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Abstract
The large number of GPUs required for a single LLM training
significantly hinders the validation of new designs, tunings,
and optimizations, calling for the occurrence of efficient sim-
ulators. Existing simulators, however, only target a specific
granularity of the entire training, intrinsically leading to impre-
cision. This paper presents SimAI, a unified simulator aiming
at precisely and efficiently simulating the LLM training proce-
dure at scale. Through selective and high-fidelity integration
of the training frameworks, the kernel computation, and the
collective communication library into the simulating proce-
dure, SimAI achieves high precision in simulations. SimAI
further conducts multi-thread acceleration and implements
lock-free global context-sharing to accelerate the execution
speed. The effectiveness of SimAI is validated by its perfor-
mance results, which show an average of 98.1% alignment to
real-world results under various test scenarios and affirm its ro-
bustness and adaptability from small-scale labs to large-scale
industrial environments. SimAI delivers meaningful guide-
lines for new host designs and parameter settings, directly ben-
efiting in-production LLM training. We also share experiences
and lessons learned during the evolution of SimAI. SimAI is
open sourced at https://github.com/aliyun/SimAI.

1 Introduction
As the field of Artificial Intelligence (AI) rapidly advances,
particularly with the rise of large language models like Ope-
nAI’s GPT-4 [41], the need for scaling AI infrastructure has
grown significantly. For instance, training GPT-4 reportedly
requires around 25,000 state-of-the-art GPUs [19]. This mas-
sive resource demand presents a significant barrier to entry for
organizations looking to compete in this high-stakes domain.

In this context, simulators become essential both before and
after infrastructure investments. In the planning phase, simu-
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lators help organizations estimate the scale and architecture
required to achieve performance goals. In the operation phase,
they help increase resource utilization, ensuring a return on
investment. Thus, simulators are not just tools for improving
efficiency but are strategic assets that maximize resource use
and ensure that infrastructure investments deliver measurable
results.

Currently, it is common practice to use separate simulators
for capacity planning and performance tuning. For capacity
planning, simulation is typically performed at the flow or job
level, ignoring packet-level behavior [32]. In contrast, perfor-
mance tuning relies on packet-level simulations to analyze
network traffic patterns, latency, and packet loss—factors crit-
ical for optimizing communication and computation in AI
model training and inference.

However, our experience shows that using multiple sim-
ulators with different levels of granularity presents three
main challenges. First, this approach leads to inaccurate
cost-performance analyses, making it difficult to predict load-
balancing performance and assess system failures. Second,
the poor performance of detailed simulators and the low ac-
curacy of coarse-grained simulators limit the ability to opti-
mize model training in large-scale deployments. Finally, this
fragmented approach complicates development and testing,
increasing the risk of discrepancies between simulated and
real-world performance.

To overcome these challenges, we developed a unified sim-
ulator that handles both capacity planning and performance
tuning within a single framework. However, this approach
introduces several difficulties:

• Generating workloads with high precision to reflect realis-
tic AI training behaviors.

• Simulating computation accurately across various GPU
architectures.

• Precisely modeling communication to account for network
traffic patterns and latencies.

https://github.com/aliyun/SimAI


• Scaling the simulator to support diverse, large-scale AI
infrastructure configurations.

In this paper, we share the development and operation
experience of SimAI, a unified simulator designed for scal-
able, high-precision simulations of large-scale LLM train-
ing. SimAI addresses these challenges by introducing high-
fidelity models across the entire AI training stack. To gener-
ate precise workloads for LLM training at any scale, SimAI
“hijacks” mainstream training frameworks, such as Mega-
tron [52] and DeepSpeed [46], to run on a single host and cre-
ate fine-grained workloads (§3.2). Different solutions ensure
accurate simulation of both computation and communication.
For computation, we break the workload into fine-grained
kernels, measuring execution times on existing GPUs and
mapping them to other GPU types (§3.3). For communica-
tion, we “hijack” the NVIDIA Collective Communications
Library (NCCL) [36] to accurately simulate packet-level be-
havior for collective communication (§3.4). To improve the
simulator’s efficiency, we implement multi-threaded accel-
eration and lock-free global context sharing among threads
(§3.5).

The performance results of our unified simulator are a tes-
tament to its efficacy. In terms of accuracy, it achieves an
average deviation of only 1.9% compared to real-world re-
sults across various test scenarios. On the scalability front,
the simulator handles simulations from small-scale lab envi-
ronments to large-scale industrial deployments, proving its
robustness and adaptability (§4).

Since incorporating this unified simulator into our AI de-
velopment pipeline, we have served various teams and gained
valuable insights. It has improved our infrastructure manage-
ment and accelerated AI model development and deployment.
We share the benefits and contributions of SimAI, including
guidelines for new host designs and accurate assessments of
scaling benefits (§5). These guidelines have been adopted by
engineering teams and incorporated into production deploy-
ments. Additionally, we share lessons learned in transforming
SimAI from a standalone simulator to a widely used simula-
tion service (§6).

SimAI is a high-precision, full-stack simulator designed to
benefit researchers across various domains involved in Large
Language Model (LLM) training. This versatile tool caters
to multiple levels of the LLM training ecosystem. At the
framework level, SimAI enables the exploration of optimal
parallel strategies and communication-computation overlap
techniques, facilitating parameter tuning to reduce end-to-end
training time. For collective communication research, it offers
a platform to validate and quantify novel algorithms’ perfor-
mance gains. SimAI’s system architecture design allows for
experimentation with diverse intra-host and inter-host config-
urations, helping identify the most cost-effective solutions.
From a networking perspective, the simulator supports in-
vestigations into the impact of various congestion control
algorithms (such as DCQCN [64], HPCC [26], etc.), network

protocols (such as RoCEv2 [17], Solar [33], etc.), and rout-
ing strategies—including adaptive routing—across different
architectural setups. By providing the flexibility to customize
and fine-tune different components, SimAI empowers users to
conduct multifaceted research accelerating LLM training pro-
cesses, and is an invaluable tool for scholars and practitioners
throughout the LLM development pipeline.

2 Background and Motivation

2.1 AI Training Infrastructure
Large language models (LLMs) require specialized infras-
tructure, often involving dozens to thousands of GPUs work-
ing together to handle pretraining or fine-tuning tasks. For
instance, training a GPT-3 model with 175 billion parame-
ters demands 1,024 high-end GPUs running continuously for
34 days [35]. To optimize GPU usage, mainstream training
frameworks like Megatron [52] and DeepSpeed [46] offer par-
allelization techniques such as Data Parallelism (DP), Pipeline
Parallelism (PP), and Tensor Parallelism (TP). These methods
enable the efficient distribution of training tasks across mul-
tiple GPUs. The process relies on collective communication
libraries (CCLs) to manage data exchanges, such as using
AllReduce for gradient synchronization or AllGather for
parameter sharing. The CCL breaks each collective commu-
nication task into a series of peer-to-peer Send and Receive
operations to carry out the necessary data transfers between
GPUs.

In Alibaba’s clusters, each server contains multiple GPUs.
GPUs within the same server are connected through a high-
bandwidth intra-host network, such as NVLink or NVLink
Switch [40], and each GPU connects to the inter-host RDMA
network via network interface cards (NICs). For example,
in line with [23], our A100 servers are equipped with eight
NVIDIA A100 GPUs [1] and four NVIDIA CX6Dx NICs,
each providing 2×100Gbps [6] bandwidth. Each GPU is
linked to other GPUs in the same server via a 600GB/s
NVLink and to GPUs in other servers via a 100Gbps RDMA
network. In production, Megatron and DeepSpeed are the two
dominant frameworks, NCCL [36] is the dominant CCL.

2.2 Demands for a Unified Simulator
The rapid evolution of LLMs necessitates advancements in AI
training infrastructure and optimization methods. To address
these challenges, simulations are crucial for three primary
goals:

Comprehensive evaluation of AI infrastructure. To ensure
the effective deployment of new hardware and configurations,
AI infrastructure must be evaluated from multiple perspec-
tives:

GPU Selection: Before adopting new GPU models, cloud
service providers (CSPs) need to evaluate their performance
on AI workloads at scale. Simulations allow for a detailed



preview of how different GPUs perform in large-scale deploy-
ments, guiding purchasing decisions and scaling strategies.

Network Architecture Design: Once specific GPUs and
intra-host interconnects are chosen, the next challenge is op-
timizing network architecture for scalability. Key questions,
such as the ideal network bandwidth per GPU, require high-
precision simulations since large-scale experiments are cost-
prohibitive.

Host Architecture Design: Evaluating different host con-
figurations for each type of GPU is essential to determine
the optimal number of GPUs per host and the best intra-host
interconnect. Simulations help answer these questions with-
out the need to physically build and test expensive hardware
prototypes.

Cost-effective validation of optimizations. In addition to
hardware evaluations, simulations are indispensable for val-
idating new optimization techniques during model develop-
ment and system upgrades. This involves:

Parameter Tuning: Testing a variety of model parameters
and training framework settings is critical to achieving opti-
mal performance. Simulations allow for quick and inexpen-
sive parameter tuning.

Evaluating New Mechanisms: As innovative enhance-
ments—such as new training frameworks, collective com-
munication methods, and network congestion control al-
gorithms—are introduced, simulations provide a low-cost
method for evaluating their effectiveness in realistic settings.
This ensures that new mechanisms can be thoroughly tested
without the expense of large-scale deployments.

Development of a unified simulation framework. Given
the diverse needs for simulations across different components
and layers of the AI infrastructure, a unified simulation frame-
work is essential. Building multiple specialized simulators
for individual parts of the system often results in inconsis-
tent or incomplete insights. For example, a simulator focused
solely on GPUs may overlook critical aspects of network
performance, leading to inaccurate conclusions.

Our goal is to develop a unified simulator that addresses all
these requirements in a single platform. This unified approach
will enable consistent, high-precision simulations across dif-
ferent layers of the AI infrastructure, ensuring that teams
can validate new designs and optimizations accurately and
efficiently.
2.3 Our Goals

Generating workloads that reflect real-world train-
ing. To achieve accurate simulation results, realistic input
sources—capturing the detailed behaviors of training frame-
works—are essential. Simply estimating workload based on
the required floating-point operations is too coarse-grained.
Some approaches, like Chakra [53], improve this by using
trace-driven methods to extract function-level data from Py-
Torch Execution Trace. However, this only works for LLMs

with the same parameters and scale, limiting the ability to
simulate new models or configurations.

Goal 1: We need a flexible and precise workload generator
that can handle various models, parameters, and scales.

High-fidelity communication simulation. Classical network
simulators, such as NS-3 [47] and OMNET++ [55], offer
packet-level network behavior simulations but don’t address
the collective communication used in distributed LLM train-
ing. To maximize performance, collective communication
libraries (e.g., NCCL) apply various optimizations that affect
traffic patterns. Simulating these from scratch can lead to low
fidelity.

Goal 2: We need a high-precision collective communi-
cation simulator that incorporates key optimizations and
enhancements.

High-fidelity computation simulation. Current solutions
like GPGPU-Sim [2] simulate GPU kernel computations at a
detailed level but are too time-consuming for large-scale LLM
simulations. Other approaches, such as ASTRA-sim [45], fail
to support different GPUs or lack the necessary precision.

Goal 3: We need an efficient computation simulator that
delivers both precision and scalability for large-scale sim-
ulations.

Fast simulation speed. Using a combination of current meth-
ods (i.e., PyTorch trace generator with ASTRA-sim), simulat-
ing a single iteration of GPT-3 training with 128 GPUs can
take an entire day, while the same task on real hardware takes
just two seconds. Efficiency is critical to scale simulations for
practical use.

Goal 4: The simulator must not only meet Goals 1-3 but
also be scalable and capable of running large-scale LLM
simulations efficiently.

3 The SimAI Simulator

3.1 SimAI Overview
Figure 1 illustrates the key components of SimAI. Each
simulation request includes detailed information about the
training process, such as the model itself and parameters,
training framework configurations, CCL parameters, and the
intra/inter-host network topology.

Workload Generator (SimAI-WG) generates realistic
workloads for each simulation request (§3.2). The output,
called a workload description file, outlines algorithm modules,
collective communication operations, and their dependencies.

The workload file is then processed by the Execution En-
gine, which simulates the execution of both computation and
communication operations as discrete events. We utilize the
Computation Simulator (SimAI-CP) and the Communica-
tion Simulator (SimAI-CM) to simulate computation and
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communication tasks, respectively. SimAI-CP transforms sub-
modules into detailed kernels, providing precise computation
simulations using a self-built, fine-grained operation library
(§3.3). SimAI-CM integrates parts of NCCL, breaking down
each collective communication into peer-to-peer operations
to deliver accurate communication simulation results (§3.4).
Additionally, we implement multi-threaded acceleration and
lock-free global context sharing to boost simulation speed
further (§3.5).

3.2 Workload Generator
§3.2.1 outlines the process for generating precise workload
files for a given model. To further maximize the benefits
for real-world training scenarios, selecting a representative
benchmark suite is crucial, as discussed in §3.2.2.

3.2.1 Generating workload files
Generating precise workload files is essential, as even small
discrepancies between the workload file and actual training ex-
ecution can lead to low simulation fidelity. While trace-based
methods are highly accurate, they require physical clusters to
run. SimAI-WG takes a different approach by “hijacking” ex-
isting training frameworks to produce workloads identical to
real tasks. We have implemented this for Megatron and Deep-
Speed, two of the most popular frameworks in our production
environment.

Generating workloads using a single host. Without access
to a large-scale GPU cluster, the key challenge for this "hijack-
ing" approach is running it on a single host while considering
the interactions of multiple peer hosts. To address this, we
made two modifications to the framework and NCCL:

• The framework is tricked into believing it runs in a cluster
with the target number of GPUs. The inter-host topology is
also set to simulate a universal cluster configuration.

• All real communication in NCCL is skipped. For work-
loads involving pipeline parallelism, SimAI-WG must be
configured with the appropriate rank number.

This allows the training framework to generate sequences
of computation and communication operations, including al-
gorithm submodules and collective or peer-to-peer communi-
cations. Table 1 provides examples of the typical operations
used in LLMs. However, these operations lack dependency
specifications, which need further specifications.

Submodules Kernels

Algorithm
submodules &
kernels

Grad_gather Grad_gather
Embedding Embedding⋆

Attention_forward

Layernorm⋆

Attention_QKV⋆

Core_attention△

Attention_linear⋆

Attention_backward Attention_backward

Mlp_forward

Layernorm⋆

Mlp_linear_4h△

GeLU/Swiglu⋆

Mlp_linear_h△

Mlp_backward Mlp_backward
Layernorm_post Layernorm_post⋆

Logits_parallel Logits_parallel△

Grad_param Grad_param⋆

Collective &
peer-to-peer
communica-
tion
operations

Allreduce Write & write_with_imm
operations

Allgather Write & write_with_imm
Reducescatter Write & write_with_imm
Send Send
Recv Recv

Table 1: List of computation and communication operations.
⋆ denotes memory-bandwidth-intensive operations and △
denotes computation-intensive operations.

Defining operation dependencies. Since computation and
communication operations overlap during execution, we em-
bed dependency information in the workload file to reflect
this. Dependencies are determined based on the paralleliza-
tion framework used and are validated using Nvidia Nsight
Systems on a 1,024-GPU cluster. Figure 2 illustrates an exam-
ple of dependencies when using TP, DP, and PP parallelisms.
Solid arrows indicate a strict "happened-before" relationship,
while dotted arrows represent overlapping operations where
communication begins after the computation has started. The
figure demonstrates how Megatron’s attention and MLP back-
ward phases benefit from overlapping optimizations. For ex-
ample, the MLPbackward submodule starts only after the
Attentionbackward submodule and the AllReduce operation
are complete.

We decoupled the workload from the training framework
for independent simulations. Instead of embedding simulation
code directly into frameworks like Owl [9], we used SimAI-
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Size of model parameters Percentage
100B ~ 500B 41.10%
65B ~ 75B 35.50%
7B ~ 34B 23.40%

Task scale (#GPUs) Percentage
< 512 17.60%

512 ~ 1024 47.05%
> 1024 35.29%

Table 2: Proportions of tasks with different parameter sizes
and scales.

WG to extract model workloads and simulate them within the
SimAI execution engine. This approach avoids the substantial
overhead of modifying training frameworks, which requires
extensive changes to monitoring tools, data pipelines, and
other critical components. By implementing core algorithms
in SimAI-WG, we gain flexibility while understanding how
different frameworks generate communication and computa-
tion operators.

Communication in large language models. In LLM training,
metadata exchanges and barrier operation (under 1 KB) are
negligible and not a focus of our simulations. Communication
time is primarily introduced by various parallelism techniques,
such as TP, PP, EP, and DP. TP, PP, and EP typically have fixed
communication patterns and volumes, unaffected by cluster
size, involving medium-sized messages ranging from tens
to hundreds of megabytes. In contrast, the communication
scope of DP expands with the increased cluster size, often
involving gigabyte-scale collective communications (such as
AllGather / ReduceScatter) across hundreds to thousands
of nodes.
3.2.2 Determining the model-level benchmark suite
As a unified simulator designed to provide comprehensive
evaluations of end-to-end performance in real-world LLM
training scenarios, it’s essential to establish a series of model-

level benchmarks, referred to as the benchmark suite.

Model and framework selections. Table 2 shows the dis-
tribution of model parameters and task scales over the past
six months. The models fall into three categories—small,
medium, and large—each making up over 20% of the total.
More than 94% of LLMs are variants of GPT-3 or LLaMA,
with Megatron and DeepSpeed being the dominant frame-
works. Although Megatron usage is on the rise, covering all
models is impractical. Instead, we include a selection of open-
source LLMs of varying sizes.

Parameter selections. We focus on the parameters that im-
pact workload patterns:

• Model Parameters (e.g., hidden_size, num_layers, seq_len,
etc.)

• Framework Parameters (e.g., world size, zero level,
reduce_bucket_size/allgather_bucket_size, parallelization
strategies like TP, PP, DP, and SP)

Based on the statistics in Table 2, we chose a minimal set of
benchmarks that cover typical settings without exploring all
possible combinations, as detailed in Table 3. Internal reports
indicate that model architects frequently adjust framework pa-
rameters to optimize performance or precision. Users can also
generate custom benchmarks with SimAI-WG as explained
in §3.2.1.

We believe this benchmark suite accurately represents the
real LLM training workloads commonly used by our cus-
tomers. Unless otherwise specified, the benchmarks in this
suite will be used for evaluation and discussion throughout
the rest of the paper.
3.3 Precise Computation Simulation

Precisely simulating existing GPUs. As explained in § 3.2,
by running the mocked framework on a single host, we obtain
the detailed submodule workflow. For simulations targeting
existing GPUs, SimAI-WG outputs the execution times for
all submodules on a host with the corresponding GPU. Since
each GPU in practical LLM training is dedicated to a sin-
gle task, we can accurately simulate the entire computation
procedure by following the workload file and filling in the
execution times for each submodule. As shown in §4.3, the
simulation precision ranges from 96.9% to 99.5%.

We maintain an operation database in SimAI-CP that
records the execution times for all submodules in the bench-
mark suite. Table 4 lists common computation operators and
their execution times on various GPUs and configurations.
For workloads outside the benchmark suite, specific GPU
tests are required to gather additional data.

Fine-grained kernel simulation. While submodule-level sim-
ulation works in many cases, it may not be suitable for all
scenarios, especially when new parallelization strategies or
optimizations reorganize or refine kernels for better perfor-
mance. In such cases, fine-grained simulation is necessary.



Model Model_hyperparameter Framework Parallel
Parameter Ds_config

Name Parameter
size

Hidden
size Layers Sequence

length
FFN
size Name TP PP Zero

level

Reduce
bucket

size

Allgather
bucket

size

Prefetch
bucket

size

Max live
parame-

ters

Param
persistence
threshold

GPT-3 6.7B 6.7B 4096 32 2048 16384 Megatron 1 1 - - - - - -
GPT-3 13B 13B 5120 40 2048 20480 Megatron 2 1 - - - - - -

GPT-3 175B 175B 12288 96 2048 49152 Megatron 8 8 - - - - - -
LLaMA 65B 65.2B 8192 80 4096 28672 Megatron 8 2 - - - - - -
Llama3 405B 405B 16384 126 8192 53248 Megatron 8 16 - - - - - -
LLaMA 7B 6.7B 4096 32 4096 11008 Deepspeed 1 - 2 1.00E+09 1.00E+09 - - -

LLaMA 65B 65.2B 8192 80 4096 28672 Deepspeed 1 - 3 1.00E+09 - 1.00E+09 6.00E+08 1.00E+06

Table 3: The SimAI benchmark suite v1.0

GPUs_ConfigParams
Operations

Embedding LayerNorm ... MLP-Linear

A100_Params1 3425(µs) 715(µs) ... ...
A100_Params2 3157(µs) 695(µs) ... ...
... ... ... ... ...

Table 4: SimAI-CP database format

We have designed a module-kernel converter to break down
each submodule into smaller kernels, which are then tested
on different GPUs. The third column in Table 1 shows an
example of kernels used in different submodules. This further
enriches the operation database, enabling precise simulation
of advanced optimizations and new features.

Supporting unreleased GPUs. As a simulation service for
CSPs, there is strong demand for simulating GPUs that have
not yet been released. Decision-makers need to evaluate
whether purchasing new GPUs is worth the investment, con-
sidering factors like budget, host architecture, and network
architecture.

Although physical access to unreleased GPUs is not pos-
sible, we may have access to core specifications or a specifi-
cation sheet. An initial approach might be to estimate com-
putation times by scaling known values from existing GPUs,
but this often results in significant inaccuracies—up to 25.1%
deviation.

Our analysis shows that different kernels have different
performance bottlenecks, typically falling into two categories:
computation-intensive or memory-bandwidth-intensive. For
example, the Gemm kernel, used for updating the KV cache,
is memory-bandwidth-intensive, while flash attention is
computation-intensive. Detailed classifications are listed in
Table 1.

To improve accuracy, we propose using two equations tai-
lored to these kernel types, based on data from our operation
database and the Roofline performance model [58]. These
equations, based on measured execution times of compute-
bound and memory-bound kernels (subscript Comp_Known
and Mem_Known, respectively) in the existing environment,
allow us to calculate execution times for these kernels on
new GPUs or configurations (subscript Comp_New and
Mem_New, respectively):
• For computation-intensive kernels:

TimeComp_New =
FLOPSComp_New

FLOPSComp_Known
×TimeComp_Known

SimCCL Service
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Figure 3: Illustration of how SimAI transforms a collective
communication operation to a list of peer-to-peer communi-
cation operations.

• For memory-bandwidth-intensive kernels:

TimeMem_New =
BandwidthMem_New

BandwidthMem_Known
×TimeMem_Known

To ensure accurate results, we recommend using GPUs
with similar architectures as baselines, rather than general-
izing across different vendors. In our experiments, we use
the Nvidia A100 as the baseline for calculating kernel execu-
tion times on other Nvidia GPUs. We refer to this method as
SimAI-CP-Model.
3.4 Precise Simulation of Communication
Training frameworks rely on collective communication li-
braries, with NCCL [36] being the most widely used in pro-
duction. NCCL translates collective communication oper-
ations (e.g., AllReduce, AllGather, ReduceScatter) into
network-level operations (e.g., Send, Receive). This com-
plex process involves selecting optimal algorithms based on
factors like the number of nodes, message size, and config-
ured parameters. Even small mismatches between practical
execution and simulation can cause significant deviations in
results. To accurately reproduce these algorithm selections,
SimAI integrates key procedures from NCCL directly.

Reproducing NCCL’s key procedures. SimAI-CM uses
a modified version of NCCL, called SimCCL, to intercept



key operations. SimCCL captures the initialization and core
interfaces of collective communication to generate peer-to-
peer communication lists.

Since simulations typically run on a single host, SimCCL
employs a "hijacking" technique to simulate the detailed peer-
to-peer operations, similar to the approach discussed in §3.2.1,
but at the collective communication level. Here’s how Sim-
CCL modifies NCCL’s behavior:

1. NCCL Initialization: SimCCL intercepts the NcclCom-
mInitAll function using the libhacknccl.so in Figure 3,
creating virtual communicators for each GPU. This
makes the system behave as though it’s running in a
real multi-GPU cluster, allowing for socket connections
and data exchanges during the initialization phase. In
the bootstrap and network initialization stages, multiple
virtual communicators are created in the same commu-
nication group, while only one communicator is actually
created.

2. Topology Discovery: Instead of searching actual PCIe
devices, SimCCL reads a user-specified topology file
that defines GPU, NIC, and PCIe switch configurations.
Each virtual communicator processes the topology inde-
pendently and no synchronization is required.

3. Intra-Host Communication Channel Creation: SimCCL
sets up channels between virtual communicators within
the host and stores the details in an isolated information
table.

4. Inter-Host Communication Channel Creation: SimCCL
bypasses gathering information from other GPUs using
AllGather operations, as it already has information on
all hosts. It creates inter-host channels directly.

5. Collective Communication Transformation: SimCCL in-
tercepts collective communication calls, reconstructing
the operations to trace lower-level communications. It
skips actual data transfers and captures inter-GPU com-
munication events, including data size, sender and re-
ceiver ranks, and routes, to simulate RDMA-layer behav-
ior.

Supporting all NCCL parameters. SimCCL reflects the
communication behavior for the vast majority of NCCL pa-
rameters [37]. SimAI-CM has been enhanced to support
specific features like PCI × NVLink (PXN). PXN allows
a GPU to use a non-local NIC (in the same node) through
NVLINK connections for data transfers. This design is typ-
ically employed in rail-optimized network topologies, en-
abling cross-node network traffic to remain on the same
rail (single-hop switch) to achieve message aggregation
and network traffic optimization. By setting an appropriate
NCCL_P2P_PXN_LEVEL, SimCCL can recognize these
PXN traffic patterns and reflect them in the output Flow-
Model. For instance, if rank 1 sends data to rank 8 via rank 0
as an intermediary, the FlowModel represents this as two sep-
arate flows: 1->0 and 0->8. Subsequently, SimAI-CM extracts
these patterns and simulates them accordingly.

Source file Description Lines of code
init.cc The initialization procedures 364
topo.cc The topology discovery, search, and

synchronization
52

topo.xml A custmoized topology file ~100
enqueue.cc Chunk segmentation and task schedul-

ing of collective communication
56

Table 5: Efforts of modifying NCCL.
Global variable

Thread 1
Thread 2
Thread 3

Data sent
Switch port length

TX/RX QP
……

(a) Multi-thread implementation.

Global variable
Data sent
Switch port length
TX/RX QP

Thread 1
Thread 2
Thread 3

(b) Lock-free optimization
Figure 4: Multi-thread implementation and optimization in
SimAI.

The SimCCL module is designed to emulate the commu-
nication operation processing workflow in NCCL or other
CCL. It focuses on transforming collective communication
operations into a set of easily interpretable point-to-point
communications, without incorporating actual data verifica-
tion or integrity checks. This approach generally does not
affect the end-to-end training process, as it doesn’t lead to
exceptional workflows due to the absence of real data. In ex-
pert parallelism (EP), the gating module’s token distribution
is influenced by data values. In the simulation, we assume
a balanced distribution, which has minimal impact on the
simulation results.

Porting efforts. It took us over 10,000 lines of coding efforts
for building the blocks shown in Figure 1. The majority of the
efforts are intended for repeated use except for the SimCCL
module. For example, to support a different version of NCCL
or a new CCL, we need to re-adapt the SimCCL module.
However, our design does not incur intrusive modifications
on the original CCL codebase. As shown in Table 5, only
572 lines of codes (LOC) are essential based on the original
NCCL codebase.
3.5 Large Scale Simulation Speedup
At the beginning of SimAI’s development, simulating a single
iteration of GPT-3 training with 128 GPUs took over 24 hours,
compared to just two seconds on a physical GPU cluster. This
challenge is similar to AstraSim, which also uses NS-3 for net-
work simulation. To enable simulations of AI infrastructure
with more than 1,000 GPUs, we implemented multi-threaded
acceleration for SimAI-CM.

Several approaches have been proposed to speed up net-
work simulations. For example, parallel discrete-event simu-
lation (PDES) [10, 18] and UNISON [3] distribute network
topologies across multiple logical processes, each running
on separate CPU cores. We chose UNISON [3] for three
key reasons: (1) It is open-source and builds on NS-3. (2) It
automates the partitioning of network topologies and sched-
ules each task to the appropriate thread. (3) It has superior
scalability, as demonstrated in their evaluations.

Lock-free sharing of global variables. However, integrating
UNISON into SimAI presented a significant challenge. As
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Figure 5: Multi-rail network topology of cluster H100. For
cluster A100, two GPUs share a single NIC

the simulation scale increased, a large number of global con-
figurations and contexts were shared across threads. Updating
shared data structures with global locks, even atomic ones,
caused performance bottlenecks. As shown in Figure 4(a),
these global variables track metadata on inter-host commu-
nications, such as data volumes between nodes and queue
lengths at switches. Atomic operations on these variables
slowed down concurrent thread execution.

To solve this, we restructured SimAI to run without global
locks. We observed that most global variables were accessed
by specific threads. By managing these variables in a thread-
independent way, we eliminated the need for global locks.
Figure 4(b) illustrates how SimAI separates these variables,
enabling lock-free operation. Since each node’s simulation
runs on a single thread, we isolate global variables in a node
ID-indexed table. This allows threads to access the relevant
data without locking, reducing the performance issues caused
by concurrency. Our lock-free optimization resulted in a 23x
speedup compared to the single-thread version and a 15%
improvement over the multi-threaded version.

4 Evaluation
In this section, we evaluated SimAI based on the precision and
scalability of simulations, using the open-source simulator
ASTRA-sim for comparison. Furthermore, results from real-
world clusters are used as the ground truth.
4.1 Testbeds and Benchmarks
We utilized two testbeds that share a similar multi-rail, fat-
tree, inter-host RoCEv2 network, reminiscent of the Alibaba
HPN architecture [44], as illustrated in Figure 5. Cluster
A100 consisted of 128 GPU hosts, each equipped with eight
NVIDIA A100 GPUs [1] and four Mellanox ConnectX-6
NICs (2×100 Gbps). Cluster H100 included 128 GPU servers,
each with eight NVIDIA H100 GPUs [13] and eight Mellanox
ConnectX-7 NICs (2×200 Gbps). The intra-host interconnect
used NVLink, with bandwidths of 600 GBps for A100 and 900
GBps for H100. Both the simulations and physical clusters
shared identical intra-host and inter-host network topologies.

The benchmarks were derived from the SimAI benchmark
suite. We enhanced ASTRA-sim with a workload adapter that
parsed workload files generated by SimAI-WG. For the physi-
cal GPU cluster, the benchmarks involved real LLM tasks that
matched the model, framework, and NCCL parameters of the
workload files. Our evaluation spanned cluster sizes of 128,

512, and 1024 GPUs. We executed all workloads, but due to
space constraints, we only presented performance metrics for
three representative models: GPT-3 13B, LLaMA 65B, and
GPT-3 175B.

4.2 Precision of Communication Simulation
Figures 6 and 7 showed the performance of intra-host and
inter-host collective communication operations across differ-
ent message sizes (ranging from 8MB to 8GB) and cluster
scales. In a multi-rail architecture [59], a collective communi-
cation group consists of the ranks on the same rail to minimize
the latency across ranks and achieve optimal performance.

From Figure 6, we observed that SimAI was significantly
more accurate than ASTRA-sim and closely aligned with
the ground truth. The average deviations for SimAI and
ASTRA-sim were 3.9% and 74.8% for A100, and 2.3% and
51.7% for H100, respectively. Notably, for AllGather and
ReduceScatter operations on A100, ASTRA-sim achieved
its best performance with 8GB messages, yet diverged from
reality by over 21.8%, with error rates reaching up to 210.5%
under adverse conditions. While there was slight improve-
ment in the AllGather operation, ASTRA-sim still showed
deviations of 204.3% and 35% for 8MB and 8GB messages,
respectively. This discrepancy arose because small message
performance is more susceptible to inaccuracies, as we did
not simulate the runtime software (e.g., libibverbs) and the
NIC pipelines. ASTRA-sim made significant simplifications
in practical transmission procedures, leading to poor fidelity,
particularly in small message scenarios.

Figure 7 presented the outcomes of collective communica-
tion between machines, reinforcing the finding that ASTRA-
sim struggled to accurately simulate communications with
small message sizes, while SimAI remained consistently close
to the ground truth. Furthermore, as communication scaled
up, the divergence between ASTRA-sim’s simulations and
the ground truth widened. For example, in an AllGather op-
eration with 8MB messages on a cluster of 128 A100 GPUs,
ASTRA-sim exhibited a simulation timing error of 45.9%.
This error escalated to 530.2% when the scale increased to
512 GPUs. The results for AllReduce and ReduceScatter
operations displayed similar trends as those observed with the
AllGather operation.

4.3 Precision of Computation Simulation
We tested the precision of the computation simulation of
SimAI and compared it with the ground truth of Nvidia A100,
H100, and H20. As shown in Figure 8, SimAI-CP provided
highly accurate estimations for all computation kernels. The
gaps in total execution times were minimal (0.5%-3.1%) be-
tween SimAI-CP and the ground truth. However, for SimAI-
CP-Model, the deviations were larger, ranging from 13%-
15%, especially for the Attention−QKV and MLP− linear
kernels. We recommend that users utilize SimAI-CP-Model
only in scenarios where a GPU is not available.

Additionally, we were unable to run all computation kernels



Figure 6: Bus bandwidths of intra-host collective communi-
cation operations vary with different message sizes and GPU
types. Note that the performance is not related to the cluster
scales.

Figure 7: Bus bandwidths of inter-host collective commu-
nication operations with different message sizes and cluster
scales.

Figure 8: The execution time of the computation kernels of
GPT-3 175B on different GPUs.

in SCALE-sim [50], which is used by ASTRA-sim. Only the
matrix multiplication kernels ran successfully in SCALE-
sim. The numbers for ASTRA-sim in Figure 8 included only
these kernels, with execution times multiplied by the effective
FLOPS of Nvidia GPUs divided by the effective FLOPS
of TPUs. We observed that ASTRA-sim had a significant
margin of error in simulating other GPUs, with total errors
of 49.8% for H100, 117.9% for A100, and 224% for H20.
As discussed in §3.3, the closed internal nature of the GPU
computation pipeline caused these methods to fall short in
precisely estimating computation times.

Moreover, we attempted to use another computation simu-
lator, Accel-Sim [21], but ultimately failed to run the latest
LLM tasks as it only supports PyTorch 0.4, which was re-
leased six years ago.

4.4 Precision of End-to-end Simulation
We validated the precision of SimAI in terms of the end-to-
end performance on different cluster scales. Figure 9 shows

Figure 9: The iteration time of different workloads running
on ASTRA-sim, SimAI, and real clusters.

that using SimAI the iteration time of all the workloads is
quite close to that of real LLM tasks in real clusters. The gap
is less than 4% even under the scale of 1024 GPUs. However,
ASTRA-sim is imprecise in the iteration time for both A100
and H100 GPUs. The deviations between SimAI and ground
truth are less than 3.9%, 36.1× better than ASTRA-sim. Fur-
thermore, with the increase of the model size (i.e., from GPT-3
13B to GPT-3 175B), the precision of SimAI increases ac-
cordingly. It is because the message sizes of the collective
communication operations of GPT-3 175B are larger, whose
simulation is more precise as validated in §4.2.

5 In Production Benefits

5.1 Guiding Host Design for New GPUs

H100. In 2023, hosts equipped with A100 GPUs were de-
signed to include eight A100 GPUs and four 2×100Gbps
NICs (Mellanox-CX6), allowing each GPU to utilize 100Gbps
of network bandwidth. With the release of the H100 at GTC
2023 [12], the performance of a single GPU significantly
improved. This raises an important question: How much net-
work bandwidth is needed to (1) fully utilize the enhanced
performance of the H100 while (2) minimizing overall capital
expenditure?

Answering this question is challenging because building
multiple engineering prototype hosts with varying config-
urations is costly and time-consuming. Simply expanding
network capacity in proportion to the increase in FLOPS is
too simplistic to provide practical guidance.

To inform server design decisions, we utilized SimAI to
simulate the performance of a training cluster with 1,024
H100 GPUs and varying network capacities. We tested net-
work equipment configurations of 100Gbps, 200Gbps, and
400Gbps. As shown in Figure 10, the performance of the
H100 cluster improves with increased network bandwidth,
aligning with our expectations. Upgrading from 200Gbps to
400Gbps results in a 19% performance gain, which remains
significant relative to the associated capital expenditure. These
simulation results contributed to our final host design deci-
sion.

We did not simulate configurations with higher bandwidth
than 400Gbps because the PCIe bandwidth of the H100 is
512Gbps (PCIe Gen5×16), indicating that the practical upper
limit for a single H100 is approximately 400Gbps.



Figure 10: The iteration time of GPT-3 175B with different
network bandwidths.

In production, hosts with H100 GPUs are designed to fea-
ture eight H100s and eight 2×200Gbps NICs (Mellanox-
CX7). Comparatively, the simulation precision using SimAI-
CP is over 98%, while SimAI-CP-model shows a precision
that is more than 5% lower. Thus, we believe SimAI-CP-
model could serve as a viable option when the target GPU
type has not yet been released.

H20. With the release of H20 [14] in November 2023, we
again used SimAI to guide host design. As shown in Fig-
ure 10, since the computational performance of H20 is lower
than that of H100, the required network bandwidth also de-
creases. When network bandwidth is increased from 100Gbps
to 200Gbps, end-to-end training performance improves by
11%. However, increasing from 200Gbps to 400Gbps yields
only a 6% performance gain.

After thoroughly assessing the investment in networking
equipment against performance improvements, we decided
to equip each H20 with 200Gbps of network bandwidth (i.e.,
eight H20 GPUs and eight CX6 NICs per host). Additionally,
using SimAI-CP-Model for computation simulation yielded
similar conclusions, although with lower precision. This indi-
cates that even for out-of-stock GPU devices where SimAI-CP
cannot be used, SimAI can still provide meaningful results.
5.2 Quantifying Scaling-up Benefits
During the training of large language models (LLMs) in pro-
duction, end-to-end performance is significantly influenced by
model and framework parameters, particularly parallelization
strategies. Using brute force to explore all parameter combi-
nations in practical training clusters can result in considerable
overhead. However, with SimAI, we can automatically iden-
tify optimal parameter settings.

In collaboration with the LLM team and the training op-
timization team, we conducted comprehensive simulations
across various parameters. One surprising finding relates to
the tensor parallelism (TP) configuration. Conventional wis-
dom suggests that using more GPUs in a single TP group
can reduce the memory and computation load per GPU but
may increase communication overhead. Typically, produc-
tion practices set the TP group size to match the number of
GPUs within a host connected via NVSwitch, yet this lacks
quantitative analysis.

To understand the trade-offs associated with this parameter
setting, we performed experiments within SimAI using GPU
counts of 8, 16, 32, and 64, all interconnected with NVSwitch.
For each configuration, we ran training tasks on three different

models, aiming to identify performance trends and optimal
setups. Figure 11 illustrates the following key points:

1. In an 8-GPU host, the optimal TP sizes for GPT-3 13B,
LLaMA 65B, and GPT-3 175B are 4, 8, and 8, respec-
tively.

2. For any specific TP size, performance improves with
more GPUs in the host.

3. Even with a larger GPU count, performance may decline
if the TP size is inappropriate.

These findings offer two valuable guidelines for practical
LLM training:

1. The TP parameter should accommodate the entire model
layer. However, increasing the TP size can reduce end-
to-end throughput; a better strategy is to set up more data
parallel (DP) groups for parallel training.

2. GPU host design must consider the evolving nature of
LLMs. If a layer’s maximum size is known, the number
of GPUs within a host should be determined accordingly,
prioritizing enhanced scale-out performance.

6 Experience

6.1 Evolution of Simulator

Maintaining precision from the very beginning. Initially,
we used ASTRA-sim as the foundation for our simulator
prototype. Our first challenge was to assess the training per-
formance of emerging large language models (LLMs) like
GPT-3 and LLaMA. However, suitable traces or workloads
for simulating these models were unavailable, and the built-in
DNN [56] workload in ASTRA-sim only provided a rough
approximation, leading to significant discrepancies in sim-
ulations—ranging from 92.1% to 143.9% across different
testbeds. This made it impractical to base our simulation
model on the built-in workload.

To ensure accurate LLM workload simulations, we decided
to build SimAI-WG from the ground up. We began by analyz-
ing the open-source code of frameworks like Megatron [52]
and DeepSpeed [46] to reconstruct their workflows in our
simulator. While this improved precision, it had significant
drawbacks: (1) It demanded extensive human resources, re-
quiring our engineers to thoroughly understand each frame-
work’s components and execution details, which could take
months. (2) Keeping our models updated proved challenging
due to the rapid evolution of training frameworks, necessi-
tating continuous engineering efforts without any automated
update systems.

As a result, we abandoned this approach after our initial in-
ternal release and introduced the mock-framework method de-
tailed in this paper. By accurately replicating all sub-modules
and their relationships, we achieved substantial improvements
in simulation precision.

Measurements from our cluster show that end-to-end train-
ing times fluctuate due to factors like network transmission



(a) GPT-3 13B. (b) GPT-3 175B. (c) LLaMA 65B.

Figure 11: Training performance of different hosts and different TP sizes. The x-axis denotes the number of GPUs in a single
host. Because of the big model size and limited GPU memory, TP should be larger than 2 for GPT-3 13B and 4 for GPT-3 175B
and LLaMA 65B. And we can not run TP = 64 or TP = 48 for GPT-3 175B because the TP size should be the factor of both the
number of feedforward neural network (FNN) layers (96) and the world size (1024). We do not let TP exceed the number of
GPUs in a single host as the RDMA network is the bottleneck.

and hardware status. Workflow tracking indicates these fluc-
tuations are limited to 5%, with communication time account-
ing for only 30% of the total. As communication fluctuations
contribute negligibly to overall variance, we input averaged
parameter values into the SimAI-CP and SimAI-CM compo-
nents to achieve more consistent performance estimates.

Enhancing computation simulation precision. With a pre-
cise workload as input, we still faced a considerable gap be-
tween practical execution and simulation results. Early at-
tempts to derive execution times from theoretical models
yielded low precision. Additionally, our GPU-acceleration
team developed a fine-grained GPU simulator that provides
detailed simulation timings for specific operations, but inte-
grating it into our system resulted in excessive simulation
latency.

To address this, we focused on the key factors influenc-
ing execution times and developed SimAI-CP. Our operation
library construction unfolded in two phases. Initially, we ex-
tracted key sub-modules from LLMs and measured their exe-
cution times, achieving satisfactory precision. However, this
approach was limited to specific GPU types. In the second
phase, we split sub-modules into finer kernels categorized by
computation and memory access intensity. This allowed us
to estimate operation times on unavailable GPUs based on
performance specifications, enhancing the simulator’s appli-
cability.

Improving collective communication simulation precision.
We also encountered significant inaccuracies in collective
communication simulations when using ASTRA-sim. A criti-
cal issue was the inconsistency between the collective commu-
nication algorithms in ASTRA-sim and those in NCCL. Even
after implementing NCCL’s algorithms, results remained un-
satisfactory, prompting us to forgo optimizing ASTRA-sim
and instead mock key NCCL behaviors from scratch.

The improvements in computation and communication

simulations progressed concurrently. When both achieved
optimal outcomes, we combined SimAI-CP and SimAI-CM,
resulting in a simulator capable of simulating model training
with over 93% precision.

Speeding up the entire simulator. After achieving high pre-
cision, our final challenge was ensuring efficient simulation
execution. Built on NS-3, SimAI underwent a thorough re-
view of existing acceleration solutions, ultimately integrat-
ing UNISON [3]. Although we encountered context-access
conflicts and crashes during direct operation, implementing
global locks to manage inter-thread context access reduced
performance. We then analyzed context dependencies and
implemented lock-free access, achieving up to a 23× perfor-
mance improvement, making the simulator practically usable.
6.2 Simulation as a Service
The ultimate goal of developing this simulator is to meet the
simulation needs of various teams, transforming it into an
easy-to-use simulation service.

Running without GPUs. To achieve high simulation preci-
sion, we initially integrated original processing codes (e.g., Py-
Torch and NCCL) into SimAI. However, this required servers
with specific GPUs and environments. To create a genuine
simulation service that operates on any host, we decoupled
SimAI from the GPU software stack, recognizing and hooking
all CUDA-related functions.

Additionally, updating the operation library became an
independent procedure. When a new GPU type is available,
we conduct a full test of all defined operations on that GPU
and update the library as needed.

Task management and scheduling. As a simulation service,
SimAI must respond to concurrent simulation requests. To
enhance system throughput, we maintain a cluster of hosts.
Each request is assigned to an independent simulation task,
scheduled on the host with the lightest workload. We use
Kubernetes [29] for high scalability.



Parameter tuning. As mentioned in §5, adjusting the TP
group size significantly affects end-to-end simulation results.
In addition, SimAI allows fine-tuning various parameters in-
fluencing model training, including topology, model, and par-
allel strategy parameters. For example, modifying topology
parameters alters the virtual topology within the simulation,
impacting network behavior. Adjusting model parameters
or parallel strategies affects the computation kernel execu-
tion time and communication volume, ultimately impacting
training efficiency. Any input supported by SimAI can be
fine-tuned to optimize overall performance.

Fine-grained monitoring. For each simulation, we not only
generate reports detailing overall training time and throughput
but also incorporate extensive monitoring statistics. We devel-
oped a front-end system to present the variations of different
metrics during simulations.

7 Related work

AI infrastructure simulation. ASTRA-sim [45, 60] is the
only comprehensive DNN training simulator designed to
simulate the software and hardware co-design stack of dis-
tributed training systems. Dally [51] extends ASTRA-sim by
incorporating simulations of modern networking hardware
(e.g., NVIDIA Quantum [38] and Spectrum switches [39]).
SimAI is inspired by ASTRA-sim but introduces significant
improvements in workload generation, high-fidelity computa-
tion/communication simulation, and scalability.

GPU and computation simulation. Besides the roofline
model [58], which provides coarse performance estimates
for compute kernels or applications running on a GPU,
other works offer instruction-level GPU simulations, such
as GPGPU-Sim [2], Accel-Sim [22], SCALE-sim [50], and
Gem5-GPU [43]. However, these simulations are very time-
consuming for large-scale deployments.

Network simulators and scalability. Existing network sim-
ulators fall into three categories: discrete-event simulation
(DES) (e.g., NS-3 [47], OMNeT++ [55], OPNET [28]), math-
ematical model estimation [24, 30, 42], and learning-based
approximation (e.g., DeepQueueNet [61], MimicNet [63]).
DES simulators offer high-fidelity packet-level simulation,
and some works use parallel and distributed event simulation
(PDES) approaches [10, 18] to accelerate these simulations.
However, PDES often suffers from poor performance and
complex configurations. DONS [11] employs a data-oriented
design to reduce cache misses in simulation and can be au-
tomatically parallelized for intra-host and inter-host scenar-
ios, though it currently lacks support for RDMA transports.
UNISON [3] addresses this limitation with fine-grained parti-
tioning and load-adaptive scheduling. SimAI’s acceleration is
based on UNISON, enhanced with lock-free sharing of global

variables. In the future, SimAI will consider simulating net-
work virtualization scenarios to evaluate various virtualization
technologies (such as MasQ [15], etc.).

AI benchmarks. The recent surge in machine learning has
led to the development of several benchmark suites, but
many have limitations in LLM benchmarking. These suites
typically include benchmarks for various application do-
mains. MLPerf [31], ML-Bench [27], and AIBench [54]
offer comprehensive machine learning benchmarks, while
ParaDnn [57], DeepBench [7], and GNNMark [4] focus on
deep learning and graph neural networks. However, these
benchmarks only cover current applications, which may be-
come obsolete as models evolve rapidly.

Learning-based simulator. Learning-based methods, com-
monly used as end-to-end performance estimators (EPE) [20,
25, 48, 49, 62, 63], improve scalability by predicting metrics
like RTT and packet loss through deep learning models trained
on real network traffic. However, these methods require ex-
tensive training data, creating significant overhead and limit-
ing their applicability in large-scale simulations. In contrast,
SimAI employs discrete event simulators (DES) to mimic
the behavior of model training, enabling large-scale simula-
tions and generating valuable data for training learning-based
models.

Fault simulation. Fault simulation in model training is a fea-
ture worth exploring. Some existing works introduce various
types of network faults in the NS-3 simulator to evaluate the
impact on the network and the effectiveness of fault tolerance
mechanisms [5, 8, 16, 34]. We plan to incorporate simulations
for supporting model faults in future work.

8 Conclusion

In this paper, we introduce SimAI, a unified simulator de-
signed to provide accurate and efficient simulations for large
language model (LLM) training. SimAI integrates key pro-
cesses from leading training frameworks and collective com-
munication libraries, achieving an average of 98.1% align-
ment with real-world results across various test scenarios. To
enhance scalability and performance, SimAI incorporates a
lock-free, multi-threaded optimization. It is widely utilized
in Alibaba Cloud production environments, where it has con-
tributed to the development of valuable operational guidelines.
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9 Appendix
9.1 NCCL environment variables
Table 6 lists all the NCCL environment variables that docu-
mented in the official website [37] and whether they are sup-
ported in the SimAI simulator. We can see besides those we
think are unnecessary for simulation, only four environment
variables are not yet supported, which are adaptive routing
and Infiniband SHArP related features. We leave them as the
future work of the communication simulator of SimAI.

Table 6: NCCL environment variables and how they affects
the communication patterns

NCCL_IB_HCA Specifies which RDMA inter-
faces to use for communica-
tion

Yes

NCCL_IB_TC Specifies the InfiniBand Traf-
fic Class to use

Yes

NCCL_IB_QPS_
PER_CONNECTION

Number of IB queue pairs to
use for each connection be-
tween two ranks

Yes

NCCL_NVLS_ENABLE Enable the use of NVLink
SHARP (NVLS)

Yes

NCCL_MAX_ NCHAN-
NELS

Sets the maximum number of
NCCL channels per GPU

Yes

NCCL_MIN_ NCHAN-
NELS

Sets the minimum number of
NCCL channels per GPU

Yes

NCCL_MIN_NRINGS Sets the minimum number of
NCCL rings per GPU

Yes

NCCL_MAX_NRINGS Sets the maximum number of
NCCL rings per GPU

Yes

NCCL_CROSS_NIC Controls whether NCCL
should allow rings/trees to
use different NICs, causing
inter-node communication to
use different NICs on different
nodes

Yes

NCCL_NET_GDR_LEVEL Allows the user to finely con-
trol when to use GPU Direct
RDMA between a NIC and a
GPU

Yes

NCCL_ALGO Defines which algorithms
NCCL will use

Yes

NCCL_PXN_DISABLE Disable inter-node communi-
cation using a non-local NIC,
using NVLink and an interme-
diate GPU

Yes

NCCL_TOPO_FILE Path to an XML file to load
before detecting the topology

Yes

NCCL_P2P_DISABLE The NCCL_P2P_DISABLE
variable disables the peer to
peer (P2P) transport, which
uses CUDA direct access be-
tween GPUs, using NVLink or
PCI.

Yes

NCCL environ-
ment variable

Description Support?

Continued on next page



Table 6: NCCL environment variables and how they affects
the communication patterns (Continued)

NCCL_P2P_LEVEL Define the levelwhen to use the
peer to peer (P2P) transport be-
tween GPUs.

Yes

NCCL_P2P_DIRECT_
DISABLE

Define and set to 1 to disable
direct user buffer access across
GPUs.

Yes

NCCL_SHM_DISABLE NCCL will use the network
(i.e. InfiniBand or IP sockets)
to communicate between the
CPU sockets when SHM is dis-
abled.

Unnecessary

NCCL_SOCKET_IFNAME Specifies which IP interfaces
to use for communication.

Unnecessary

NCCL_SOCKET_FAMILY The
NCCL_SOCKET_FAMILY
variable allows users to force
NCCL to use only IPv4 or
IPv6 interface.

Unnecessary

NCCL_SOCKET_
NTHREADS

Specifies the number of CPU
helper threads used per net-
work connection for socket
transport

Unnecessary

NCCL_NSOCKS_
PERTHREAD

Specifies the number of sock-
ets opened by each helper
thread of the socket transport

Unnecessary

NCCL_DEBUG Controls the debug informa-
tion that is displayed from
NCCL.

Unnecessary

NCCL_BUFFSIZE Controls the size of the buffer
used by NCCL when commu-
nicating data between pairs of
GPUs.

Yes

NCCL_NTHREADS Sets the number of CUDA
threads per CUDA block

Unnecessary

NCCL_CHECKS_ DIS-
ABLE

Disable argument checks on
each collective call.

Unnecessary

NCCL_CHECK_ POINT-
ERS

Enables checking of the
CUDA memory pointers on
each collective call.

Unnecessary

NCCL_LAUNCH_MODE Controls how NCCL launches
CUDA kernels.

Unnecessary

NCCL_IB_DISABLE Prevents the IB/RoCE trans-
port from being used by NCCL

Yes

NCCL_IB_TIMEOUT Controls the InfiniBand Verbs
Timeout.

Yes

NCCL_IB_RETRY_CNT Controls the InfiniBand retry
count.

Yes

NCCL_IB_GID_INDEX Defines the Global ID index
used in RoCE mode

Yes

NCCL_IB_ADDR_ FAM-
ILY

Defines the IP address
family associated to the
infiniband GID dynamically
selected by NCCL when
NCCL_IB_GID_INDEX is
left unset.

Unnecessary

NCCL environ-
ment variable

Description Support?

Continued on next page

Table 6: NCCL environment variables and how they affects
the communication patterns (Continued)

NCCL_IB_ADDR_RANGE The
NCCL_IB_ADDR_RANGE
variable defines the range
of valid GIDs dynamically
selected by NCCL when
NCCL_IB_GID_INDEX is
left unset.

Unnecessary

NCCL_IB_ROCE_ VER-
SION_NUM

Defines the RoCE version
associated to the infini-
band GID dynamically
selected by NCCL when
NCCL_IB_GID_INDEX is
left unset.

Unnecessary

NCCL_IB_SL Defines the InfiniBand Service
Level.

Unnecessary

NCCL_IB_AR_
THRESHOLD

Threshold above which we
send InfiniBand data in a sepa-
rate message which can lever-
age adaptive routing.

No

NCCL_IB_CUDA_ SUP-
PORT

The
NCCL_IB_CUDA_SUPPORT
variable is used to force or
disable the usage of GPU
Direct RDMA

Unnecessary

NCCL_IB_SPLIT_
DATA_ON_QPS

This parameter controls how
we use the queue pairs when
we create more than one,

Yes

NCCL_IB_PCI_ RE-
LAXED_ORDERING

Enable the use of Relaxed Or-
dering for the IB Verbs trans-
port.

Unnecessary

NCCL_IB_ ADAP-
TIVE_ROUTING

Enable the use of Adaptive
Routing capable data transfers
for the IB Verbs transport.

No

NCCL_CUMEM_ENABLE Use CUDA cuMem* functions
to allocate memory in NCCL.

Unnecessary

NCCL_NET Forces NCCL to use a specific
network, for example to make
sure NCCL uses an external
plugin and doesn’t automati-
cally fall back on the internal
IB or Socket implementation.

Yes

NCCL_NET_PLUGIN Set it to a suffix string to
choose among multiple NCCL
net plugins

Unnecessary

NCCL_NET_
SHARED_BUFFERS

Allows the usage of shared
buffers for inter-node point-to-
point communication

Yes

NCCL_NET_
SHARED_COMMS

Reuse the same connections in
the context of PXN.

Unnecessary

NCCL_PROTO Defines which protocol NCCL
will use.

Yes

NCCL_COLLNET_ EN-
ABLE

Enable the use of the CollNet
plugin.

No

NCCL_COLLNET_
NODE_THRESHOLD

A threshold for the number of
nodes below which CollNet
will not be enabled.

No

NCCL_TOPO_
DUMP_FILE

Path to a file to dump the XML
topology to after detection.

Unnecessary

NCCL environ-
ment variable

Description Support?
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Table 6: NCCL environment variables and how they affects
the communication patterns (Continued)

NCCL_NVB_DISABLE Disable intra-node communi-
cation through NVLink via an
intermediate GPU.

Yes

NCCL_GRAPH_ REGIS-
TER

Enable user buffer registration
when NCCL calls are captured
by CUDA Graphs.

Unnecessary

NCCL_SET_STACK_SIZE Set CUDA kernel stack size
to the maximum stack size
amongst all NCCL kernels.

Unnecessary

NCCL_DMABUF_ EN-
ABLE

Enable GPU Direct RDMA
buffer registration using the
Linux dma-buf subsystem.

Unnecessary

NCCL_P2P_NET_
CHUNKSIZE

The
NCCL_P2P_NET_CHUNKSIZE
controls the size of messages
sent through the network for
ncclSend/ncclRecv operations.

Yes

NCCL environ-
ment variable

Description Support?
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