
Learning Production-Optimized Congestion Control Selection
for Alibaba Cloud CDN

Xuan Zeng1→, Haoran Xu2→, Chen Chen1→, Xumiao Zhang1, Xiaoxi Zhang2, Xu Chen2, Guihai Chen3

Yubing Qiu1, Yiping Zhang1, Chong Hao1, Ennan Zhai1
1Alibaba Cloud 2Sun Yat-sen University 3Nanjing University

Abstract
Today’s content delivery networks (CDNs) typically use static
congestion control (CC) configurations, yet the diverse net-
work environments preclude a universally optimal CC for all
geographical regions, as evidenced by our extensive measure-
ments. Current CC algorithms, limited by narrow applicability
or high maintenance costs, struggle in large-scale CDNs. This
work introduces ALICCS, the first CC Selection (CCS) ap-
proach tailored for production CDN, integrating fine-grained
domain knowledge for learning to choose the best CC from
existing, well-established ones. Through an over-one-year
real-world deployment in Alibaba Cloud CDN, ALICCS has
enhanced the Quality-of-Experience (QoE) by up to 9.31%,
surpassing the competitive margin in the CDN market, and
significantly reduced the retransmission rate by 25.51% to
174.36% across all provinces of China, leading to cost savings
over 10 million US dollars. We also share key insights and
experiences from deploying ALICCS at scale, highlighting
traffic patterns in Alibaba Cloud CDN.

1 Introduction
Content Delivery Networks (CDNs) serve as the invisible
backbone of the Internet, responsible for carrying over 70%
of global traffic [4]. Enhancing Congestion Control (CC) in
CDNs can significantly improve user experience by directly
tackling network efficiency and reliability. It also achieves
considerable cost savings for CDN operators, by offering a
simpler, more resource-efficient alternative, compared to net-
work or application layer modifications. Therefore, as a CDN
provider, who has the greatest control and clearest visibility at
the transport layer where CC is central, optimizing CC enables
us to make more impactful changes that ISPs or application
providers might not readily achieve (§2).

Currently, most CDNs still adopt the one-size-fits-all CC
configuration [16, 32] across their geographically distributed
regions, yielding a suboptimal overall QoE due to the vast
diversity of CDN network environments. Conventional ap-
proaches either fine-tune the parameters of one type of CC or
invent a new CC, targeting only specific network scenarios.
Our experience shows that leading CC solutions exhibit sig-
nificant variations in user QoE for content delivery services.
No single CC scheme can always be the optimal choice across
all regions of our CDN network, e.g., ranging from rebuffer

*These authors contributed equally to this work.

(a) Different CC performance in rebuffer rate.

(b) Different CC performance in bandwidth cost.
Figure 1: Performance comparison across 29 provinces in
China. Red (Blue) means CUBIC (BBR) achieves better per-
formance. A darker color indicates a bigger performance gap.

rate (Figure 1a) to bandwidth cost (Figure 1b)1. Given this
complexity and variability, we raise a question: How can we
accurately select the best CC among well-established ones
for distinct CDN nodes under dynamic network conditions?

Machine learning (ML), with its widely proven proficiency
in learning from diverse data, is particularly suited to address
the dynamic and heterogeneous nature of CC Selection (CCS).
It can adapt to varying CC performance across different fac-
tors. Despite this, extensive research on modifying CC, in-
cluding learning-based approaches [14,26,45,47,49,52], have
not fully met the unique and stringent needs of production
CDNs. From our experience, applying ML to CCS for large-
scale production CDN presents the following key challenges,
directly stemming from critical CDN requirements:

1Details on the fair A/B test of CUBIC and BBR are in Appendix §A.

Table 1: Comparison of ALICCS with state-of-the-art ML-based Congestion Control Selection methods.

Optimization Goal Granularity Satisfy CDN req.I Scales of CDN nodes, users/requests
Sage [49] Throughput/latency related N/AII No N/A
Disco [47] Throughput/latency related Per-connection No N/A (<10 servers and clients emulated)
Configanator [32] Web performance (PLT) Per-Network-Class Yes 3 Global CDN PoPs, 8.2M requests
ALICCS Rebuffer rate, latency Per-connection Yes >1000 CDN nodes, 500M requests
I CDN requirements refer to those mentioned in §1: 1) scalability & generalizability, 2) interpretability, 3) managing inference overhead.
II N/A stands for Not Available.

• Scalability and generalizability challenges. Our CDN
spans various geographical locations and network environ-
ments, necessitating distinct models for different nodes.
However, managing individual models for the thousands
of nodes in our global CDN is impractical due to extensive
maintenance requirements. Moreover, most ML algorithms
assume independent and identically distributed (i.i.d.) data
between training and test domains, which may not hold
true in practice. Developing a unified ML model that can
efficiently scale and generalize across diverse data environ-
ments remains a crucial yet challenging goal.

• Enhancing interpretability and accountability for de-
ploying ML-based CCS. Standard statistical tools alone
do not suffice to evaluate ML models accurately due to po-
tential sample selection bias and confounding factors [35].
It is therefore essential to integrate deep domain knowledge
from our CDN with these tools to thoroughly assess the
model’s effectiveness and increase its interpretability be-
fore a full-scale CCS deployment in our production CDN.

• Managing ML inference overhead without compromis-
ing CCS performance. High performance of ML mod-
els often requires complex inference logic, leading to sig-
nificant processing delays. Our real-world measurements
reveal that non-optimized per-connection ML inference,
executed serially, incurs significant overhead and under-
mines the queries per second (QPS) performance (refer to
Table 3). Enhancing run-time efficiency with reduced ML
inference delays is therefore vital to cost-effective CCS.

These challenges are not fully addressed by existing learning-
based CCS efforts, summarized in Table 1. They do not in-
corporate the requirements and domain expertise of realistic
large-scale CDN networks. Moreover, their reliance on meth-
ods like reinforcement learning [47,49] or online learning [32]
necessitates handcrafted reward functions and immediate QoE
feedback, both of which are impractical for the short video
services supported by our CDN based on our experience.

To address the above challenges simultaneously, we in-
troduce ALICCS, the first domain-specific, ML-based CCS
scheme, tailored to short video delivery, a dominant workload
in Alibaba Cloud CDN. ALICCS dynamically selects the
most effective CC for each connection2, aiming to (1) boost
short video QoE, by reducing rebuffer rates and start-up de-
lays, and (2) lower bandwidth cost, e.g., retransmission ratio.

2Multiple requests can multiplex on each CDN connection.

In developing ALICCS, we make the following contributions:
Firstly, it is crucial to define the right features and labels

from usable data for ML models that predict key factors to
optimize CCS, scale to numerous CDN nodes, and generalize
to new environments. We reveal an observation (detailed in
Figures 3 and 4) that network types decisively influence the
best CCS. Therefore, our goal is to effectively learn a mapping
from end-to-end TCP statistics to network types. However,
this relation is unstable due to hidden states [35] like under-
lying network conditions. We then propose a decomposed
Causal Graphical Model (CGM) using Generative Adver-
sarial Networks (GAN) and domain knowledge, extracting
features that are invariant to the hidden states. Additionally,
we develop a hierarchical clustering algorithm to group a vast
number of IP prefixes for model scalability improvement.

Secondly, to enhance the model’s transparency and inter-
pretability, we employ knowledge distillation to transfer in-
sights from our complex, well-trained deep neural network
(DNN) into a compact decision tree. This tree, developed
using training data enhanced by the predictions of our DNN
model, effectively replicates the DNN’s decisions in a format
that is easier to interpret. When we encounter performance
degradation during online CCS inference, we substitute our
large DNN model with this decision tree. This allows for pre-
cise tracking of any suboptimal predictions by identifying the
specific features contributing to the inefficiency, providing
better interpretability of our ML-produced CCS solutions.

Thirdly, we significantly reduce model inference overhead
by constructing an IP-prefix based cache that leverages tem-
poral and IP-prefix-specific similarities in the domain of the
best CCS and network types. ALICCS has achieved 64.30↑
improvement in latency and 2.42↑ improvement in QPS for
online CCS inferences. Moreover, we realize fine-grained
CCS by implementing it in a per-connection manner. This
also bypasses the complexity and QoE sensitivity issues in se-
lecting the grouping granularity, which is inherent in existing
CC control methods that rely on request grouping [32].
Deployment and experience. ALICCS has served Alibaba
Cloud CDN’s production for over one year. We train our
model on labeled data from App #13, one of the leading
short video companies in the world, obtained from about
30% of the CDN nodes supporting its services. The well-
trained model serves online CCS inference in an over-one-
year in-production deployment for both App #1 and App #2,

3Partner apps are anonymized due to NDA of our company.

two major providers in the global short video market. AL-
ICCS achieves 95.8%–99.0% Wi-Fi/4G prediction accuracy
in about 400 nodes of three main ISPs in China and Southeast
Asia, covering almost all provinces in China, demonstrating
our ML model’s generalizability. Combining our model’s pre-
dicted network access type and the mapping to CC choices,
we reduce the rebuffer rate by 4.76% and retransmission band-
width by 25.51%–174.36%. In terms of run-time efficiency,
ALICCS achieves CPU usage below 0.79% (at most two
cores per CDN node) and maintains the minimum memory
consumption below 2.90 GB (see Figure 11). In addition,
it achieves 64.32↑ processing delay reduction and 2.42↑
maximum QPS improvement (see Table 3).

2 Background and Motivation
In this section, we detail our motivation for employing CCS
in Alibaba Cloud CDN, focusing on short video services. We
then share observations that drive ALICCS’s design choices.

2.1 Overview of CDN at Alibaba Cloud
Alibaba’s CDN spans over 70 countries with a total egress
bandwidth exceeding 180 Tbps that serves over 120 EB (i.e.,
120↑260 Bytes) of data every year. In particular, it has 2800+
nodes in China and South Asia, covering a wide range of
geographical regions and ISPs, where ALICCS is deployed.
By caching content at edge servers, the CDN significantly re-
duces back-to-origin bandwidth and enhances user proximity.
It offers diverse services, ranging from large file transfers to
media streaming services, among which short video services
take the most significant share of traffic demands.

CDN providers aim to deliver high-quality services cost-
effectively, focusing on improving user QoE and reliability to
stand out from competitors. Bandwidth costs constitute a ma-
jor portion of operational expenses, which means even slight
and relative reductions in data transfer can lead to significant
absolute savings at scale.

2.2 Motivation: CCS for Short Video Services
Short videos, e.g., supported by App #1 and App #2, have
become a major workload of Alibaba Cloud CDN. The CDN
should then be optimized to deliver short videos with high
user QoEs while incurring minimum bandwidth costs.
QoE of short video delivery. Efficient content delivery for
short videos in CDNs necessitates quick video start times
and smooth playback. Traditional video streaming focuses
on metrics like bitrate, resolution, and loading appropriate
initial buffering video segments (typically 2-10 seconds) to
ensure high-quality, continuous playback over longer dura-
tions. In contrast, short video services emphasize minimizing
the rebuffer rate to reduce stalls and the initial buffering delay,
typically less than 1 second for the first frame to load.
Why adjust CC? Extensive efforts have been made to im-
prove video delivery QoE by refining application layer strate-
gies like Adaptive Bitrate (ABR) algorithms and content

Table 2: Performance comparison of different CCs for 4G
networks (CUBIC Agg. means CUBIC tuned to aggressively
trigger retransmissions to lower rebuffer rates).

CC Algorithm CUBIC CUBIC Agg. BBR
Video Rebuffer Rate 1.13 1.05 1.0
Retransmission Rate 1.41 1.53 1.0

Figure 2: A two-week A/B test comparing BBR and CUBIC,
serving short videos for App #1 in one CDN node.

pre-fetching. However, these are beyond the control of CDN
providers and thus not considered in this work. In large-scale
production CDNs, optimizing CC directly targets network
bottlenecks, leading to immediate improvements in content
delivery, especially for short video services. Besides, adjust-
ing CC offers a straightforward and resource-efficient alterna-
tive to overhauling application layer configurations, including
fine-tuning ABR [7, 30, 43] and content pre-fetching [17, 29]
settings, or transitioning from HTTP/2 to HTTP/3 [5, 42].
Why CCS? While conventional approaches generally focus
on parameter fine-tuning (e.g., Bayesian Optimization) for
a given CC [8], our experience has shown that the benefits
of such tuning can be marginal in certain scenarios. This
is because each CC algorithm has inherent limitations in
how it identifies and reacts to congestion, which may fall
short in situations violating their assumptions. For instance,
in tuning CUBIC for 4G networks, a substantial increase in
sensitivity to trigger retransmissions is necessary to match
BBR’s rebuffer rate in 4G. This adjustment, however, leads to
an increase in the retransmission rate from 1.41 to 1.53 (see
Table 2). Compared to the alternative of inventing new CC
algorithms, our approach of selecting the best among long-
living CC schemes, known for their effectiveness in variable
scenarios, provides robust worst-case performance. It reduces
potential revenue loss associated with inadequately tested
CCs.
Why ML for CCS? Due to dynamic network conditions and
user traffic in CDNs, rule-based CCS approaches are gener-
ally impractical. This is supported by our measurements show-
ing volatile patterns of CC performances across both regions
(Figure 1)4 and time (Figure 2). Moreover, our choice of using
ML for CCS is driven by our observations and domain knowl-
edge, based on which CCS can be reduced to a classification
problem, elaborated in §2.3. This problem reduction directly
informs our model design, where we integrate supervised

4We find regional proximity does not yield network metrics’ similarity,
likely due to diverse traffic policies (e.g., rate-limiting) in nearby regions.

Figure 3: Contrasting advantages of BBR and CUBIC vary-
ing network types, i.e., 4G (left) and Wi-Fi (right).

learning with fine-grained domain knowledge. Consequently,
other ML choices, such as reinforcement learning [47, 49, 52]
and no-regret (or online) learning [14,32,50] do not align well
with our needs. They are in general tailored to sequential pro-
cesses where data are gradually available, adding unnecessary
complexity and inefficiency to CCS.

2.3 Key Observations
Our goal is to develop an ML system that selects the best
CC algorithm from a set of candidates to enhance user QoE
and reduce bandwidth costs for short video services across
extensive CDN nodes.
Observation I: CCs’ advantages vary regionally and tem-
porally. Despite extensive efforts to optimize the performance
of individual CC algorithms, we find that no single algorithm
consistently outperforms others in all scenarios. Our Fig-
ures 1a and 2, illustrate that the superiority of BBR and CU-
BIC in rebuffer rate varies across regions and fluctuates over
time, demonstrating that using a fixed CCS rule is generally
impractical. This observation aligns with recent findings [49],
which report similar fluctuations in the CC superiority.
Observation II: Network types decisively influence CC
advantages. We compared short video rebuffer rates between
BBR and CUBIC over 14 days, presented in Figure 3. Both
groups, represented by the blue and orange curves respec-
tively, use the same network type, i.e., 4G for the left figure
and Wi-Fi for the right. This reveals a strong correlation
between network access and the best CC choices: BBR out-
performs in 4G connections (left) while CUBIC wins under
Wi-Fi (right). Other CCs like Vegas [11], Reno [23], and
Westwood [40], exhibited significantly inferior performances
(e.g., 30%–40% higher rebuffer rate than CUBIC and BBR)
for short video delivery in our production CDN, based on
comprehensive pre-deployment measurements. To ensure per-
formance reliability and stability, we choose CUBIC and BBR
as the CC candidates. Moreover, we examine the impact of dif-
ferent features on CC selection. Figure 4 shows that network
type has the highest information gain [3], vastly outweighing
other features like retransmission rate and hour-of-the-day
with information gain of 0.001 and 0.005 respectively5. This
observation leads us to reduce the CCS problem by focusing
on predicting the network type for each TCP connection, as

5Features like retransmission rate are analyzed but not shown in the figure,
as they ranked outside the top 10.

Figure 4: Top 10 features on our CDN with the highest in-
formation gain for predicting the best CC candidate. These
features span four categories: transport layer (TCP) statistics
(e.g., retransmission rate and throughput), application layer
statistics (e.g., response time), link layer statistics (i.e., net-
work type) and timing (i.e., hour of the day).

it provides the most substantial predictive power of the best
CC and keeps system complexity manageable. We then de-
terministically choose CUBIC for Wi-Fi and BBR for 4G to
optimize short video QoE.
Observation III: ISP rate-limiting impacts CCs differently.
Based on Observation II, we hypothesize that the contrast-
ing performance of CUBIC and BBR varying network types
is attributed to the ISP’s traffic policies, particularly token
bucket rate-limiting that may cause premature packet losses6,
which CUBIC misinterprets as congestion signals, signifi-
cantly reducing throughput. To confirm this, we first utilize
BBR’s bandwidth probing mechanism to assess rate-limiting
strength over months and then examine how CUBIC and
BBR respond. We observe that 4G’s rate-limiting generally
increases from the start towards the month’s end. During this,
CUBIC’s average throughput drops to less than 10% of that
without rate-limiting (1472 Kbps vs. 8728 Kbps), and its aver-
age retransmission rate surges to 73↑ higher than its non-rate-
limited performance. It highlights that CUBIC struggles in
4G rate-limiting conditions, while BBR’s bandwidth probing
technique can instead effectively identify the bandwidth con-
straints. Regarding BBR’s inferior performance on Wi-Fi, it is
primarily due to Wi-Fi’s frame aggregation mechanism, which
undermines BBR’s bandwidth probing capabilities [18].
Observation IV: Network types need to be predicted dy-
namically. Obtaining network type via client reporting is
impeded by software upgrade overhead and unreliable client
data. Notably, labeled data from client accounts for only 5%–
10% of total requests (see labeled data acquisition in §3).
Additionally, private IP database solutions like MaxMind [2]
offer limited coverage and accuracy of network type labels
for our CDN network. Moreover, we observe that with 90%
probability, a /24 IP prefix will significantly shift its propor-
tion of dominant type (Wi-Fi or 4G) in 15 hours, necessitating
dynamic network type prediction.

6Packet losses can be categorized as transmission, congestion (from link
contention), and rate-limiting loss. While the first two vary over time within
the same network, the rate-limiting loss is consistently bound to 4G networks.

Real network scenario Causal Graphical Model CGM with decomposition

CDN nodeClient

 : Network type : TCP statistics

: Network path
: Hidden states

Figure 5: Illustration of decomposing features via CGM.

3 Design and Implementation
In this section, we outline the design of a unified ML model
for all CDN nodes, enabling stable mapping from TCP statis-
tics (additional features are listed in Appendix §B) to network
types. One naïve solution would be to collect training data
from all regions and train a comprehensive model. However,
this method raises two significant issues: (1) The QoE per-
formance in worst-case scenarios is not guaranteed, which
is critical for production CDNs. (2) Regions that are under-
represented in the training data can impede model inference
performance due to limited generalization. Essentially, weak
network conditions and regions with fewer requests are of-
ten insufficiently represented in the training set. Training
the model naïvely without eliminating the effects of these
diverse network conditions, which are represented as underly-
ing network characteristics, may lead to overfitting on good
conditions or regions with ample requests. This, in turn, de-
grades model accuracy in poor network conditions or small
regions, as evidenced in §5.4, undermining its capability to
provide worst-case guarantees. Another straightforward CCS
approach is to directly adopt the network type labels from
datasets and then choose CUBIC for Wi-Fi and BBR for 4G.
However, network types in the datasets are often unreliable
and thus need to be predicted dynamically (refer to Observa-
tion IV).

3.1 Model Design and Training Method
Prior research on applying ML to networked systems often
overlooks model generalizability under volatile network envi-
ronments. In contrast, our model design aims to learn causal
relationships between TCP data and network types7, guided
by our key observations (§2.3). This approach enhances pre-
diction accuracy in new environments, crucial for generaliz-
ability. However, our measurements reveal that the relation-
ship between TCP statistics and network type is generally
unstable. This instability likely stems from end-to-end TCP
statistics being influenced by network types as well as varying
path-specific characteristics, such as buffer sizes and the num-
ber of competing flows across CDN nodes and IP prefixes.
Design overview. To tackle the instability in learning, our
idea is to decompose the raw data features, which are TCP
statistics (↭ X), into two parts, denoted by Xy and Xz respec-
tively in Figure 5: one influenced solely by network types

7The minor case of non-1:1 mapping between connection and network
type is not yet addressed. Potential solutions are outlined in Appendix §C.

Clustering algorithm

Prefix 1
Prefix 2

Group 1

Prefix 5
Prefix 6

Group 3

Feature generator Feature classifier

Feature discriminator

Prefix 3
Prefix 4

Group 2

Prefix 1
Prefix 2

Group 1

Prefix 5
Prefix 6

Group 3

Prefix 3
Prefix 4

Group 2 from
/24 Prefix n

 from
/24 Prefix n-1

 from
/24 Prefix 2

 from
/24 Prefix 1

Figure 6: Overview of our ML model design.

(↭ Y) and the other influenced by both Y and hidden state
(↭ Z). Our goal is to create a model based only on features
Xy for model stability. To do so, we construct a decomposed
Causal Graphical Model (CGM) and tease apart the impact of
network types Y and hidden states Z on TCP statistics X , by
leveraging the one-to-one mapping between network paths
(↭ P) and IP address prefixes observable on CDN servers.
This ensures a stable model that maps X to Y while remain-
ing causally invariant to Z. Finally, we incorporate domain
knowledge as constraints and regularization terms, to ensure
model scalability and reduce the noise.
Decomposing features via CGM. Ideally, to develop a gener-
alized model for the diverse CDN nodes, we need to identify
features for any TCP connection that have a stable relation-
ship with our target Y . However, directly using X , the mea-
sured TCP statistics (e.g., maximum congestion window size),
is insufficient due to their dependence on both the network
type Y and varying hidden factors Z (e.g., path capacity), as
depicted in the middle CGM in Figure 5. Different CDN
nodes involve various paths P (interchangeable with connec-
tions) and thus different hidden factors Z, causing instability
in the X and Y relationship. To address this, we leverage
our decomposed CGM with Xy and Xz, the decomposed fea-
tures of X (refer to Figure 5), and a condition satisfied by
Xy: Pr(Xy|Y,P) = Pr(Xy|Y). Therefore, our goal is to iden-
tify features Xy for each connection that maintain a constant
conditional probability distribution Pr(Xy|Y) across all con-
nections. By training a classifier with these feature-target pairs
{Xi

y,Y i}m
i=0, with a total of m samples, we can create a model

that performs reliably on every CDN node. This is realized
by integrating this decomposed CGM into a GAN, where a
generator is trained to obscure the discriminator’s ability of
predicting the path from which the sample originates.
Learning path-invariant features via GAN. Through the
above mathematical insights rooted in our decomposed CGM,
learning a stable mapping from X to Y is converted to learn-
ing a path-invariant feature representation Xy given Y . Fur-
thermore, leveraging the one-to-one mapping relationship be-
tween IP prefix and Internet path8, the goal becomes learning

8The association between IP prefixes and Internet paths stays stable for
several hours, despite occasional changes due to load balancers.

an IP-prefix-invariant feature representation for any specific
network type. To achieve this, we adopt the GAN framework
and construct two discriminators, marked by D1 and D0 in
Figure 6, each outputting which /24-prefix group the sample
comes from, for Wi-Fi (Y = 1) and 4G (Y = 0), respectively
We then formulate two regularizers, RD0 and RD1 , based on
the discriminators’ predictions D̂0 and D̂1, corresponding to
the ground-truth group labels D0 and D1, respectively9. These
regularizers represent the classical cross-entropy-based clas-
sification loss of discriminators and are formulated as:

RD0 = Lcross↓entropy(D0, D̂0) (1)

RD1 = Lcross↓entropy(D1, D̂1) (2)

Scalability with domain knowledge-assisted clustering.
Ideally, the outputs D0 and D1 correspond to the vectors in-
dexing IP address prefixes. However, a scalability challenge
arises: the discriminators need to distinguish which IP prefix
each sample originates, among tens of thousands of candidates
at each CDN node, causing intractable training complexity.
To tackle this, we modify the discriminators’ original outputs
to be IP-prefix groups and introduce a domain knowledge-
assisted clustering algorithm. As shown in Figure 6, we first
separate the training data based on whether Y equals 1 or 0
and then adopt K-means clustering to group the IP /24 pre-
fixes, with Euclidean distance adopted as the distance metric.
Labeled data acquisition. We collect labeled data through
collaboration and coordination with one of the short video
service’s client end. The label of network type is piggybacked
via http header extensions from client side. Note that due to
the overhead associated with software development and client
upgrades, the volume of labeled data obtainable from client
side is limited between 5% and 10% of its total requests with
limited region coverage in a limited period of time.
Feature selection. Our CDN spans nearly all provinces in
China, handling numerous TCP connection features from user
requests, requiring efficient feature selection due to significant
data scale and diversity. We choose information gain as the
selection criteria for its intuitiveness and broad applicability.
However, a one-shot feature does not meet our production-
level accuracy requirements. Therefore, we also periodically
diagnose ALICCS’s model performance by combining the
knowledge-distilled decision tree and Shapley value analysis
to tweak the feature sets, which will be elaborated in §3.2.

While the core of our ML model to predict network types,
integrating a decomposed CGM with domain-specific GAN
and clustering, it also demands meticulous handling of numer-
ous corner cases. Below, we outline two additional techniques
used in our production CDN for effective model training.

9In practice, to eliminate CC algorithm bias and obtain IP-prefix-and-CC-
invariant features, we can instead cluster data by the combination of CC and
IP-prefix, and re-define the outputs of D1 and D0 to be the combinations. Or,
we can add another discriminator for it.

Diversified features for smaller ISPs. Through training with
CDN data, we have learned that, while a universal feature
representation generally works well, significant deviations in
feature distribution exist, in particular for smaller ISPs com-
pared to major ones. This discrepancy can cause a model
to underperform with smaller operators. By identifying and
transforming alternative features from smaller ISPs to align
with the broader distribution, we can ensure a more robust
and effective model. To enhance generalizability and avoid
over-reliance on dominant features, our model employs the
Representation Self-Challenging (RSC) method [22]. Unlike
Dropout, which randomly deactivates features, RSC uses gra-
dients to selectively mute predictive features, encouraging
the model to utilize a broader range of features. Therefore,
we integrate an RSC-based regularizer into our training loss,
denoted as LRSC (used later in Equation 5). This approach
is particularly effective for data from smaller-scale ISPs, di-
versifying the model’s focus and ensuring robustness across
various scenarios that deviate from larger operators.
Noise reduction with domain knowledge. To reduce feature
noises, we again utilize the domain knowledge that requests
with the same IP /24 prefix usually follow identical IP paths.
Thus, the extracted features from the same IP /24 prefix should
align closely, sharing the same path-specific hidden states Xz
and the desired Xy. We translate this insight into a regular-
izer Lvariance. Let Spre f ix denote the set of those X j sharing
identical IP /24 prefixes and X pre f ix denote the average of
X j ↔ Spre f ix. We formulate Lvariance, the sum of the variance
of extracted features of each /24 prefix group, as follows:

Lvariance =
n

!
pre f ix=i

(X j ↓X pre f ix)
2
X j↔Spre f ix

. (3)

Training method. Utilizing Equations 1, 2, and 3, we con-
struct the loss functions for training the discriminators, gener-
ator (G), and the classifier (C) according to the following:

LD = RD0 +RD1 , (4)

LC = Lcross↓entropy(Y,Ŷ)+LRSC, (5)
LG = Lvariance, (6)
Lall = LC ↓∀1 →LD +∀2 →LG, (7)

where LD is the discriminator’s classification loss, LC is the
classifier’s classification loss, and LRSC is a term inspired by
RSC regularization. LG represents the regularization term ap-
plied on the generator G. Lall is the overall training loss, with
hyperparameters ∀1 and ∀2 balancing the trade-off between
model fitting and generalization. Further details on the design
trade-off can be found in Appendix §D. Adhering to the stan-
dard GAN training method, we alternate between two training
phases. We initially train the discriminators using loss LD,
with fixed generator and classifier parameters. Subsequently,
we train the generator and classifier using the combined loss
Lall , while keeping the discriminators fixed.

3.2 Model Interpretability Enhancement

In addition to generalizability and scalability, it is essential
to establish trust before deployment and understand the root
cause of prediction errors. This is crucial for iterating and
refining the model, especially during incremental deployment
in a production CDN. Model interpretability entails two re-
quirements: First, its behavior must be easily verifiable by
operational engineers using their domain expertise. Second,
it should accurately reflect the ML model’s behavior. To this
end, we have chosen a tree-based model, which satisfies these
requirements and has proven to be particularly well-suited for
networking problems that span local and global control [31].
Knowledge distillation with augmented features. We distill
the knowledge of our GAN-based deep learning (DL) model
into a decision tree-based model for performance diagnosis.
We first input all features {Xi}m

i=0 from the training set to
the trained DL model to obtain the prediction probabilities
{Y i

0,Y
i
1}m

i=0. Then, we combine them to create a distilled ver-
sion of the training set, {Xi,Y i

0,Y
i
1}m

i=0. Next, we construct a
multi-output regression decision tree and train it using the
distilled training set. Each output in the tree corresponds to
the predicted probability of one CC selection solution, i.e.,
Wi-Fi and 4G. The utilization of feature-probability tuples
(Xi,Y i

0,Y
i
1) rather than the standard feature-label pairs (Xi,Y i)

reflects our domain-specific GAN-based model design, where
we construct two discriminators for Wi-Fi and 4G network
types respectively, leading to higher interpretability.
Using our decision tree in practice. The tree-based models
enhance the robustness of ML models by enabling perfor-
mance issue debugging and helping understand the model
predictions to build trust. For instance, during the initial de-
ployment phase, when encountering a low accuracy within a
specific /16 IP prefix, we applied Shapley analysis [28] to the
output of the decision tree for those examples. This combina-
tion allows us to quantify feature importance for predictions
on subset of samples and understand the model predictions for
certain IP prefixes. We then found that the model excessively
relied on the TCP maximum segment size (MSS) feature from
that specific /16 IP prefix. Therefore, we adjusted the model to
reduce its reliance on MSS and broaden its feature usage, ef-
fectively boosting the accuracy. Beyond debugging, decision
tree models also assist the production team in comprehending
and gaining confidence in our ML model, which is essential
for its deployment in production. It is crucial to note that the
distilled decision tree is employed solely for performance
diagnosis rather than online inference, for two primary rea-
sons. First, our caching mechanism, discussed later in §3.3,
effectively mitigates DL model’s inference costs. Second, em-
pirical observations reveal that the distilled model’s accuracy
is much lower than that of our DL model. Nevertheless, de-
spite a 5%–7% accuracy drop, we find the distilled tree model
still captures error-related features, by aligning its prediction
with the DL model for most samples. For subsets with signifi-

cant prediction discrepancies, we increase the tree depth and
retrain the tree until the alignment passes a threshold.

3.3 Inference Pipeline at CDN Nodes
Integrating our ML model (§3.1) into the networking stack of
CDN nodes poses two technical challenges: (1) The model
inference time must be negligible compared to the normal
request processing time to maintain high request processing
rates (e.g., approximately 10k QPS) for any CDN node. (2)
Hardware costs need to be considered, as excessive use of ad-
ditional CPU or GPU cores per CDN node can be impractical
and costly, potentially outweighing the benefits. We develop
an efficient inference pipeline to tackle these challenges.
Centralized vs. distributed inference deployment. To im-
plement automatic and intelligent CCS across CDN nodes
using a well-trained DL model, we evaluated two approaches:
centralized model inference services and distributed model
replication on each node. Empirically, the centralized ap-
proach offers more abundant hardware resources in a cluster
to deploy the model, facilitating faster ML model inference.
However, the network latency between the centralized cluster
and geo-distributed CDN nodes can be prohibitively high,
potentially causing millisecond-scale delays for serving each
batch of requests. Therefore, we opted for the distributed ap-
proach, replicating and performing inference locally on each
CDN node to achieve greater responsiveness and efficiency.

This decision to adopt a distributed approach leads us to an
efficient inference pipeline, grounded by two key observations
drawn from comprehensive empirical studies:
• Temporal stability of the best CCS and IP-based caching.

Consistent with a previous study [47], we find that the best
CC choices, influenced by network path characteristics,
remain stable for several hours. Specifically, our measure-
ment reveals that a /24 IP prefix stays dominated by either
Wi-Fi or 4G type (purity over 90%) for more than 2 hours
with 87% probability10. And it can remain dominated by
one of these types for 15 hours or more with 10% prob-
ability. This stability allows us to cache inference results
for requests from specific paths, enabling their reuse for
subsequent requests from the same path and significantly
reducing inference costs over time.

• Consistent CC choices based on IP prefix similarity. IP
networks are typically organized in subnets, and IP rout-
ing is based on the longest prefix matching. As a result,
requests from the same IP prefix often undergo similar path
decisions at a given time. As shown in Figure 7, among
the top 10K /24 prefixes with the most requests, 90% of
them exhibit a purity (percentage of connections with the
same network type) higher than 91%, and these prefixes ac-
count for 84% of the total requests seen by our CDN. This
allows us to not only cache results for the last few hours
but also aggregate the results of our predicted CC choices

10We infer these dynamics may stem from ISP’s load balancing and man-
agement, but we lack visibility into ISP’s network to validate such hypothesis.

Figure 7: CDF of purity distribution of /24 prefixes.

under the same IP prefix into a single entry, leveraging their
homogeneity in CC selection to save memory.

Inference pipeline. Figure 8 depicts the pipeline developed
utilizing the above insights. We minimize the inference delay
in the request processing pipeline by decoupling the process
into online cache lookups (shown as the “Online processing
pipeline” box) and periodic offline updates (shown as the
“Offline processing pipeline” box). The latter records pairs
of requests’ IP addresses and the CC choices chosen given
the predicted network types. The update is performed hourly
to save computations, and also match the temporal stability
of the best CCS. Every time a request server encounters a
new client connection, it queries the mapping cache for the
CC decision. This reduces the CCS latency from running a
complex DL model inference to a lightweight cache lookup.
Efficient IP lookup cache. We implement an IP lookup cache
using the Trie data structure [10,19,34,38,48], which provides
O(1) lookup complexity with special hardware requirements.
Instead of constructing a full Trie, which has high space com-
plexity, we aggregate IP prefixes based on our previous ob-
servation on purity. We first construct a Trie at the /16 prefix
level and examine the purity of each leaf node. Expansion
stops if a node’s purity surpasses a set threshold; otherwise,
we expand until the node satisfies our purity standards or
reaches the /32 prefix limit. A detailed algorithm is provided
in Appendix §F, with further insights into threshold tuning
available in Appendix §D. Even under /32 prefix granular-
ity, requests of different network types are still observed. We
speculate that the CDN only sees the public IP, which may be
dynamically binded to various networks.
Empirical purity tuning. Tuning the aforementioned purity
thresholds is crucial to model accuracy and space complexity.
We adopt an empirical approach, starting with gathering on-
line purity measurements, as shown in Figure 7. By analyzing
the requests from the top 28 CDN nodes over one week, we
find that only 8.6% of /24 prefixes have purity lower than 90%.
By fine-tuning the threshold to aggregate IP addresses based
on this observation and the available resources in each CDN
node, the number of entries in the mapping cache is brought
down from hundreds of thousands (i.e., 105, the number of IP
addresses seen by a CDN node in the last hour) to hundreds
(i.e., the number of /16 or /24 IP prefixes), resulting in a 614↑
memory saving without sacrificing prediction accuracy.

4 Experiences and Discussion
In this section, we discuss our deployment experiences and
lessons learned in our real-world production CDN.

Congestion control set

Offline processing pipeline

Features

TCP logs

Predictions

Inference model Aggregation model

Online processing pipeline

Aggregate info

IP prefix CC selection
a.b.c/24 0
d.e/16 1

Cache memory

Kernel
network

stack

Client IP lookup

TCP connect
requests

Periodically updateObservations: hour stability

Figure 8: Inference pipeline at CDN nodes.

4.1 Deployment Experiences
ALICCS has served Alibaba Cloud CDN’s production for
over one year, supporting short video services for two major
providers, spanning nearly all provinces in China. It reaches
high network type prediction accuracy in around four hundred
nodes of three main ISPs in China and Southeast Asia. We
share some experiences in deploying ALICCS at scale.
Service-aware CCS. CDN requires tailored CCS strategies
for different customers and services. This means that CCS
can not be operated only in the kernel space where we are
not aware of the service types and can not make customized
decisions for different services. To better integrate with infor-
mation from services and maintain flexibility, we decide to
move AI processing mostly to user space.
TCPe (TCP extension) is our modular and customized TCP
protocol stack implemented in the kernel space. Upon receiv-
ing each connection request from a client, it sends a query
for the right CC decision to the mapping cache lookup using
the client’s IP address and then applies the query result of the
CC algorithm accordingly in the kernel space. It also acquires
TCP statistics from kernel space at a fine granularity, provided
to the Log Server, which is responsible for collecting TCP
statistics of CDN requests and send them to AI model for
inference. We use the standard TCP socket’s programming
interface (e.g., setsockopt) to set the CC algorithm.
AI Server, where the ML model resides, is not required to
provide low latency, as it is decoupled from the online CCS
service due to our designed Mapping Cache. We export the
model trained in Pytorch in PMML format and load it into
the AI server using the high-performance CPMML library. It
continuously outputs predictions of network types using TCP
logs from the Log Server, converts the predictions into CCs,
and forwards them to the Aggregation Module.

4.2 Lessons Learned
We now share our lessons learned in deploying ALICCS.
What influences the QoE disparity of short video services
under various CCs? Traditional CC design typically em-
phasizes maximizing throughput; however, our studies indi-
cate that preventing frequent speed fluctuations is more criti-
cal, especially for short video services. Thus, while most CC
mechanisms offer adequate throughput, optimizing through-
put stability, a critical determinant of rebuffer rate perfor-

mance, emerges as essential for short video services. Beyond
traditional network metrics such as RTT, loss, and bandwidth,
our research also highlights the significant impact of network
operators’ traffic policies, such as rate limiting (refer to Ob-
servation III). Taking these policies into consideration is the
key to optimal CC algorithm design. Furthermore, CCs cus-
tomized for specific network types such as Wi-Fi and 4G,
considering their unique physical characteristics, greatly en-
hance short video QoE (refer to Observation II).
Data cleaning. The massive number of CDN nodes requires
careful data pre-processing via automatic data cleaning tools,
augmented with our expertise in the patterns of TCP statistics
and the prediction target, i.e., network types. In our expe-
rience, data like RTT often incurs long-tail outliers that are
extremely high but occur infrequently, thus violating the Gaus-
sian assumption explicitly assumed by most deep-learning ap-
proaches, and impacting the efficiency of data normalization.
Some abnormal RTT values can even skew the average RTT
to seconds. Our current solution is to compress the data range
by applying a logarithmic transformation (log), followed by
standardization. This approach avoids the need for manually
deciding the threshold to filter out outliers and significantly
aids in accelerating model training.
Advantages of distributed inference for CDN networks.
Our application of ML to CDNs indicates a distributed infer-
ence architecture is more beneficial for CDN networks. This
approach offers two benefits: First, it enhances scalability by
enabling edge nodes to independently serve requests, which
alleviates bottlenecks and increases the network’s capacity
to manage high traffic volumes. Second, since CDN central
servers often reserve processing power for video transcoding,
offloading inference tasks to edges with surplus CPU cycles
for peak demand is more cost-effective. In contrast, centraliz-
ing these tasks requires allocating an additional 2 CPU cores
and 4 GB of memory to each of thousands of CDN nodes,
resulting in significant expenses for CDN based on tests.
Enhanced gains of customized network services for IPv6.
Our deployment experience shows that customizing network
services using IP prefix aggregation reduces average rebuffer
rates by 60% more in IPv6 networks than in IPv4 (7.6% vs
4.76%). This arises from two factors: First, IPv6 enhances
predictability by reducing reliance on NAT and similar tech-
nologies used in IPv4. IPv6 network tends to assign a fixed IP
prefix to a subnet over time, improving history-based predic-
tions. Conversely, IPv4 with NAT may frequently change the
mapping of IP prefix to underlying subnet, undermining these
predictions. Second, the disparity in network characteristics
between Wi-Fi and 4G is more pronounced in IPv6, with a
ratio between mean retransmission rate of Wi-Fi over 4G be-
ing 2.1↑ in IPv4 and 2.9↑ in IPv6. These facts underscore
the need for more tailored services to manage Wi-Fi and 4G
disparities in IPv6 networks.
Deploying a fallback strategy for ML in CDN networks.
When integrating ML system with CDNs, it is crucial to es-

Figure 9: Model prediction accuracy varying date (left) and
percentage of 4G traffic (right).

tablish a robust fallback strategy when ML predictions are
inaccurate. In practice, no ML system can perfectly address
every scenario or maintain reliability in all situations. There-
fore, it’s essential to revert to a default strategy when ML pre-
dictions are uncertain. We employ a threshold-based scheme:
if our ML-predicted network type has a logit exceeding 80%
for Wi-Fi type and 60% for 4G type, it is trusted; otherwise,
the system defaults to its original protocol set-up. The higher
threshold for Wi-Fi reflects more cautious decision-making
due to its large request proportions compared to 4G. This
safeguard ensures that performance does not drop below the
default configuration, thus enhancing reliability.

5 Evaluation
To ensure a smooth transition to full-scale deployment, we
have focused our efforts on short video services. ALICCS has
been applied to two major short video services on Alibaba
Cloud CDN, with one of them contributing training data over
30% of our CDN nodes. We evaluate ALICCS’s performance
by addressing three key questions:
Q1: How accurate is our ML model in predicting the network
types for large-scale, geo-distributed requests?
Q2: How efficient is our inference pipeline, particularly with
the cache-based, online-offline decoupled design?
Q3: What’s the QoE improvement for short video services
using our production CDN?

5.1 Machine Learning Model Accuracy
Model prediction effectiveness. We validate our model’s
prediction accuracy across numerous CDN nodes handling
high volumes of short video requests from major ISPs in
China. To ensure statistical reliability, nodes with less than
5% of requests from 4G or Wi-Fi connections are excluded.
Our ML model achieves an accuracy ranging from 95.8%
to 99.0%, averaging an improvement of 1.58% and peaking
at 3.4% on Wi-Fi networks of ISP #2. Remarkably, this is
accomplished using only 30% CDN nodes for model training,
confirming our model’s generalizability.
Online validation of the ML model. Figure 9 presents our
model’s prediction accuracy in serving a large volume of short
video requests over 3 months on a CDN node. The left figure
depicts that our ML model achieves a remarkably high value
of recall (i.e., true positive rate of predicting each network

type), varying slightly between 89% to 93% for Wi-Fi, 97%
to 98% for 4G, and an overall average ranging from 94% to
96%. Interestingly, the Wi-Fi recall exhibits a monthly cyclic
pattern and remains stable over time. This phenomenon likely
stems from ISP-enforced monthly 4G data caps, leading to a
reduction in 4G usage as users hit their data limits towards
the end of the month and a corresponding drop in Wi-Fi re-
call at the same times. This dependency is due to our model
being trained on a balanced dataset (i.e., 50% of the data is
4G), not reflecting the actual distribution of 4G usage at the
beginning and end of the month. Previous studies, such as in
reference [39], have shown that when the proportions of cate-
gory (like 4G) shift, classification accuracies decrease. The
impact on Wi-Fi recall is more noticeable due to its smaller ab-
solute number. Additionally, our model prediction accuracies
for both Wi-Fi and 4G are robust to varying percentages of
4G connections, as demonstrated in Figure 9 (right), confirm-
ing ALICCS’s generalizability. We continuously monitored
the model’s performance by checking a domain name whose
requests have been labeled by App #1 short video service
provider. We see that the model maintains a high recall rate
of over 90% for each network type for at least 6 months, from
March 2024 to August 2024.
ML model prediction comparison. To evaluate the effective-
ness of our ML model design, we conduct ablation studies,
evaluating ALICCS’s different components, and compare
with Configanator, an advanced learning-based CCS scheme,
and a baseline named Vanilla ML, where we directly feed
training data into an MLP (multi-layer perceptron) network
without extra generalization optimization. As shown in Fig-
ure 10, Configanator shows similar average performance as
Vanilla ML but exhibits significantly more performance vari-
ance. This is due to Configanator’s method of aggregating
samples by network class, resulting in overfitting when the
number of samples is small. Our GAN-based design signifi-
cantly reduces variance across CDN nodes, an essential fea-
ture for large-scale deployments that demand reliability in
worst-case scenarios. This is potentially due to our tailored
regularizers in the loss functions, which leverage domain
knowledge to boost model robustness by promoting learn-
ing from a universal set of features. For instance, incorpo-
rating RSC improves average performance by encouraging
diverse feature use, and our regularizer Lvariance reduces fea-
ture noises, thereby improving average prediction accuracies.

5.2 Implementation Framework Efficiency
Superiority of our offline-online decoupled inference. In
Table 3, we compare our decoupled online-offline inference
method with the baseline, which executes serial per-request
online inference. In the experiment, we set 32 Nginx workers
to fully utilize available CPUs of 32 cores on the machine, em-
ulating a CDN node at maximum QPS. The baseline method
incurs a 10417ns processing delay and handles a maximum
of 7.6k QPS only, while our system significantly reduces the

Figure 10: Ablation studies for evaluating different compo-
nents of ALICCS and comparison with Configanator [32].

Table 3: Comparison with non-optimized online inference.
Processing delay Max. QPS

Baseline: online inference 10417 ns 7.6k
Online-offline decoupled 162 ns 18.4k
Improvement 64.30↑ 2.42↑

processing delay to 162 ns and achieves 18.4k maximum QPS,
representing 64.30↑ and 2.42↑ improvements respectively.
Consequently, our decoupled framework drastically cuts AI
inference delays and substantially increases QPS capacity,
which is critical for managing high user demand efficiently.
CPU and Memory usage patterns. As Shown in Figure 11,
the CPU overhead of ALICCS grows slowly with the num-
ber of connection requests, reaching a maximum of 200% at
17k QPS (refer to the left figure). This indicates our system
requires no more than 2 cores, which is less than 1% (2 out
of 256 cores) of the total CPU resources per CDN node, to
handle peak traffic. Additionally, ALICCS’s memory usage
remains conservative, never exceeding 2.9GB (refer to the
right figure), over a seven-day period in our measurements.
These results underscore ALICCS’s minimal resource impact
on the overall CDN resource availability and its significant
run-time efficiency. Additionally, our results also reveal inter-
esting usage patterns in short video service: People tend to
watch more short videos at noon, evidenced by the CPU usage
being proportional to request volume and the 2 minor daily
peak patterns; After a slight decrease early in the afternoon,
viewship steadily climbs until reaching the peak at 20 o’clock.

5.3 QoE and Retransmission Improvement
In this section, we present the improvement in both QoE (re-
buffer rate) and bandwidth cost (retransmission rate) achieved
by ALICCS, serving the two major short video services,
App #1 and App #2, in our Alibaba Cloud CDN.
Evaluation setup. To demonstrate the QoE improvements
from deploying ALICCS, we conduct a month-long Random-
ized Control Test (RCT), comparing rebuffer rates with and
without CCS. To approximate the random assignment of client
connections to both versions, for each connection request, we
apply the Cyclic Redundancy Check (CRC) [36] hash func-
tion on the client’s IP address. Depending on whether the
hash code is odd or even, the request is assigned to the system
with our CCS strategy or the default system without CCS.
Baseline. The baseline system (default) uses CUBIC for all

Figure 11: ALICCS’s CPU overhead varying kQPS (left) and its seven-day usages of CPU and memory (right).

Figure 12: End-to-end rebuffer rate comparison of CUBIC and ALICCS.

Figure 13: Rebuffer rates over time for two domain names
with the same CDN nodes. The blue and orange curves repre-
sent the rebuffer rate for Domain #1 before and after ALICCS
was applied. The black curve, associated with Domain #2, con-
firms stable CDN network conditions in this period of time.

requests given Wi-Fi’s dominance in our CDN connections.
Real-world rebuffer rate improvement. As shown in Fig-
ure 12, ALICCS consistently achieves a lower end-to-end
rebuffer rate, with improvements of 9.31% for 4G and 2.51%
for Wi-Fi, along with a 4.76% gain across all connections w.r.t.
deployment prior to ALICCS with all requests using CUBIC.
This 5% reduction can boost our market edge in the fiercely
competitive CDN industry, where even a 2%–3% difference
in service quality matters, ensuring customer retention. Fig-
ure 13 zooms in on the results around the time when ALICCS
was deployed, demonstrating the rebuffer rate reduction is
attributed to the deployment of ALICCS.
Real-world retransmission rate improvement. As demon-
strated in Figure 14, ALICCS achieves 59.24% improvement
on App #1 and 61.28% on App #2, which translates into tens
of million US dollars savings per year in terms of bandwidth
cost for Alibaba Cloud CDN. To better understand the ge-
ographical diversity, we also investigated the performance
gains across each province in China, as shown on the right
side of Figure 14. ALICCS consistently achieves significantly
lower retransmission rate in all provinces, with minimum,
maximum, average, and standard deviation gains of 25.51%,

174.36%, 62.76%, and 36.28%, respectively. The results also
lead to several interesting findings: Henan province tops the
chart, possibly due to its high population density and heavy
reliance on 4G networks; Performance gains in Guangdong
province and Northeastern China exceed the average, in line
with our observed widespread habit of streaming short videos
on mobile devices in these areas. The smallest gain is seen in
Qinghai province, likely attributed to inadequate 4G connec-
tivity and lower population density.

5.4 Trace-driven Evaluation
Emulation setup. We also conduct an emulation study using
short video traces collected over a day from one of Alibaba
Cloud’s highest-traffic CDN nodes. We compare ALICCS
with two model-based CCS methods, Configanator [32] and
Disco [47], both of which utilize the decision tree, as well as
Pytheas [26], an online learning-based CCS (The rationale
for the baseline selections is detailed in Appendix §E). We se-
lect CUBIC and BBR as CC candidates for evaluation due to
their extensive testing, deployment, and worst-case assurance.
Additionally, we construct the best CCS based on our trace,
named Oracle, as a benchmark for CCS algorithm compar-
isons. We also define an aggregate QoE function, defined as a
linear combination of rebuffer and retransmission rates, i.e.,
QoE = 1↓# ·rebu f ↓(1↓#) ·retrans. Given our primary fo-
cus is on rebuffer rate over transmission costs, we set # = 0.8
to prioritize minimizing stalls during short video streaming.
Our emulation study employs a time-window-based mech-
anism [25, 27], where we construct unbiased estimates of
CC’s outcomes, i.e., QoE, rebuffer rate, and retransmission
rate metrics. For each /24 IP prefix group, we assign a time
window for each CC to collect its corresponding outcomes.
Oracle selects the CC with the best average QoE at the end
of each window for each /24 IP prefix group. To simulate any

Figure 14: End-to-end retransmission rate comparison of CUBIC and ALICCS.

(a) QoE in good (right) and poor (left) network conditions. (b) Rebuffer rate. (c) Retransmission rate.

Figure 15: End-to-end improvement achieved by ALICCS in the trace-driven emulation.

algorithm’s outcomes for CCs, including those that are not
actually adopted by the real-world policy at a given timestamp
in our trace, we use the average outcomes at historical times
where the same CC is chosen under the same IP prefix group
and network type.

Comparison with CCS state-of-the-arts. As shown in Fig-
ure 15a, all algorithms perform similarly in high QoE regions
(right), i.e., good network conditions where CC choice has
minimal impact. In contrast, ALICCS performs notably well
in low QoE regions (left), i.e., impaired conditions. For QoE
metrics like rebuffer rate, samples from poor network con-
ditions disproportionately affect the average, underscoring
ALICCS’s advantage in low QoE regions. We then compare
baseline performance under poor network conditions. Fig-
ure 15b shows that ALICCS achieves a 4.54% to 30.80%
lower rebuffer rate in the 85th percentile and beyond. In con-
trast, Configanator and Disco exhibit higher rebuffer rates, as
they overfit to good network conditions, neglecting the impor-
tance of edge cases with poor network scenarios. Meanwhile,
Pytheas performs sub-optimally due to the inherent explo-
ration required during network probing. Figure 15c shows
the retransmission rate results. While ALICCS slightly in-
creases retransmissions to reduce rebuffering, it outperforms
Configanator, Disco, and Pytheas in the long-tail distribu-
tion, achieving a 1.74% to 25.24% lower retransmission rate.
While Pytheas achieves comparable performance to ALICCS,
estimating its reward function (e.g., rebuffer rates) in real-
time poses significant challenges and could incur additional
computational overhead compared to ALICCS.

6 Related Work

Congestion control (CC) is a longstanding and significant
topic, featuring a multitude of meticulously designed CCs,
including CUBIC [20], BBR [12], and Reno [23].
Automatic CC Configuration. Recent studies propose
machine-generated CCs and automatic parameter adjustments,
highlighting that handwritten CC policies are effective only
in limited contexts. Remy [45] utilizes offline optimization to
generate a new CC by searching from a certain design space,
followed by Copa [9] with more theoretical insights. Cher-
ryPick [8] employs Bayesian Optimization, while CFA [25]
exploits domain-specific insights. Such methods fail to lever-
age large-scale data available on CDNs, potentially limiting
their accuracy and generalization performance.
Learning-based CC parameter tuning. To increase gener-
alizability, ML has been adopted to adjust CC parameters.
For instance, Orca [6], Aurora [24], Libra [15], and TCP-
RL [33] adopts RL with handcrafted reward functions for
learning parameters like congestion windows, sending rates,
etc. A few others adopt online learning but generally favor
scenarios with i.i.d. network and/or CC characteristics. For
example, Pytheas [26] applies multi-armed bandits (MAB),
Configanator [32] integrates MAB with decision trees, and
PCC vivace [14] utilizes gradient-based online learning. Re-
cent works also adopt imitation learning, e.g., DuGu [21] and
Muses [51]. Such methods often overlook crucial worst-case
scenarios in production CDN. ALICCS, instead, uses GAN-
based model to balance performance across scenarios and

tackles the often-overlooked inference latency.
Learning-based CCS. Recent works have advocated CCS,
i.e., selecting the best CC among existing schemes. Specifi-
cally, Rein [13] uses data-driven methods to mitigate the CC
transitioning overhead. Disco [47] and Antelope [52] leverage
RL-inspired reward functions, demonstrating the advantage
of CCS over CC tuning. OPSBC [50] combines traditional
flow scheduling methods with MAB-based CCS. Sage [49]
employs offline DRL to learn a new CC from traces, despite
the complexity in feedback collection and high training cost
due to a large state-action space. DPO [1] from Akamai rep-
resents an industrial effort to optimize CCS. Unlike ALICCS,
these works do not present large-scale network experimental
results, nor do they incorporate CDN domain knowledge.
Domain adaptation aims to preserve model performance on
a target domain with limited data by applying knowledge from
a source domain, and has been applied in various networking
problems. For instance, Genet [46] applies curriculum learn-
ing for network adaptation. AWARE [37] uses meta-learning
and bootstrapping for cloud auto-scaling. Other works lever-
age knowledge from simulation settings [41] or smaller-scale
networks [44]. These works shed light on our work, albeit
from a high-level perspective. We instead adopt GAN and
Causal Graphical Model (CGM), tailoring our design specifi-
cally for short video workloads and production CDNs. Our
solution is deeply rooted in CDN-specific domain knowledge.

7 Discussion
Do the observations driving ALICCS’ design remain valu-
able beyond the scope of short video services? We believe
most of our measurement insights extend beyond short videos
and can be significant for the broader community. Notably,
Observations I, III, and IV in §2.3—highlighting the variabil-
ity in CCs’ advantages, the impact of rate limiting, and the
dynamics of network types—apply in general and inform fur-
ther research on intelligent CCS design for diverse services.
Additionally, our lessons in §4.2 on data cleaning, distributed
inference, IPv6 benefits, and the fallback strategy provide
insights for designing ML-based CDN systems. However, Ob-
servation II on correlation between network types and the best
CCS and the lesson on throughput stability, are more specific
to short video contexts, which is likely tied to the low traffic
volume of short videos and the dependency on rebuffer rate
for QoE.
Can ALICCS’ design be effectively applied outside of
short video domain or Alibaba Cloud’s CDN? Our GAN-
based model (§3.1), which learns uniform feature represen-
tations across IP prefixes, can be applied to CCS prediction
for any service, provided that there is sufficient A/B test data
with relevant labels (i.e., best CCS under an IP prefix). The
interpretation technique (§3.2) can aid model debugging of
any classification task. Moreover, the distributed inference
pipeline (§3.3) should be widely applicable to many ML-
based CDN systems to reduce latency with a few assumptions:

the input/output features of ML model are temporally stable
and similar under the IP prefix, which are commonly adopted
in existing works [26, 32]. However, it is noteworthy that, as
rate limiting affects CCS (§2.3), ISP policy differences may
impact ALICCS’ performance gains in other networks.
Does network contention among clients degrade ALICCS’
prediction accuracy? ALICCS uses the GAN model to
achieve balanced accuracy across diverse conditions, includ-
ing contention. In fact, ALICCS outperforms existing works
by reducing accuracy variance and 95th percentile rebuffer
rate, likely associated with impaired conditions (see Fig-
ures 10 and 15). However, ALICCS does not strictly optimize
accuracy uniformity, as we find this could degrade overall
accuracy significantly. Instead, we fine-tune ∀1 in the training
loss to balance accuracy uniformity and overall accuracy.
ALICCS’s reliance on pre-deployment test and domain
knowledge: The success of framing CCS as an ML classifi-
cation task relies heavily on comprehensive pre-deployment
tests and domain knowledge to identify a strong link between
network types and best CCS. This framework eliminates the
need for acquiring short video QoE training data directly from
content providers. However, it is not always straightforward,
for a new scenario, to establish a clear connection between
model predictions and desired outcomes. Our approach, de-
spite avoiding continuous observations and handcrafted re-
ward functions like in RL approaches, demands deep domain
knowledge and insightful observations.

8 Conclusion
In this paper, we introduce ALICCS, the first production-
optimized CCS approach that has served Alibaba Cloud CDN
for over one year. ALICCS exploits our insights from large-
scale measurements that reveal contrasting CC performances
for short video services in varying network access types. It em-
ploys a domain-specific ML model for scalability and general-
izability across numerous CDN nodes and changing network
conditions, with an efficient inference pipeline for runtime
performance. Extensive results from our production CDN
demonstrate that ALICCS achieves significant retransmission
rate reduction and enhanced QoE for short video services,
outperforming advanced ML approaches and the default rule-
based CC. We plan to explore combining CCS with protocol
parameter tuning in the future and assess whether this integra-
tion can yield further QoE improvements.

Acknowledgments
We thank our shepherd, Soheil Abbasloo, and the anony-
mous reviewers for their insightful comments. This work
is supported by NSFC under grant 62472460, Guangdong
Basic and Applied Basic Research Foundation under grants
2024A1515010161 and 2023A1515012982, Young Outstand-
ing Award under the Zhujiang Talent Plan of Guangdong
Province, and the Alibaba Research Intern Program. Xiaoxi
Zhang and Ennan Zhai are the co-corresponding authors.

References
[1] DPO from Akamai. https:

//www.linkedin.com/pulse/
need-dynamic-protocol-optimization-ant-bao,
2020.

[2] MaxMind GeoIP database. https://www.maxmind.
com/en/home, 2020.

[3] information Gain from wiki. https://en.wikipedia.
org/wiki/Information_gain_(decision_tree),
2024.

[4] The Evolution of CDN Technology in 2024.
https://blog.blazingcdn.com/en-us/cdn/
the-evolution-of-cdn-technology-in-2024,
2024.

[5] What are QUIC and HTTP/3? https://www.f5.com/
glossary/quic-http3, 2024.

[6] Soheil Abbasloo, Chen-Yu Yen, and H Jonathan Chao.
Classic meets modern: A pragmatic learning-based con-
gestion control for the internet. In Proceedings of the
Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies,
architectures, and protocols for computer communica-
tion, pages 632–647, 2020.

[7] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,
Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno
Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: Auto-tuning
video abr algorithms to network conditions. In Proceed-
ings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 44–58, 2018.

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In NSDI, volume 2,
pages 4–2, 2017.

[9] Venkat Arun and Hari Balakrishnan. Copa: Practical
{Delay-Based} congestion control for the internet. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 329–342, 2018.

[10] Hirochika Asai and Yasuhiro Ohara. Poptrie: A com-
pressed trie with population count for fast and scalable
software ip routing table lookup. ACM SIGCOMM
Computer Communication Review, 45(4):57–70, 2015.

[11] Lawrence S Brakmo, Sean W O’malley, and Larry L
Peterson. Tcp vegas: New techniques for congestion
detection and avoidance. In Proceedings of the confer-
ence on Communications architectures, protocols and
applications, pages 24–35, 1994.

[12] Neal Cardwell, Yuchung Cheng, C Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. Bbr:
Congestion-based congestion control: Measuring bottle-
neck bandwidth and round-trip propagation time. Queue,
14(5):20–53, 2016.

[13] Kefan Chen, Danfeng Shan, Xiaohui Luo, Tong Zhang,
Yajun Yang, and Fengyuan Ren. One rein to rule them
all: A framework for datacenter-to-user congestion con-
trol. In 4th Asia-Pacific Workshop on Networking, pages
44–51, 2020.

[14] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
{PCC} vivace:{Online-Learning} congestion control.
In 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18), pages 343–356,
2018.

[15] Zhuoxuan Du, Jiaqi Zheng, Hebin Yu, Lingtao Kong,
and Guihai Chen. A unified congestion control frame-
work for diverse application preferences and network
conditions. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and
Technologies, pages 282–296, 2021.

[16] Sishuai Gong, Usama Naseer, and Theophilus A Benson.
Inspector gadget: A framework for inferring tcp conges-
tion control algorithms and protocol configurations. In
Network Traffic Measurement and Analysis Conference,
2020.

[17] Ali Gouta, David Hausheer, Anne-Marie Kermarrec,
Christian Koch, Yannick Lelouedec, and Julius Rück-
ert. Cpsys: A system for mobile video prefetching. In
2015 IEEE 23rd International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommu-
nication Systems, pages 188–197. IEEE, 2015.

[18] Carlo Augusto Grazia, Natale Patriciello, Toke Høiland-
Jørgensen, Martin Klapez, and Maurizio Casoni. Ag-
gregating without bloating: Hard times for tcp on wi-fi.
IEEE/ACM Transactions on Networking, 30(5):2359–
2373, 2022.

[19] Pankaj Gupta and Nick McKeown. Algorithms for
packet classification. IEEE Network, 15(2):24–32, 2001.

[20] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a
new tcp-friendly high-speed tcp variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[21] Tianchi Huang, Chao Zhou, Lianchen Jia, Rui-Xiao
Zhang, and Lifeng Sun. Learned internet congestion
control for short video uploading. In Proceedings of
the 30th ACM International Conference on Multimedia,
pages 3064–3075, 2022.

https://www.linkedin.com/pulse/need-dynamic-protocol-optimization-ant-bao
https://www.linkedin.com/pulse/need-dynamic-protocol-optimization-ant-bao
https://www.linkedin.com/pulse/need-dynamic-protocol-optimization-ant-bao
https://www.maxmind.com/en/home
https://www.maxmind.com/en/home
https://en.wikipedia.org/wiki/Information_gain_(decision_tree)
https://en.wikipedia.org/wiki/Information_gain_(decision_tree)
https://blog.blazingcdn.com/en-us/cdn/the-evolution-of-cdn-technology-in-2024
https://blog.blazingcdn.com/en-us/cdn/the-evolution-of-cdn-technology-in-2024
https://www.f5.com/glossary/quic-http3
https://www.f5.com/glossary/quic-http3

[22] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong
Huang. Self-challenging improves cross-domain gen-
eralization. In Computer vision–ECCV 2020: 16th Eu-
ropean conference, Glasgow, UK, August 23–28, 2020,
proceedings, part II 16, pages 124–140. Springer, 2020.

[23] Van Jacobson. Congestion avoidance and control. ACM
SIGCOMM computer communication review, 18(4):314–
329, 1988.

[24] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. A deep reinforcement learn-
ing perspective on internet congestion control. In In-
ternational Conference on Machine Learning, pages
3050–3059. PMLR, 2019.

[25] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shep-
herd, Ion Stoica, and Hui Zhang. {CFA}: A practical
prediction system for video qoe optimization. In 13th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 16), pages 137–150, 2016.

[26] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang.
Pytheas: Enabling data-driven quality of experience op-
timization using group-based exploration-exploitation.
In NSDI, volume 1, page 3, 2017.

[27] Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. A contextual-bandit approach to personal-
ized news article recommendation. In Proceedings of
the 19th international conference on World wide web,
pages 661–670, 2010.

[28] Stan Lipovetsky and Michael Conklin. Analysis of
regression in game theory approach. Applied Stochastic
Models in Business and Industry, 17(4):319–330, 2001.

[29] Ge Ma, Zhi Wang, Minghua Chen, and Wenwu Zhu.
Aprank: Joint mobility and preference-based mobile
video prefetching. In 2017 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 7–12.
IEEE, 2017.

[30] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the conference of the ACM special interest
group on data communication, pages 197–210, 2017.

[31] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 154–171, 2020.

[32] Usama Naseer and Theophilus A Benson. Configanator:
A data-driven approach to improving cdn performance.
In 19th USENIX NSDI Symposium, 2022.

[33] Xiaohui Nie, Youjian Zhao, Zhihan Li, Guo Chen,
Kaixin Sui, Jiyang Zhang, Zijie Ye, and Dan Pei.
Dynamic tcp initial windows and congestion control
schemes through reinforcement learning. IEEE Jour-
nal on Selected Areas in Communications, 37(6):1231–
1247, 2019.

[34] Stefan Nilsson and Gunnar Karlsson. Ip-address lookup
using lc-tries. IEEE Journal on selected Areas in Com-
munications, 17(6):1083–1092, 1999.

[35] J Pearl. Causality: Models, reasoning, and inference
47cambridge university presscambridge, united king-
dom. pearl, j. 2000. Causality: models, reasoning, and
inference, 47, 2000.

[36] William Wesley Peterson and Daniel T Brown. Cyclic
codes for error detection. Proceedings of the IRE,
49(1):228–235, 1961.

[37] Haoran Qiu, Weichao Mao, Chen Wang, Hubertus
Franke, Alaa Youssef, Zbigniew T Kalbarczyk, Tamer
Başar, and Ravishankar K Iyer. {AWARE}: Automate
workload autoscaling with reinforcement learning in
production cloud systems. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 387–
402, 2023.

[38] Miguel Á Ruiz-Sánchez, Ernst W Biersack, and Walid
Dabbous. Survey and taxonomy of ip address lookup
algorithms. IEEE network, 15(2):8–23, 2001.

[39] Marco Saerens, Patrice Latinne, and Christine De-
caestecker. Adjusting the outputs of a classifier to new
a priori probabilities: a simple procedure. Neural com-
putation, 14(1):21–41, 2002.

[40] MY Sanadidi, Claudio Casetti, Mario Gerla, Saverio
Mascolo, and Ren Wang. Tcp westwood: End-to-end
congestion control for wired/wireless networks. Wire-
less Networks, 8(5):467–479, 2002.

[41] Junyang Shi, Mo Sha, and Xi Peng. Adapting wireless
mesh network configuration from simulation to reality
via deep learning based domain adaptation. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 887–901, 2021.

[42] Tanya Shreedhar, Rohit Panda, Sergey Podanev, and
Vaibhav Bajpai. Evaluating quic performance over web,
cloud storage, and video workloads. IEEE Transactions
on Network and Service Management, 19(2):1366–1381,
2021.

[43] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitara-
man. Bola: Near-optimal bitrate adaptation for on-
line videos. IEEE/ACM Transactions on Networking,
28(4):1698–1711, 2020.

[44] Shun Tobiyama, Bo Hu, Kazunori Kamiya, and Kenji
Takahashi. Large-scale network-traffic-identification
method with domain adaptation. In Companion Pro-
ceedings of the Web Conference 2020, pages 109–110,
2020.

[45] Keith Winstein and Hari Balakrishnan. Tcp ex machina:
Computer-generated congestion control. ACM SIG-
COMM Computer Communication Review, 43(4):123–
134, 2013.

[46] Zhengxu Xia, Yajie Zhou, Francis Y Yan, and Junchen
Jiang. Genet: automatic curriculum generation for
learning adaptation in networking. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 397–413,
2022.

[47] Furong Yang, Zhenyu Li, Jianer Zhou, Xinyi Zhang,
Qinghua Wu, Giovanni Pau, and Gaogang Xie. Disco:
A framework for dynamic selection of multipath conges-
tion control algorithms. In 2023 IEEE 31st International
Conference on Network Protocols (ICNP), pages 1–12.
IEEE, 2023.

[48] Tong Yang, Gaogang Xie, YanBiao Li, Qiaobin Fu,
Alex X Liu, Qi Li, and Laurent Mathy. Guarantee ip

lookup performance with fib explosion. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM, pages
39–50, 2014.

[49] Chen-Yu Yen, Soheil Abbasloo, and H Jonathan Chao.
Computers can learn from the heuristic designs and
master internet congestion control. In Proceedings of
the ACM SIGCOMM 2023 Conference, pages 255–274,
2023.

[50] Xiaoxi Zhang, Siqi Chen, Yunfan Zhang, Youngbin Im,
Maria Gorlatova, Sangtae Ha, and Carlee Joe-Wong. Op-
timal network protocol selection for competing flows
via online learning. IEEE Transactions on Mobile Com-
puting, 22(8):4822–4836, 2023.

[51] Zhiren Zhong, Wei Wang, Yiyang Shao, Zhenyu Li,
Heng Pan, Hongtao Guan, Gareth Tyson, Gaogang Xie,
and Kai Zheng. Muses: Enabling lightweight learning-
based congestion control for mobile devices. In IEEE
INFOCOM 2022-IEEE Conference on Computer Com-
munications, pages 2208–2217. IEEE, 2022.

[52] Jianer Zhou, Xinyi Qiu, Zhenyu Li, Gareth Tyson, Qing
Li, Jingpu Duan, and Yi Wang. Antelope: A framework
for dynamic selection of congestion control algorithms.
In 2021 IEEE 29th International Conference on Network
Protocols (ICNP), pages 1–11. IEEE, 2021.

Appendices
Appendices are supporting material that has not been peer-
reviewed.

A Methodology to Conduct A/B Test Compar-
ing CUBIC and BBR

To conduct a fair A/B test to compare performance of CUBIC
and BBR in short video services, for each new connection
from a specific partner app, we hash the request’s IP using
CRC algorithm to randomly map it to either the CUBIC or
BBR group, ensuring a fair workload and network environ-
ment. The measurement period lasted around two weeks, with
average data collected on a regional and daily basis. We have
checked and confirmed the consistency of the results over this
period. To further valid the difference we observe is due to
CC’s assignment rather than inherent difference between the
group, we have also reversed the A/B assignment (IP assigned
to group A now assigned to group B and vice versa) for about
another two weeks, and the results are consistent with the first
test, which validates the fairness of A/B test and the difference
we observed is due to CC’s assignment.

B Input Features of Our ML Model
Our CDN network collects several dozens of metrics to sup-
port a wide range of applications and services. Among these
metrics, we carefully pick twelve of them as input features
for our ML model, as shown in Table 4.

Table 4: Input Features for the ML Model

Feature Description

mss TCP maximum segment size
connection_time TCP handshake time
init_snd_wnd receiver initially advertised TCP window
min_rtt minimum RTT in a TCP connection
max_snd_wnd TCP receiver advertised maximum window size
min_snd_wnd TCP receiver advertised minimum window size
min_rtt_variance min RTT variance
max_rtt_variance max RTT variance
min_rto minimum retransmission timeout
min_srtt max smoothed version of RTT
max_srtt max smoothed version of RTT
max_cwnd maximum congestion window of a TCP sender

C Handle Non-1:1 Mapping between Connec-
tions and Network Types

When there is a connection migration from one network type
to another, there could be non-1:1 mapping between Connec-
tions and Network Types. We dicuss potential solutions to it.
In case the migration is transparent to CDN server (e.g., the
migration is behind a mobile proxy server), we find changing

the CC for a live connection is a heavy engineering task re-
quiring significant kernel modifications, and such cases are in
minority. So we decide they will not be handled by ALICCS.
In case the migration is visible to CDN server, like in case
where QUIC or MPTCP is applied, ALICCS can be applied
independently for each sub-connection, leveraging two IPs to
find the best CC for each sub-connection in its cache.

D Hyper Parameter Tuning and Experiences
We report below some details on the engineering decisions
and parameter choices. We explain as well the key considera-
tions and the rationale behind our decisions.
Hyper parameters in the loss function for DL model train-
ing. We aim to strike a balance between reducing the variabil-
ity of prediction performance across CDN nodes and maxi-
mizing overall average prediction accuracy. Our experiments
show that increasing the parameters ∀1, ∀2 encourages the
model to extract more uniform representations, thereby reduc-
ing the variability of prediction accuracy across CDN nodes.
However, strictly minimizing variability could hurt the over all
average accuracy. To address this, we perform a grid search to
determine the values of ∀1 and ∀2, achieving minimal variabil-
ity of accuracy without significantly compromising overall
accuracy.
Other hyperparameters in DL model design. While the
best hyperparameter configurations provided in existing lit-
erature on GANs can serve as a a starting point, we observe
that they do not deliver the expected performance boost in
our scenario. This likely reflects domain differences between
areas like computer vision and networking. Consequently, we
rely on performing a grid search to obtain the best-performing
hyperparameter set for AliCCS, tailored to its unique require-
ments.
Inference pipeline at CDN Nodes. To balance computational
efficiency and prediction accuracy, we opted to decide update
the cache on an hourly basis. For our IP prefix aggregation
strategy, we employ differentiated thresholds: For IP prefixes
with high request volumes, we set high thresholds to make the
conditions more strict, in order to avoid incorrect predictions
affecting a large number of requests. For IP prefixes with
low request volumes, we apply low thresholds to encourage
aggregation, reducing memory usage without significantly
impacting prediction accuracy.

E Method Selection Rationale for Trace-driven
Evaluation

In our trace-driven evaluation, several state-of-the-art meth-
ods were not selected for the following reasons. Adapting
Sage [49], originally designed for new CC learning to a CCS
scheme, presents challenges due to its inefficiencies for pro-
duction CDNs. The impracticality stems from the extensive
training data required, such as rebuffer rates and bandwidth
costs, across various state configurations from short video
providers, which is not applicable for us as a CDN provider.

Algorithm 1 Prediction Results Aggregation Algorithm
1: Input: Pairs of IP and predicted cc: {(IPi, pred_resi)}m

i=1
2: Output: hashtable : IP_pre f ix ↗ (pred_res, purity)
3: Input Parameters: p_thresh_16, p_thresh_24,
4: // step1: aggregate at prefix /16
5: Initialize D ↘ {(IPi, pred_resi)}m

i=1
6: H ↘ AGGREGATE_AT_PREFIX_LEN(D,16)
7: // step2: for prefix without sufficient purity, expand at prefix /24
8: D_expand_24 ↘ /0
9: for all prefix_16 in H.keys() do

10: if H[pre f ix_16].purity < p_thresh_16 then
11: D_tmp ↘ { IPi, pred_resi | IPi matches prefix_16 }
12: D_expand_24 ↘ D_expand_24≃D_tmp
13: remove prefix_16 from H
14: end if
15: end for
16: // step3: for prefix without sufficient purity, expand at prefix /32
17: H_24 ↘ AGGREGATE_AT_PREFIX_LEN(D_expand_24,24)
18: D_expand_32 ↘ /0
19: for all prefix_24 in H_24.keys() do
20: if H_24[pre f ix_24].purity < purity_thresh_24 then
21: D_tmp ↘ (find all data under prefix_24)
22: D_expand_32 ↘ D_expand_32≃D_tmp
23: Delete prefix_24 from H_24
24: end if
25: end for
26: H_32 ↘ AGGREGATE_AT_PREFIX_LEN(D_expand_32,32)
27: // merge the 3 hash tables
28: H ↘ H ≃H_24≃H_32
29: return H

30: procedure AGGREGATE_AT_PREFIX_LEN(D, pre f ix_len)
31: Input: D: a subset of Pairs of IP and prediction result
32: pre f ix_len: the length of prefix to aggregate at
33: Output: Map : IP_pre f ix ↗ (pred_res, purity)
34: Initialize H ↘ /0 ω a 2-level hashtable
35: for all (IP, pred) in D do
36: ip_pre f ix ↘ COMPUTE_PREFIX(IP, pre f ix_len)
37: H[ip_pre f ix][pred]↘ H[ip_pre f ix][pred]+1
38: end for
39: Initialize H_res ↘ /0
40: for all ip_prefix in H.keys() do
41: pred_label ↘ argmaxpred(H[ip_pre f ix][pred])
42: purity ↘ (f ractiono f pred_labelunderip_pre f ix)
43: H_res[ip_pre f ix].pred_res ↘ pred_res
44: H_res[ip_pre f ix].purity ↘ purity
45: end for
46: return H_res
47: end procedure

Both Disco [47] and Antelope [52] employ tree-based ML
models for CCS prediction, with Antelope permitting mid-
flow CC switching. However, in our trace-driven emulation
where CCS is allowed only on a per-flow basis, the two ap-
proaches become nearly identical. Therefore, we implement
only Disco as a representative model. Rein [13] was excluded
from our comparative study due to its closed-source nature
and its heuristic rules not being tailored for our short video
service context.

F Prefix Aggregation Algorithm
We illustrate the prefix aggregation algorithm with a flow
chart shown in Figure 16 as well as with Algorithm 1. Initially,
we aggregate IP prefixes at the /16 level using a Trie and
then assess the purity of this aggregation. Purity is defined
as the ratio of the number of IP addresses with the most
common label to the total number of IP addresses within the
range. A high purity indicates that using the most common
label to represent all IPs within the range results in minimal
accuracy loss. If the purity is insufficient, we further refine
the aggregation to /24 and /32 prefixes, as detailed in Steps 2
and 3 of the algorithm.

/16 Prefix 1

/16 Prefix 2 /16 prefix 3

/24 Prefix 1

/24 Prefix 2 /24 prefix 3

/32 Prefix 1

/32 Prefix 2 /32 prefix 3

Aggregation at /16 Break down to /24 Break down to /32

Dump to
hash table

No
Yes

Purity > p1

All
prediction

results

Dump to
hash table

Yes

Purity > p2

Figure 16: Trie-based prefix aggregation algorithm.

G End-to-End Performance
Figure 17 shows the end-to-end performance comparison
of WiFi connections and 4G connections in terms of QoE,
rebuffer rate, and retransmission rate.

(a) End-to-end QoE (b) Rebuffer rate (c) Retransmission rate

(d) End-to-end QoE (e) Rebuffer rate (f) Retransmission rate

Figure 17: The enhancement of ALICCS in trace-driven emulation is shown in terms of QoE, rebuffer rate, and retransmission
rate. Figures 17a–17c show the results for 4G connections, while Figures 17d–17f show the results for Wi-Fi connections.

	Introduction
	Background and Motivation
	Overview of CDN at Alibaba Cloud
	Motivation: CCS for Short Video Services
	Key Observations

	Design and Implementation
	Model Design and Training Method
	Model Interpretability Enhancement
	Inference Pipeline at CDN Nodes

	Experiences and Discussion
	Deployment Experiences
	Lessons Learned

	Evaluation
	Machine Learning Model Accuracy
	Implementation Framework Efficiency
	QoE and Retransmission Improvement
	Trace-driven Evaluation

	Related Work
	Discussion
	Conclusion
	Appendices
	Methodology to Conduct A/B Test Comparing CUBIC and BBR
	Input Features of Our ML Model
	Handle Non-1:1 Mapping between Connections and Network Types
	Hyper Parameter Tuning and Experiences
	Method Selection Rationale for Trace-driven Evaluation
	Prefix Aggregation Algorithm
	End-to-End Performance

