design a parallelized approach to
maximize efficiency. In the offline localization procedure, all
hosts undergo a series of self-checks, including stress testing
for CPU, GPU, PCIe, and NVLink. This part is fully paral-
lelized (i.e., each host runs self-checks independently). If an
issue is identified during the single-host self-checks, that host
is marked as faulty. If no issues are detected in the single-node
tests, further multi-host failure diagnosis is required.

The next step is a multi-host failure diagnosis. We select
typical models similar in SuperBench [60], and we include
more emerging typical models (e.g., MoE models [12] and
Multimodal models [4, 20]). The basic idea is that the end-
to-end training failure is triggered by a specific combination
of computing and communication in the customer’s model.
Traversing our selected typical models, we can determine
which model covers this combination of computing and com-
munication and use it as the reference model in the following
multi-host diagnosis. The cluster is then divided into smaller
segments, and the reference model is trained on different seg-
ments independently, ultimately pinpointing the problematic
host. Once a subset of the cluster is confirmed normal, these
hosts are promptly returned to the resource pool, minimizing
resource wastage.
Topology-aware parallel localization. During parallel local-
ization, the partitioning of different subsets is crucial. Since
the network is shared among different hosts, splitting hosts
indiscriminately may lead to parallel training tasks competing
with the same network links. This can result in two side ef-
fects. (1) If the failure occurs within the network (e.g., silent
packet loss) and the parallel diagnosing tasks use the same
problematic link, both tasks will be affected, making the par-
allel diagnosing procedure fail to locate the root cause. (2)
If the fault is not in the network but on the host, the current
running of training tasks may share the same network link
and cause congestion, leading to inaccurate diagnosis results.

To handle this issue, hosts are not evenly split into dif-
ferent subsets. We split hosts into two subsets according to
their location in the physical network topology. We count
the number of hosts in different Pods and ToR groups (in
rail-optimized topology, multiple ToRs are used to serve the
same host, called a ToR group), respectively. Hosts are split
according to whether they belong to the same Pods and ToR
groups. As a result, during the parallel diagnosis, traffic from
different diagnosing tasks would not interfere with each other
in the network.

After training the reference model on two subsets, the sub-
set encountering failure is chosen for further diagnosis. Hosts
in the other subset can be returned to online service. With the
proceeding of the parallel diagnosis, left hosts would gradu-
ally converge to be in the same ToR groups. In this case, the
splitting could be arbitrary since any splitting would not lead
to network congestion. If both subsets encounter failures, the

root cause exists in both subsets, and then all hosts in these
two subsets need to be isolated.

Transforming the missing piece into a new clue. The above
procedure can cover the diagnosis of most failure cases. How-
ever, there is a missing piece: if the root cause is the misbehav-
ior of Core (Tier-3) switches or Aggregation (Tier-2) switches,
this independent parallel diagnosis would miss this root cause
of failure (since we delicately minimize traffic passing Core
and Aggregation switches).

We indeed encounter this issue in production. There was a
failure in a training task occupying 1.5K GPUs. In the offline
failure diagnosis, we successfully find a reference model to
reproduce the failure. However, when we employ the parallel
diagnosis, the failure cannot be reproduced in any subsets of
hosts. We are surprised at first since there is a missing piece
that the default diagnosis procedure cannot handle. After
several times of reproduction and further analysis, we derived
insight from this missing piece and concluded that there must
be some misbehavior in the Aggregation switches. Through
succeeding switch-specific diagnosis, the root cause is clear:
silent packet loss happens on one Aggregation switch. But
why is this switch error not detected by the NetDiag() in the
online diagnosis? We encounter an exceptional kind of silent
packet loss, which only drops packets larger than 1KB. As a
result, the RDMA Pingmesh system does not throw any error
since the size of all probing packets is 64B.

After comprehensive reviews of this failure case, we make
several enhancements to our system. (1) We supplement the
offline diagnosis to handle this case automatically. (2) We
enhance RDMA Pingmesh to cover varied lengths of probes.

4.2 Phase-2: Procedure-aware Diagnosis
Despite significant improvements in failure localization
through enhanced legacy systems, we still encounter many
cases that need to trigger the offline diagnosis to finally locate
the root cause, inevitably leading to considerable computation
resource waste. Furthermore, even though most cases can
be handled with Aegis Phase-1, we encountered several rare
cases where typical models could not reproduce the failures
encountered in production. In these cases, to finally solve
customers’ problems, we had to cooperate deeply with them
to reproduce failure cases online and collect more diagnosis
information. These failures are caused by systematic reasons,
requiring not just basic error information but also training-
procedure-specific information to find out the culprit. There-
fore, we upgrade our system to diagnose runtime failures
using a procedure-aware approach.
4.2.1 What is the ideal solution?
The main difficulty of fully online diagnosis is lacking precise
information. Therefore, we enhance our online task monitor-
ing capabilities to provide more valuable runtime information.
However, several practical constraints must be considered
before implementing such improvements:

High confidentiality. LLM training is a synchronous process,

which is also the main reason for the difficulties in failure di-
agnosis. Accurate localization of such issues requires detailed
outputs, and since the root causes vary across different cases,
the necessary data for diagnosis also differs. Choosing the
right metrics for high-confidence diagnosis is crucial.

Minimal customer modifications. Comprehensive fault lo-
calization typically requires extensive metrics collection,
which demands tight fusion with customers’ code or train-
ing frameworks. However, as a model training cloud service
provider, extensive modifications to customer code or training
framework are impossible in production. The ideal solution
is fully transparent to customers.

Low overhead. Adding new information collection and pro-
cessing should introduce minimal overhead to avoid impact-
ing the main training tasks.
4.2.2 Customizing CCL is the bridge
After comprehensive consideration, we employ a customized
CCL as the bridge for enhanced runtime diagnosis. This deci-
sion is based on several valuable characteristics of CCL:

First, in mainstream training frameworks (e.g., Megatron
and DeepSpeed), collective communication is a modularized
component that can be replaced independently. By replacing
the CCL, we can collect customized diagnostic information
without any change in customers’ model codes. Unlike higher
layers, which may involve extensive modifications, customiz-
ing the CCL offers a more practical solution for diagnostics.

Furthermore, collective communication sits at the boundary
of computation and communication. Precise runtime infor-
mation from this layer can provide clear information about
the host-side processing time (computation) and network-side
processing time (communication). This information is vital
for the localization of faulty devices.

Information collection. During the training, our customized
CCL records several statistics of each communication opera-
tor (Ci) in each GPU (G j).
• Collective launch count(CLi, j) records how many times

Ci is launched by G j.
• Work request count (WRi, j) records how many work re-

quests in Ci are launched by G j.
• Work completion count (WCi, j) records how many work

requests in Ci are finished by G j.
We have tried other different metrics in our testbed and

found that the information mentioned in our paper is both suf-
ficient and necessary. Keeping collected metrics lightweight
and easy to deploy is important.

As shown in Figure 7a, all GPUs alternately execute com-
putation and collective communication in a synchronized way.
In normal cases, CLi, j from different G j keep the synchro-
nized increasing in each iteration. We further present how to
localize failures with the above statistics.

Scenario-1: failure in computation. If a failure occurs in
the computation phase, as shown in Figure 7b, Gn (n = 2 in
this case) fail in launching the succeeding Ci (i = 1 in this

Comp Comm (𝐶!)

Comp Comm (𝐶!)

Comp Comm (𝐶!)

Comp Comm (𝐶!)

Comp Comm (𝐶!)

Comp Comm (𝐶!)

𝐺!

𝐺"

𝐺#

Iteration k Iteration k+1 Iteration k+2

𝐶𝐿!,! = 𝑚

𝐶𝐿!," = 𝑚

𝐶𝐿!,# = 𝑚

𝐶𝐿!,! = 𝑚 + 1

𝐶𝐿!," = 𝑚 + 1

𝐶𝐿!,# = 𝑚 + 1

(a) Normal training iterations.

Comp Comm (𝐶!)

Comp

Comp Comm (𝐶!)

CCL Timeout

Roo
t Ca

use

𝐶𝐿!,! = 𝑚

𝐶𝐿!,# = 𝑚 − 1

𝐶𝐿!,$ = 𝑚

𝐺!

𝐺#

𝐺$

Iteration k

CCL Timeout

(b) Failure in computation.

Comp Comm

Comp Comm

CCL Timeout

Comp Comm

Roo
t Ca

use

𝐺!

𝐺"

𝐺#

Iteration m

𝐶𝐿!,! = 𝑘

𝐶𝐿!," = 𝑘

𝐶𝐿!,# = 𝑘

𝑊𝑅!,! > 𝑊𝐶!,!

𝑊𝑅!," = 𝑊𝐶!,"

𝑊𝑅!,# = 𝑊𝐶!,#

CCL Timeout

CCL Timeout

(c) Failure in communication.

Figure 7: Customizing CCL for failure diagnosis.

case). As a result, all other workers in the same communicator
would stall at the Ci and crash owing to CCL timeout. In this
case, CLi,n < CLi, j ̸=n in the same group. As a result, Gn is
pinpointed as the root cause of the failure.

Scenario-2: failure in communication. If the failure is in
communication, then the transmission of a specific work re-
quest in Ci would fail, causing all GPUs in this group to
endure CCL timeout as shown in Figure 7c. More detailed
statistics WRi, j and WCi, j are used for further diagnosis. In
normal GPUs, WRi, j = WCi, j. If WRi,n < WCi,n (n = 1 in this
case), it means Gn is related to the root cause. We further
conduct NetDiag() on all sources and destinations related to
these abnormal work requests.

After deploying deep runtime diagnosis in production, al-
most all training failure cases can be pinpointed in runtime
(more details in §7).

Limitations. Leveraging information from collective commu-
nication is a compromise that is easy to deploy. Actually, just
using collective communication information is not enough to
find the root cause of failures. However, as aforementioned,
collective communication is located at the boundary between
computation and communication. This intrinsic characteristic
is important for our primary goal: locating the culprit.

As a cloud service provider, our customers may employ
various versions of official or self-constructed images with dif-
fering CUDA, drivers, and CCL versions. To provide consis-
tent diagnosis ability for all customers, we need to make sure
(1) our diagnosis system can seamlessly deploy in different
images and model training tasks and (2) solutions deployed in
different environments should deliver the same diagnosis in-
formation for delivering the consistent diagnosis performance.
Therefore, we need to provide our corresponding customized
version based on all CCL-released versions. Although the
above limitations exist in customizing CCL, it is still easy to
deploy compared with other alternatives (e.g., customizing
the training framework or modifying customers’ model code).

5 Performance Degradation Diagnosis
Besides complete training task failure, some device abnormal-
ities may not crash the entire training but lead to significant
performance degradation. These abnormalities should also
be diagnosed on time. Since the training task is still run-
ning when a performance degradation occurs, we cannot use

OfflineDiag() as the final fallback solution. Therefore, we
design a degradation diagnosis system.

5.1 Basic Correlating Diagnosis
Similar to Phase-1 in §4.1, we first leverage the existing run-
time statistics to detect the potential performance degradation.

Key metric selection. The first challenge is to determine
precise metrics that can help recognize and diagnose the fault.
After solving various cases in production, we notice that most
performance degradation is triggered by one single abnormal
device, where two categories of metrics can indicate it.

(1) Abnormal operating metrics. These metrics are de-
signed to directly indicate that some components are run-
ning at abnormal conditions. For example, the Retran metric
denotes how many packets are retransmitted per second. In
ordinary cases, this Retran metric should always be zero. The
high Retran metric denotes misbehavior in the network.

(2) Performance metrics. These metrics are designed to
reflect the execution efficiency of specific components. The
abnormal evolution of one component would lead to overall
performance degradation. For example, the Actual Tensor-
FLOPS metric denotes how many tensor float-point calcula-
tions are completed each second.

We select 20+ metrics according to operating in production
including host metrics (e.g., CPU utilization, GPU utilization,
GPU temperature, and PCIe utilization) and network metrics
(e.g., Bandwidth utilization, Retransmission count, Switch
port queue length, and ECN count). Owing to the confidential
policy, we cannot release a detailed list of all metrics used. In-
tuitively, if one metric (especially abnormal operating metrics)
is running in a faulty range (e.g., continuously high Retrans-
mission metric), then this value should lead to performance
degradation. To filter these clear signals, we set corresponding
thresholds for these metrics, respectively.

However, simply using static thresholds cannot fit vari-
ous training scenarios. Simply setting thresholds for every
single metric would lead to numerous misjudgments since
resource utilization varies greatly, even in the normal train-
ing procedure. Considering that the entire training procedure
is well-organized, we, therefore, leverage the synchronizing
training characteristics for further correlating diagnosis.

Cross-host correlating diagnosis. The monitored results of
the same metric from different hosts should follow the same

0 5 10 15 20 25
Time (min)

0

10

20

30

40
EC

N
 C

ou
nt

 (K
) NIC0

NIC1
NIC2
NIC3

Figure 8: Abnormal ECN
metric evolution.

Comp Comm (𝐶!)

Comp

Comp Comm (𝐶!)

𝐺!

𝐺"

𝐺#

Iteration k

Comm (𝐶!)

𝑇𝐷!,%

Roo
t Ca

use

𝑇𝐷",!,% < 0.8𝑇𝐷!,%

(a) Computation degradation.

Comp Comm (𝐶!)

Comp

Comp Comm (𝐶!)

𝐺!

𝐺"

𝐺#

Iteration k

Comm (𝐶!)

𝑁!,!,% = 10

𝑁",!,% = 2

𝑁#,!,% = 10

𝑇𝐶!,%

(b) Communication degradation.

Figure 9: Customizing CCL for performance diagnosis.

0 10 20 30 40 50 60
Task Duration (min)

0%

20%

40%

60%

80%

100%

C
D

F

Figure 10: Durations of
training tasks in production.

changing pattern among different training iterations. The
basic idea is that a small part of nodes causes the entire perfor-
mance degradation, and performance degradation usually oc-
curs along with abnormal changes in some metrics, which can
indicate the root cause. Therefore, we design a Z-Score [22]
outlier analyzer for different metrics.

For each selected metric, the outlier analyzer calculates the
average value λ and standard deviation δ in the period T . If
the metric value from a single host is higher than λ+2δ for
the lasting T , then this host is defined as an outlier. T is set
to be ten minutes in production. In practice, the abnormal
node usually generates significantly different values compared
with others, which makes λ+2δ a simple and good enough
threshold for diagnosis in production.

Actually, we have tried a series of other outlier analysis
mechanisms (e.g., LOF [27], Isolation Forest [3] and DB-
SCAN [7]). They lead to similar precision and recall ra-
tios. Considering that this entire process needs to run in a
stream processing way, the calculation cannot be too com-
plex. We finally choose this simple but efficient outlier anal-
ysis mechanism. This correlating diagnosis helps us trou-
bleshoot various malfunctioning devices, including deceler-
ating GPU/CPU/PCIe/NIC/link/switch, which covers a large
proportion of failures in production.

Case study. We use an actual case met in production to fur-
ther illustrate how the cross-host correlation diagnosis runs.
During our in-house LLM model’s training, as shown in Fig-
ure 8, the ECN statistic from one NIC increases from zero to
10-30K per second. At the same time, our model training team
reports a 26% training iteration time increase. The correlating
diagnosis mechanism immediately identifies this abnormal
situation, since this abnormal NIC exceeds λ+2δ of the ECN
metric. The root cause is that one of the links connecting
to this NIC drops packets silently. It triggers all traffic for-
ward to this NIC through another link, introducing network
congestion at the last hop and finally delaying the entire train-
ing iteration. Correlating diagnosis immediately pinpoints the
root cause of this performance degradation. After isolating the
host containing this abnormal NIC and restarting the training
task, the training performance returns to normal.

Limitation. This correlating diagnosis can work out the root
cause for performance degradation cases in which one or sev-
eral hosts generate significantly different metrics compared
with others. However, this is not always true. It is also com-

mon that when performance degradation happens, several
metrics change on all hosts, and we are unable to pinpoint the
root cause. Therefore, we need to acquire more information
and a new mechanism to solve these hard cases.

5.2 Enhancing Procedure-aware Diagnosis
Inspired by the design choice in §4.2, we choose to further
customize CCL for more information helping degradation
diagnosis. We further record the following statistics of each
collective operator (Ci) for each GPU (G j) in iteration Ik.
• In Ik, the duration of Ci in G j is TDi, j,k.
• In Ik, average duration of Ci is TDi,k.
• In Ik, the network throughput for the last L (L = 5 in

practice) work requests of Ci in G j is Ni, j,k.
• In Ik, average network throughput of Ci is Ni,k.
Figure 9a represents the computation degradation case,

where the unexpectedly long duration of the computation is
the culprit of performance degradation. Since the end of each
collective operation is synchronized, we can utilize the dura-
tion of communication time to deduce the computation time.
If the TDi, j,k < αTCi,k (α = 0.8 in practice), then G j is the
root cause of the computation degradation. Figure 9b repre-
sents the communication degradation case, where the long
duration of the communication is the culprit of performance
degradation. If Ni, j,k > βNi,k (β = 1.5 in practice), there is a
communication degradation. We use a slack threshold here
to resist noise caused by possible temporary network conges-
tion. Based on this information, we filter out GPUs group G
directly suffering degradation. G is further used to determine
which source or destination is the root cause of this communi-
cation degradation. The principle of this procedure is similar
to RootDiag() in Algorithm 1 in Appendix A. We omit the
details due to limited space.

6 Solving Problems Before Delivery
We analyze the runtime duration of all failed training tasks.
As shown in Figure 10, 73% of tasks failed within the first
10 minutes, which is unexpected since the initialization phase
of a training task usually takes between 5 to 20 minutes. It
indicates that many tasks are failing during the initialization
process. It is also in alignment with our experience: many
components (both software and hardware) may already endure
errors before engaging in the new training task. We have
reviewed all failures that occurred during the initialization
phase, and there are two main reasons for these failures.

Table 1: CBD task list
Phase Tasks Time

Configuration check
in parallel

Host configuration check
<1minGPU configuration check

NIC configuration check

Single-host test
in parallel

GPU kernels test

3min

NVLink test
HBM test
PCIe test

CPU execution test
Dataset/Model/Checkpoint load test

Multi-hosts test
in parallel

Collective communication test 6minComput./Comm. overlap test

Frequent component updates. Components such as train-
ing frameworks, CCL, container networks, NIC drivers, and
switches are updated frequently. For example, as released by
Meta [19], during the training of LLaMa3, 47 planned updates
are executed during a 54-day training snapshot (i.e., 26 times
per month). In our model training cloud service, we have a
bunch of update requirements for many purposes (including
bugfix, safety reinforcements, version unifying and perfor-
mance optimizations) from many components. To keep the
entire service steady, we do not execute updates at such a
high frequency. Critical updates, including bugfix and safety
reinforcements, are merged to be released weekly. Other up-
dates are released monthly. Even so, updates still trigger many
failures in production.

Post-usage failures. If a host encounters a fault after its last
use, it will trigger the failure of the new training task during
the initialization phase. This issue is especially challenging
in cloud environments where hosts are dynamically allocated
from a shared resource pool, making failure reproducing much
harder. Additionally, once a host is delivered to the customer,
the cloud provider cannot run diagnostics on it arbitrarily,
making diagnosis much more difficult.

To address these issues, we introduce the Check Before
Delivery (CBD) procedure. This check is done right before
the resources are handed over to the customers. It brings
two main advantages. First, this check process is added at
the final stage of resource delivery, so it does not disrupt the
existing workflow. Second, by running the validation after
the entire environment is set up, we can catch more issues.
For example, a connectivity test executed on the physical host
will miss connectivity problems caused by incorrect routing
configurations in the container network. These issues can only
be detected after the container is completely created.

However, CBD has a drawback. Since CBD is called after
the environment is fully prepared, it must be in the last phase
of delivery. This means CBD needs to be efficient to avoid
impacting user experience. Taking these factors into consid-
eration, we designed a set of CBD operations (as outlined in
Table 1). We comprehensively select representative tests that
cover the main components and organize them to execute in
parallel. The entire execution of CBD is less than 10 min-
utes. If a large number of machines fail in the CBD procedure

23
/05

23
/06

23
/07

23
/08

23
/09

23
/10

23
/11

23
/12

24
/01

24
/02

24
/03

24
/04

24
/05

24
/06

24
/07

24
/08

0

100

200

300

400

Id
le

 T
im

e
(h

)

Aegis Phase-1
 at scale

Aegis Phase-2
 at scale

0
1
2
3
4
5

Ta
sk

 S
ca

le
 (G

PU
s)

×103

Figure 11: Evolution of idle time in production.

23
/05

23
/06

23
/07

23
/08

23
/09

23
/10

23
/11

23
/12

24
/01

24
/02

24
/03

24
/04

24
/05

24
/06

24
/07

24
/08

0

50

100

150

200

250

R
es

ta
rt

C
ou

nt

CBD at scale Task changing
 to fine-tune

Figure 12: Evolution of restart counts in production.

(reaching a certain threshold), we roll back recent updates
to prevent widespread service disruption. There are several
different sale modes of the model training service. For the
complete PaaS mode, introducing an extra 10 minutes before
the startup of each single training task is still unbearable. We
also deliver a lightweight CBD version, which only contains
parallelized configuration checks and other critical quick local
host tests. This lightweight CBD can be completed within 1
minute and can cover most fundamental failures.

With the deployment of CBD, we have intercepted 1-2%
problematic hosts before final delivery. If not detected on time,
these problematic hosts would lead to training task failures.
Considering this significant benefit, we have made CBD a
mandatory procedure in delivery.

7 Evaluation: Aegis in Production
The first version of Aegis was online in September 2023, and
it immediately became one of the most fundamental compo-
nents in all succeeding delivery of training services. Aegis
has served dozens of large-scale training clusters for more
than one year. Due to confidential reasons, we cannot release
statistics from our external customers. Therefore, we statistic
training task information from our inner model training team,
which works to train one of the top-tier LLMs (i.e., large
language model) in the world.

7.1 Evolution of Training Stability
As shown in Figure 11, the line records the scale of the train-
ing tasks from our inner model training team, which increases
by more than 40× during the last 16 months. The bars repre-
sent the monthly accumulated idle time of the training tasks
owing to the waiting for the failure diagnosis. After Aegis
Phase-1 is online, the idle time (time duration where no task
running in the training cluster) is decreased by 71% in the
next month. This result is impressive, considering that we
even doubled the training scale in September 2023. There is

24
/01

24
/02

24
/03

24
/04

24
/05

24
/06

24
/07

24
/08

0

20

40

60

80

100

R
un

tim
e

D
ia

gn
os

is
 (%

)

Figure 13: Runtime diagno-
sis percentage.

24
/01

24
/02

24
/03

24
/04

24
/05

24
/06

24
/07

24
/08

0

1

2

3

4

5

D
eg

ra
da

tio
n

(%
)

Figure 14: Performance
degradation percentage.

an increase of idle time in November 2023, which is owning
to a 4× boosting of training scale. The increase in the train-
ing scale introduces several unexpected corner case issues,
which consume a long time for diagnosis and affect idle time.
Aegis Phase-2 is deployed in June 2024, directly leading to
91% save of the training idle time. This improvement mainly
comes from the fact that more failures can be solved without
involving offline diagnosis.

Figure 12 shows the restart counter of the training task.
The increase of the training task scale in November 2023 also
triggers more training restart, and a large amount of failures
during the initialization phase. We, therefore, speed up the de-
velopment of CBD and put it into online service in December
2023. It contributes 44.8% decrease in the restart counter in
the next month. Through continuously handling more cases
and optimizing the checklist, it finally decreased 84.6% of
the restart counter. With CBD fully deployed and comprehen-
sively optimized, it discovers around 1-2% problematic hosts
before final delivery. Note that the restart number increases
in August 2024, the reason is that our model training team
switched the task from pre-train to fine-tuning, introducing
planned experiments and tests. The root causes of these errors
are diverse (e.g., device aging, incorrect configurations, wiring
mistakes caused by repairs, complex serving mode switching,
etc.). Moreover, since we serve model training requests from
multiple tenants, not all tasks are mature and steady-running.
Many failures are caused by unoptimized LLM designs or
incorrect use of the training infrastructure.

7.2 Runtime Failure Diagnosis
We further answer how many failure cases are diagnosed
in runtime (rather than offline) in Figure 13. This metric is
important since each offline diagnosis would introduce great
damage to the overall GPU utilization and user experience.
With the deployment of Aegis Phase-2, the runtime diagnose
percentage gradually converges to near 100%. It means that a
training task can automatically recover from almost all types
of failures without human interference.

7.3 Handling Performance Degradation
To quantify the efficiency of performance degradation diag-
nosis of Aegis, we deeply cooperate with our model training
team to acquire records of iteration time in all training tasks.
The iteration time Tk is measured from our model training
log. The standard iteration time is calculated as TS = 1.2×Tk.

Performance degradation is calculated as
∑k:Tk>TS (Tk−TS)

∑all Tk
. The

0 5 10 15 20 25 30
Time (day)

0

400

800

1200

1600

Fa

ile
d

Li
nk

s

Figure 15: Number of failed links during the batch failure.

statistic results are shown in Figure 14. Performance degrada-
tion diagnosis of Aegis is deployed in June 2024. It signifi-
cantly eliminates performance degradation by 71%.

8 Experience and Lessons
We share key experiences and lessons we learned during the
evolution of Aegis as well as the entire reliability guarantee
for model training cloud service (additional experience can
be found in Appendix B).

Handling batch link failure cases. We have built and deliv-
ered dozens of large-scale training clusters. At the delivery
of one cluster in them, we encounter an unbearable increase
in the link failure ratio (10− 20× higher than the normal
link failure ratio). Our investigation revealed that the primary
cause was overlapping construction timelines for the data
center’s building infrastructure and the installation of servers
and network wiring. This overlap resulted in significant con-
tamination of optical modules and fibers.

Figure 15 illustrates the change in failure rates over a month.
With new machines delivered in batches, the number of failed
links increases swiftly due to contaminated links. As cleaning
efforts progressed, the failure rate decreased gradually. It takes
tens of deep cleaning to completely solve this contamination
problem. After identifying this problem, we implemented
stricter guidelines for data center construction and delivery to
prevent similar issues in the future.

Multiple sale modes and heterogeneous devices in pro-
duction. Another significant factor affecting the stability
of training clusters is the complexity of delivery scenar-
ios. The constant updates to top-tier GPUs (e.g., NVIDIA
A100 [13], H100 [16]), NICs (e.g., NVIDIA CX-6 [6], CX-
7 [15], BF3 [14]), and switches have led to the deployment of
a wide variety combinations of heterogeneous devices in our
clusters. This diversity in hardware configurations adds com-
plexity to both the testing and delivery processes, as well as to
identifying the root causes of stability issues. Furthermore, to
satisfy the diverse needs of our customers, we offer different
sales models. For customers focused solely on model opti-
mization, we provide the Platform-as-a-Service (PaaS) sale
mode. Therefore, these customers only need to care about con-
structing novel models and managing their Docker images. On
the other hand, for customers who seek further optimization
that combines models, training frameworks, and infrastruc-
ture, we offer a basic Infrastructure-as-a-Service (IaaS) sale
mode. These sale modes involve significant differences in the
technology stacks, such as how devices are virtualized and

how the entire cluster is managed. Each mode has its unique
set of configurations and delivering procedures, greatly im-
pacting the overall reliability.

Furthermore, in practical operations, we often need to trans-
fer machines originally used in one environment to another,
such as relocating servers from one cluster to another with
a completely different network architecture or converting a
cluster from IaaS to PaaS. These transitions involve numerous
configuration changes. Initially, we directly reconfigure all
hosts according to the new scenario. However, we encounter
several issues where the configurations from the previous
setup are not fully compatible with the new one. For example,
some modules lack initialization options and only have the
overwrite function (e.g., NIC firmware). If the new config-
urations did not completely overwrite the old ones, residual
configurations could remain active, leading to potential issues.

To address these problems, we devote significant effort
to thoroughly reviewing and rewriting all configurations to
ensure compatibility under different scenarios. By adding a
corresponding configuration check in CBD, we ultimately
avoid such problems from occurring again.
Traffic pattern evolution triggers the congestion control
issue. During the continuous delivery of new training clus-
ters, we encounter a significant issue, where the iteration time
increased significantly during the training. Through compre-
hensive correlation analysis, Aegis identifies the problem but
does not find out any abnormal indicators on individual hosts.
Further Aegis’s runtime analysis based on collective commu-
nication information reveals that the performance degradation
was due to communication delays caused by many hosts. De-
spite isolating the abnormal hosts, the training performance
can recover, but soon, a similar issue occurs again.

Initially, we suspect that the issue might be related to some
faulty switches, since network problems are typically the
cause of persistent communication performance issues. How-
ever, our thorough investigations show no abnormalities in
switch behavior. To resolve this, we conduct extensive offline
reproduction and testing. We eventually pinpointed the cause:
a bug in the congestion control implementation of NICs. The
bug causes an issue where a small number of continuous ECN
signals could cause the NIC to enter a preset maximum rate
limit. This rate limit is set very low, resulting in significant
communication slowdowns.

We report this issue to the NIC vendor, who also confirms
this bug. Given that a firmware update to fix the issue would
take a considerably long time, we implement two immediate
patches in production. (1) We raise the maximum speed limit
to alleviate the performance impact. (2) We employ periodic
resets of the congestion control state to prevent prolonged
performance degradation. We later fix this issue permanently
by updating the official bugfix firmware.
Protecting customers’ privacy. It is always an important
topic for cloud service providers to keep customers’ privacy
(e.g., training dataset, customized models, training strategies

and model checkpoints) well protected. Aegis Phase-1 builds
the fault diagnosis ability fully based on existing statistics,
introducing no privacy risk. During the design of Aegis Phase-
2, to achieve further runtime information for better diagnosis,
we investigate and attempt a series of different methods. We
have had multiple times of conversations with our product
development, solution architect and solution sales teams to
figure out the best solution path for Aegis Phase-2. Although
for those heavy solutions (e.g., encoding specific statistic
functions in customers’ models), we can force the deployment
of these solutions by re-signing authorization agreements with
customers, these solutions would be rejected by most of our
customers. After extensive design deliberation, we ultimately
opt to enhance CCL.

9 Related Work
Large-scale AI model training diagnosis systems. Super-
Bench [60] provides a comprehensive benchmark suite for
diagnosing issues before deployment, which cannot cover run-
time failures. MegaScale [36] monitors CUDA events of "crit-
ical code segments" in the model code, which is impractical
from the perspective of the cloud service provider. There are
some other diagnosis solutions based on infrastructure logs
and statistics like monitor_train_log [2] and SageMaker [11],
which can only cover a limited range of failures. Dynolog [10]
integrates PyTorch profiler to further get code-block level trac-
ing, which however cannot locating root causes in the GPU
kernel executions. We have tried this technology roadmap be-
fore, but owing to the limited failure coverage, we eventually
chose to not deploy them in production.

General abnormality diagnosis systems. In the general
cloud computing scenario, various efforts have been devoted
to anomaly diagnosis in the host [23–25, 28, 31, 34, 35, 39, 42,
43,46–48,50,52,55,57] or in the network [26,29,32,35,37,38,
40,41,51,53,54,56,58,59,61,63,64]. However, as illustrated
in §2, without specific optimization focusing model training
scenarios, these solutions cannot provide satisfied diagnosing
precision for model training specific failure cases.

10 Conclusion
We present the evolution of Aegis, a large-scale model training
diagnosis system, in our production. Keeping easy-to-deploy
in the cloud as the first principle, Aegis solves training failures
and performance degradation cases. Aegis decreases 97% of
the idle time wasted by failure diagnosis, 84% of the training
task restarts, and 71% of the performance degradation.

Acknowledgements
We acknowledge all teams within Alibaba Cloud that
contributed to the success of Aegis, including the High-
Performance Network, PAI, Lingjun, Network Automation,
Network Operation, Network Systems and Optical Network
teams, to name a few. We also thank our shepherd Peng Zhang,
and the NSDI reviewers for their insightful comments. Ennan
Zhai is the corresponding author.

References
[1] NVIDIA DGX SuperPOD: Next Generation Scalable

Infrastructure for AI Leadership. https://docs.nvi
dia.com/https:/docs.nvidia.com/dgx-superpo
d-reference-architecture-dgx-h100.pdf, 2023.

[2] OPT-175 Logbook. https://github.com/faceboo
kresearch/metaseq/blob/main/projects/OPT/c
hronicles/OPT175B_Logbook.pdf, 2023.

[3] Anomaly detection using Isolation Forest – A Complete
Guide. https://www.analyticsvidhya.com/blog
/2021/07/anomaly-detection-using-isolation
-forest-a-complete-guide/, 2024.

[4] CLIP. https://github.com/openai/CLIP, 2024.

[5] Configuring Syslog. https://www.cisco.com/c/en
/us/td/docs/switches/metro/me1200/controll
er/guide/b_nid_controller_book/b_nid_contr
oller_book_chapter_010101.pdf, 2024.

[6] ConnectX-6. https://www.nvidia.com/en-sg/ne
tworking/ethernet/connectx-6/, 2024.

[7] DBSCAN vs. K-Means: A Guide in Python. https:
//www.newhorizons.com/resources/blog/dbsca
n-vs-kmeans-a-guide-in-python, 2024.

[8] DeepSpeed. https://www.microsoft.com/en-us/
research/project/deepspeed/, 2024.

[9] dmesg(1) — Linux manual page. https://man7.org
/linux/man-pages/man1/dmesg.1.html, 2024.

[10] Dynolog: a performance monitoring daemon for hetero-
geneous CPU-GPU systems. https://github.com/f
acebookincubator/dynolog, 2024.

[11] Machine Learning Service - Amazon SageMaker. http
s://aws.amazon.com/pm/sagemaker/?nc1=h_ls,
2024.

[12] Mixtral-8x7B. https://huggingface.co/mistral
ai/Mixtral-8x7B-Instruct-v0.1, 2024.

[13] NVIDIA A100 Tensor Core GPU. https://www.nvid
ia.com/en-us/data-center/a100/, 2024.

[14] NVIDIA BLUEFIELD-3 DPU PROGRAMMABLE
DATA CENTER INFRASTRUCTURE ON-A-CHIP.
https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/documents/datashee
t-nvidia-bluefield-3-dpu.pdf, 2024.

[15] NVIDIA CONNECTX-7 400G ETHERNET SMART
ACCELERATION FOR CLOUD, DATA-CENTER
AND EDGE. https://www.nvidia.com/conte
nt/dam/en-zz/Solutions/networking/etherne

t-adapters/connectx-7-datasheet-Final.pdf,
2024.

[16] NVIDIA H100 Tensor Core GPU. https://www.nvid
ia.com/en-us/data-center/h100/, 2024.

[17] NVLink and NVSwitch. https://www.nvidia.com
/en-us/data-center/nvlink/, 2024.

[18] Ten Reasons to Use Passive DAC Cables in Your Data
Center. https://vitextech.com/ten-reasons-t
o-use-passive-dac-cables-in-your-data-cen
ter/, 2024.

[19] The Llama 3 Herd of Models. https://ai.meta.co
m/research/publications/the-llama-3-herd-o
f-models/, 2024.

[20] Vision Transformer (ViT). https://huggingface.co
/docs/transformers/model_doc/vit, 2024.

[21] Xid Errors. https://docs.nvidia.com/deploy/x
id-errors/index.html, 2024.

[22] Z-Score: Meaning and Formula. https://www.inve
stopedia.com/terms/z/zscore.asp#:~:text=Z%2
Dscore%20is%20a%20statistical,traders%20to
%20help%20determine%20volatility, 2024.

[23] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo
Zhu, Hongqiang Liu, Jitu Padhye, Geoff Outhred, and
Boon Thau Loo. Closing the network diagnostics gap
with vigil. In Proceedings of the SIGCOMM Posters
and Demos, SIGCOMM Posters and Demos ’17, page
40–42, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[24] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically finding the
cause of packet drops. In 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18), pages 419–435, Renton, WA, April 2018.
USENIX Association.

[25] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the blame game out
of data centers operations with netpoirot. In Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM
’16, page 440–453, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[26] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minian Yu, and Michael Mitzen-
macher. Pint: Probabilistic in-band network teleme-
try. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and

https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/
https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/
https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-isolation-forest-a-complete-guide/
https://github.com/openai/CLIP
https://www.cisco.com/c/en/us/td/docs/switches/metro/me1200/controller/guide/b_nid_controller_book/b_nid_controller_book_chapter_010101.pdf
https://www.cisco.com/c/en/us/td/docs/switches/metro/me1200/controller/guide/b_nid_controller_book/b_nid_controller_book_chapter_010101.pdf
https://www.cisco.com/c/en/us/td/docs/switches/metro/me1200/controller/guide/b_nid_controller_book/b_nid_controller_book_chapter_010101.pdf
https://www.cisco.com/c/en/us/td/docs/switches/metro/me1200/controller/guide/b_nid_controller_book/b_nid_controller_book_chapter_010101.pdf
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://www.nvidia.com/en-sg/networking/ethernet/connectx-6/
https://www.newhorizons.com/resources/blog/dbscan-vs-kmeans-a-guide-in-python
https://www.newhorizons.com/resources/blog/dbscan-vs-kmeans-a-guide-in-python
https://www.newhorizons.com/resources/blog/dbscan-vs-kmeans-a-guide-in-python
https://www.microsoft.com/en-us/research/project/deepspeed/
https://www.microsoft.com/en-us/research/project/deepspeed/
https://man7.org/linux/man-pages/man1/dmesg.1.html
https://man7.org/linux/man-pages/man1/dmesg.1.html
https://github.com/facebookincubator/dynolog
https://github.com/facebookincubator/dynolog
https://aws.amazon.com/pm/sagemaker/?nc1=h_ls
https://aws.amazon.com/pm/sagemaker/?nc1=h_ls
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://vitextech.com/ten-reasons-to-use-passive-dac-cables-in-your-data-center/
https://vitextech.com/ten-reasons-to-use-passive-dac-cables-in-your-data-center/
https://vitextech.com/ten-reasons-to-use-passive-dac-cables-in-your-data-center/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://ai.meta.com/research/publications/the-llama-3-herd-of-models/
https://huggingface.co/docs/transformers/model_doc/vit
https://huggingface.co/docs/transformers/model_doc/vit
https://docs.nvidia.com/deploy/xid-errors/index.html
https://docs.nvidia.com/deploy/xid-errors/index.html
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility
https://www.investopedia.com/terms/z/zscore.asp#:~:text=Z%2Dscore%20is%20a%20statistical,traders%20to%20help%20determine%20volatility

Protocols for Computer Communication, SIGCOMM
’20, page 662–680, New York, NY, USA, 2020. Associ-
ation for Computing Machinery.

[27] Markus M. Breunig, Hans-Peter Kriegel, Raymond T.
Ng, and Jörg Sander. Lof: identifying density-based lo-
cal outliers. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’00, page 93–104, New York, NY, USA, 2000.
Association for Computing Machinery.

[28] Rui Ding, Xunpeng Liu, Shibo Yang, Qun Huang,
Baoshu Xie, Ronghua Sun, Zhi Zhang, and Bolong Cui.
Rd-probe: Scalable monitoring with sufficient coverage
in complex datacenter networks. In Proceedings of the
ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, page 258–273, New York, NY, USA, 2024. Associ-
ation for Computing Machinery.

[29] Chongrong Fang, Haoyu Liu, Mao Miao, Jie Ye,
Lei Wang, Wansheng Zhang, Daxiang Kang, Biao
Lyv, Peng Cheng, and Jiming Chen. Vtrace: Auto-
matic diagnostic system for persistent packet loss
in cloud-scale overlay network. In Proceedings of
the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’20, page
31–43, New York, NY, USA, 2020. Association for
Computing Machinery.

[30] Junzhi Gong, Yuliang Li, Bilal Anwer, Aman Shaikh,
and Minlan Yu. Microscope: Queue-based performance
diagnosis for network functions. SIGCOMM ’20, page
390–403, New York, NY, USA, 2020. Association for
Computing Machinery.

[31] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In Proceedings
of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page
139–152, New York, NY, USA, 2015. Association for
Computing Machinery.

[32] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong
Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien.
Pingmesh: A large-scale system for data center net-
work latency measurement and analysis. In Proceedings
of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, page
139–152, New York, NY, USA, 2015. Association for
Computing Machinery.

[33] Zhenyu Guo, Dong Zhou, Haoxiang Lin, Mao Yang,
Fan Long, Chaoqiang Deng, Changshu Liu, and Lidong
Zhou. G2: A graph processing system for diagnos-
ing distributed systems. In 2011 USENIX Annual
Technical Conference (USENIX ATC 11), Portland,
OR, June 2011. USENIX Association.

[34] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh,
Gerd Zellweger, Bo Gan, Timothy Merrifield, Sujata
Banerjee, and Timothy Roscoe. How to diagnose
nanosecond network latencies in rich end-host stacks.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 861–877,
Renton, WA, April 2022. USENIX Association.

[35] Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Ni-
ranjan Mysore, Brighten Godfrey, and Sujata Banerjee.
Murphy: Performance diagnosis of distributed cloud
applications. In Proceedings of the ACM SIGCOMM
2023 Conference, ACM SIGCOMM ’23, page 438–451,
New York, NY, USA, 2023. Association for Computing
Machinery.

[36] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou,
Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei,
Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin
Jin, and Xin Liu. MegaScale: Scaling large language
model training to more than 10,000 GPUs. In 21st
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 745–760, Santa
Clara, CA, April 2024. USENIX Association.

[37] Pravein Govindan Kannan, Nishant Budhdev, Raj Joshi,
and Mun Choon Chan. Debugging transient faults in
data centers using synchronized network-wide packet
histories. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages
253–268. USENIX Association, April 2021.

[38] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica.
Confluo: Distributed monitoring and diagnosis stack for
high-speed networks. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 421–436, Boston, MA, February 2019.
USENIX Association.

[39] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang,
Jianxi Ye, Chuanxiong Guo, and Danyang Zhuo. Collie:
Finding performance anomalies in RDMA subsystems.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 287–305,
Renton, WA, April 2022. USENIX Association.

[40] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
Lossradar: Fast detection of lost packets in data cen-
ter networks. In Proceedings of the 12th International
on Conference on Emerging Networking EXperiments
and Technologies, CoNEXT ’16, page 481–495, New
York, NY, USA, 2016. Association for Computing Ma-
chinery.

[41] Kefei Liu, Zhuo Jiang, Jiao Zhang, Shixian Guo, Xuan
Zhang, Yangyang Bai, Yongbin Dong, Feng Luo, Zhang
Zhang, Lei Wang, Xiang Shi, Haohan Xu, Yang Bai,
Dongyang Song, Haoran Wei, Bo Li, Yongchen Pan,
Tian Pan, and Tao Huang. R-pingmesh: A service-aware
roce network monitoring and diagnostic system. In
Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM ’24, page 554–567, New York, NY,
USA, 2024. Association for Computing Machinery.

[42] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiao-
long Zhong, Lizhuang Tan, Tian Pan, and Tao Huang.
Hostping: Diagnosing intra-host network bottlenecks
in RDMA servers. In 20th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 23), pages 15–29, Boston, MA, April 2023.
USENIX Association.

[43] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise trig-
gers in data centers. In Proceedings of the 2016
ACM SIGCOMM Conference, SIGCOMM ’16, page
129–143, New York, NY, USA, 2016. Association for
Computing Machinery.

[44] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to
diagnose performance problems. In 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12), pages 353–366, San Jose,
CA, April 2012. USENIX Association.

[45] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi
Xu, Yu Guan, Binzhang Fu, Xuemei Shi, Fangbo Zhu,
Rui Miao, Chao Wang, Peng Wang, Pengcheng Zhang,
Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai,
and Dennis Cai. Alibaba hpn: A data center network for
large language model training. In Proceedings of the
ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, page 691–706, New York, NY, USA, 2024. Associ-
ation for Computing Machinery.

[46] Mubashir Adnan Qureshi, Junhua Yan, Yuchung Cheng,
Soheil Hassas Yeganeh, Yousuk Seung, Neal Cardwell,
Willem De Bruijn, Van Jacobson, Jasleen Kaur, David
Wetherall, and Amin Vahdat. Fathom: Understand-
ing datacenter application network performance. In
Proceedings of the ACM SIGCOMM 2023 Conference,

ACM SIGCOMM ’23, page 394–405, New York, NY,
USA, 2023. Association for Computing Machinery.

[47] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C.
Snoeren. Passive realtime datacenter fault detec-
tion and localization. In 14th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 17), pages 595–612, Boston, MA, March 2017.
USENIX Association.

[48] Junxian Shen, Han Zhang, Yang Xiang, Xingang Shi,
Xinrui Li, Yunxi Shen, Zijian Zhang, Yongxiang Wu,
Xia Yin, Jilong Wang, Mingwei Xu, Yahui Li, Jiping Yin,
Jianchang Song, Zhuofeng Li, and Runjie Nie. Network-
centric distributed tracing with deepflow: Troubleshoot-
ing your microservices in zero code. In Proceedings
of the ACM SIGCOMM 2023 Conference, ACM SIG-
COMM ’23, page 420–437, New York, NY, USA, 2023.
Association for Computing Machinery.

[49] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parame-
ter language models using model parallelism. CoRR,
abs/1909.08053, 2019.

[50] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei
Sun, and Dan Pei. Robust anomaly detection for mul-
tivariate time series through stochastic recurrent neural
network. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD ’19, page 2828–2837, New York,
NY, USA, 2019. Association for Computing Machinery.

[51] Haifeng Sun, Jiaheng Li, Jintao He, Jie Gui, and Qun
Huang. Omniwindow: A general and efficient win-
dow mechanism framework for network telemetry. In
Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 867–880, New York, NY,
USA, 2023. Association for Computing Machinery.

[52] Ming Sun, Ya Su, Shenglin Zhang, Yuanpu Cao, Yuqing
Liu, Dan Pei, Wenfei Wu, Yongsu Zhang, Xiaozhou
Liu, and Junliang Tang. Ctf: Anomaly detection in
high-dimensional time series with coarse-to-fine model
transfer. In IEEE INFOCOM 2021 - IEEE Conference
on Computer Communications, pages 1–10, 2021.

[53] Praveen Tammana, Rachit Agarwal, and Myungjin Lee.
Simplifying datacenter network debugging with Path-
Dump. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
233–248, Savannah, GA, November 2016. USENIX As-
sociation.

[54] Praveen Tammana, Rachit Agarwal, and Myungjin
Lee. Distributed network monitoring and debugging

with SwitchPointer. In 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18), pages 453–456, Renton, WA, April 2018.
USENIX Association.

[55] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localization
in data center networks. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 599–614, Boston, MA, February 2019.
USENIX Association.

[56] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localization
in data center networks. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 599–614, Boston, MA, February 2019.
USENIX Association.

[57] Junxiao Wang, Heng Qi, Yang He, Wenxin Li, Keqiu
Li, and Xiaobo Zhou. Flowtracer: An effective flow tra-
jectory detection solution based on probabilistic packet
tagging in sdn-enabled networks. IEEE Transactions on
Network and Service Management, 16(4):1884–1898,
2019.

[58] Weitao Wang, Xinyu Crystal Wu, Praveen Tammana,
Ang Chen, and T. S. Eugene Ng. Closed-loop network
performance monitoring and diagnosis with SpiderMon.
In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 267–285,
Renton, WA, April 2022. USENIX Association.

[59] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno:
Diagnosing performance problems with temporal prove-
nance. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
395–420, Boston, MA, February 2019. USENIX Asso-
ciation.

[60] Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Gu-
oshuai Zhao, Shuguang Liu, Dong Zhong, Boris Pinzur,
Jie Zhang, Yang Wang, Jithin Jose, Hossein Pourreza,
Jeff Baxter, Kushal Datta, Prabhat Ram, Luke Melton,
Joe Chau, Peng Cheng, Yongqiang Xiong, and Lidong
Zhou. SuperBench: Improving cloud AI infrastructure
reliability with proactive validation. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24),
pages 835–850, Santa Clara, CA, July 2024. USENIX
Association.

[61] Kaicheng Yang, Yuhan Wu, Ruijie Miao, Tong Yang,
Zirui Liu, Zicang Xu, Rui Qiu, Yikai Zhao, Hanglong Lv,
Zhigang Ji, and Gaogang Xie. Chamelemon: Shifting
measurement attention as network state changes. In

Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 881–903, New York, NY,
USA, 2023. Association for Computing Machinery.

[62] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu,
Michael M. Lee, Xiaoming Tang, Yuanyuan Zhou,
and Stefan Savage. Be conservative: Enhancing
failure diagnosis with proactive logging. In 10th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 293–306, Hol-
lywood, CA, October 2012. USENIX Association.

[63] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui
Miao, Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu,
Zhen Shen, Yongqing Xi, Pengcheng Zhang, Den-
nis Cai, Ming Zhang, and Mingwei Xu. Flow
event telemetry on programmable data plane. In
Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM
’20, page 76–89, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[64] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Green-
berg, Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua
Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng.
Packet-level telemetry in large datacenter networks. In
Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, SIGCOMM
’15, page 479–491, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

APPENDIX
Appendices are supporting material that has not been peer-
reviewed.

A Failure Diagnosis Procedure
Algorithm 1 shows the pseudo-code of the entire Failure
Diagnosis Procedure.

B Additional Experience
Dual-ToR really helps, but it migrates failure cases to
degradation cases. As aforementioned, we deploy a dual-
ToR design in production to conquer the high link failure
ratio. This design is very effective. We handle dozens of link-
repairing tickets every week, but most of them do not lead
to the crash of training tasks. Furthermore, thanks to dual-
ToR, we can conduct a hotfix for these faulty links without
isolating the host (i.e., the training task can train continuously
during the hotfix). We deliver a complete Standard Operating
Procedure (SOP) for resident staff in the cluster to conduct the
hotfix. They need to check (1) the correctness of both ports’
links, (2) the status of both links, and (3) the switch ports’

Algorithm 1 Failure Diagnosis Procedure

1: T //The set containing all hosts used in this training
2: LCE =CriticalError(T)//get critical error locations
3: LDE = DistError(T)//get distributed error locations
4: if LCE .size()> 0 then
5: Isolate(LCE) & Restart the task
6: else if LDE .size()<= 2 then
7: Isolate(LDE) & Restart the task
8: else
9: N = RootDiag(LDE)

10: if N! = NULL then
11: CheckError(N)
12: Isolate(N) & Restart the task
13: else//distributed problem
14: RC =Con f igCheck(LDE)
15: RN = NetDiag(LDE)
16: if RC||RN! = NULL then
17: Repair(RC,RN)
18: else
19: Isolate LDE & O f f lineDiag(T)
20: end if
21: end if
22: end if

status before conducting the real link replacement. More than
O(10K) link hotfixs are successfully executed.

Although dual-ToR can significantly decrease the possi-
bility of training crashes caused by link failure, it transfers
these failure cases into performance degradation cases (since
the available network bandwidth is halved). As a result, we
devote more effort to handling performance-related issues. As
the training does not crash, actually customers can indepen-
dently determine whether to proactively terminate the current
training right after a new checkpoint and restart it, greatly
improving the overall user experience.
Reboot or repair? As illustrated in Figure 2, most stabil-
ity issues ultimately trace back to problems with the fault in
hosts. Once a faulty host is isolated, a critical next step is
determining whether it can be fixed by reboot or repair. Some
issues can be fixed with a reboot, but others necessitate send-
ing the host for repair, which can take several weeks or even
months. The primary challenge is that error reports alone can-
not definitively indicate whether a problem can be resolved
by reboot. For example, an ECC Error could be caused by an
unexpected bit flip, which might be fixed by a reboot. On the
other hand, an ECC Error could indicate a hardware fault in
the HBM, which must be repaired by sending the host back
to the vendor.

Given the lack of an efficient method to determine whether
the host needs reboot or repair, we have developed a SOP for
it. After isolating the faulty host, we first perform a reboot and
then conduct a series of hardware stress tests. Unlike CBD,
since the host is already isolated, we need a comprehensive

(rather than fast) test to make sure the host is back to normal.
We first check the current installation settings. If any irregu-
larities are found, the machine is sent to execute the complete
re-installation. If all settings are correct, the host further un-
dergoes a thorough computing power, CPU, GPU, Memory,
PCIe, NVLink and network check. If all checks pass, the host
is returned to the online cluster pool. Otherwise, the host is
sent for repair.

Despite the above rigorous tests, we still occasionally en-
counter corner cases where a host that passes all tests still
exhibits faulty issues. To address this, we have implemented
an additional backstop: if a host passes the reboot tests three
times, but continues to cause failures online, it is mandatory
to send for repair. We also engage with our vendors to un-
derstand the root cause and update our test cases accordingly.
Accurately and efficiently determining whether a host requires
repair remains an open issue. Our current approach is practi-
cal for production but still leaves room for further refinement
and improvement.

	Introduction
	Motivation
	Challenges Introduced by Model Training
	Higher hardware failure ratio
	Lacking direct root cause indicators

	Why Our Existing Systems Do Not Help?
	Limitations of State-of-the-Art Efforts

	Aegis Overview
	Task Failure Diagnosis
	Phase-1: Enhancing Existing Systems
	Basic error diagnosis
	Offline failure diagnosis

	Phase-2: Procedure-aware Diagnosis
	What is the ideal solution?
	Customizing CCL is the bridge

	Performance Degradation Diagnosis
	Basic Correlating Diagnosis
	Enhancing Procedure-aware Diagnosis

	Solving Problems Before Delivery
	Evaluation: Aegis in Production
	Evolution of Training Stability
	Runtime Failure Diagnosis
	Handling Performance Degradation

	Experience and Lessons
	Related Work
	Conclusion
	Failure Diagnosis Procedure
	Additional Experience

