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Abstract
Cloud block storage (CBS) is a key pillar of public clouds.
Today’s CBS distinguishes itself from physical counterparts
(e.g., SSDs) by offering unique burst capability as well as
enhanced throughput, capacity, and availability. We conduct
an initial characterization of our CBS product, a globally de-
ployed cloud block storage service at public cloud provider
Alibaba Cloud. A key observation is that the storage agent
(SA) running on a data processing unit (DPU) which connects
user VMs to the backend storage is the major source of perfor-
mance fluctuation with burst capability provided. In this paper,
we propose a hardware-software co-designed I/O scheduling
system BurstCBS to address load imbalance and tenant inter-
ference at SA. BurstCBS exploits high-performance queue
scaling to achieve near-perfect load balancing at line rate. To
mitigate tenant interference, we design a novel burstable I/O
scheduler that prioritizes resource allocation for base-level us-
age while supporting bursts. We employ a vectorized I/O cost
estimator for comprehensive measurements of the consumed
resources of different types of I/Os. Our evaluation shows that
BurstCBS reduces average latency by up to 85% and provides
up to 5× throughput for base-level tenants under congestion
with minimal overhead. We verify the benefits brought by
BurstCBS with a database service that internally relies on
CBS, and show that up to 83% latency reduction is observed
on customer workloads.

1 Introduction

Cloud Block Storage (CBS) is a fundamental storage service
on public clouds. It provides virtualized block-level storage
volumes that can be dynamically provisioned and attached to
compute instances. Beyond what an SSD can already offer, a
CBS disk can provide additional benefits, including millions
of IOPS, tens of terabytes capacity, higher durability with data
replication, and out-of-box encryption support [1–4].

CBS adopts storage disaggregation to achieve better elastic-
ity [5–9]. The disaggregated architecture of CBS empowers

public clouds to independently scale storage and compute
resources. Block storage volumes can be created, resized, and
destroyed on demand without disrupting compute instances.
Such agility and flexibility allow enterprises to right-size stor-
age for different workloads in the cloud.

Due to the wide adoption of storage disaggregation, re-
searchers have studied various technical aspects of it, includ-
ing SSD co-optimization [10–12], kernel improvement [13,
14], kernel bypassing [7, 8, 10–12], storage-oriented net-
work [5–8], performance analysis [15], and applications [16].
The performance of disaggregated storage is rapidly improv-
ing with the aforementioned system advances as well as the
adoption of faster network/storage devices.

Through our analysis of the operational statistics of our
production clusters and characterization of the storage agent
(SA) which connects user VMs to the backend storage, we
draw three key insights of CBS at Alibaba Cloud.

First, the bottleneck is shifted to compute nodes. Many
existing systems target the bottleneck of SSDs [10, 11, 17].
We show that the distributed nature of cloud storage back-
end design and the over-provisioning tendency of cloud users
result in relatively low utilization of storage servers and de-
vices in terms of throughput. These characteristics of CBS
have shifted performance bottleneck from the backend to the
compute nodes. While backend traffic is well balanced by
design and enjoys the benefit of the law of large numbers,
compute nodes experience frequent traffic fluctuation due to
unpredictable usage patterns of users.

Second, the burst capability of cloud block storage am-
plifies the chance of congestion. Cloud providers offer on-
demand access to extra CPU and storage resources for running
instances [18–20]. User VMs are provided with a base-level
performance and the burst capability allows them to handle
temporary traffic bursts above the base level. However, it can
put a strain on the underlying server and cause performance
degradation. When a single VM bursts to an extremely high
throughput or multiple VMs on the same server burst con-
currently, VMs compete for the limited available resources,
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Figure 1: CBS architecture.

which leads to congestion. Moreover, heavy bursting VMs
can crowd out other VMs running at a steady state.

Third, lack of resource scheduling at data processing units
(DPUs) is the root cause of performance interference. To-
day, DPUs have become a standard component on compute
nodes in the cloud [21–25]. A DPU runs hypervisor and net-
work/storage functions freeing up host CPUs for customer
usage. However, handling bursts on a DPU is extremely chal-
lenging for SA, as a DPU only possesses limited processing
capability. Therefore, SA must strive for high resource utiliza-
tion and provide performance isolation under congestion.

With a brief summary, there are two extra implicit require-
ments for CBS when supporting burst. (i) Comprehensive
resource utilization: SA should fully leverage the available
processing capacity of the DPU to support higher bursts and
avoid congestion in the first place. (ii) Base-level performance
guarantee: SLOs must not be violated for a tenant who does
not exceed its base-level provisioning.

However, the existing SA meets neither of the goals by
default. First, SA maps user queues statically to I/O threads
running on DPU cores. An I/O thread can become congested
while other threads are still idle when a certain user queue
starts bursting. Second, an I/O thread serves I/Os in a First-
Come-First-Serve (FCFS) manner as long as a VM is within
its burst limit. VMs running at a steady state suffer high
queuing delay as a result when other VMs are bursting.

In this paper, to overcome load imbalance and tenant inter-
ference induced by bursts, we present BurstCBS, a storage
I/O scheduling system that leverages the hardware features
of our custom xDPU and software characteristics of our SA.
The design of BurstCBS offers a number of benefits. First, it
equally distributes I/Os to all I/O threads. Second, it allows
high bursts, while providing guarantees on base-level perfor-
mance per VM. Third, it detects different types of bottlenecks
on xDPU, avoiding triggering false congestion control. Fi-
nally, BurstCBS achieves the above benefits while keeping
high resource utilization and minimal scheduling delay.

BurstCBS integrates three key techniques to realize the
aforementioned benefits. First, considering the significant
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Figure 2: CDF of IOPS and BPS (bits per second) utilization
in a production cluster. 100% IOPS utilization is defined as
the maximum IOPS a node can saturate on a 4KB random
I/O workload and 100% BPS utilization is defined as the
maximum bandwidth that a node can saturate on a 128KB
sequential I/O workload.

overhead introduced by inter-thread messaging, we leverage
hardware capability and extensively optimize SA to imple-
ment I/O-granularity load balancing at line rate. With limited
DPU memory, we design a two-tier memory pool that dynam-
ically adjusts shared and queue-dedicated memory to achieve
high I/O performance and memory efficiency. Second, we de-
sign a novel burstable I/O scheduler that is aware of the base-
level/burst provisioning of each tenant. Rather than achieving
high resource utilization with a work-conserving scheduler
or guaranteeing strong performance isolation among multiple
tenants, it dynamically attempts to provide burst capability
to tenants that have excessive demand while monitoring and
protecting base-level performance for other tenants in real
time. Third, we design a vectorized I/O cost estimator that de-
couples potential resource bottlenecks that SA may encounter
on xDPU. It vectorizes I/O cost and adjusts its estimation with
a delay-based approach to allow the scheduling algorithm to
react to resource contention effectively.

We implement BurstCBS as a standalone system package
running on xDPU, and integrate it into the existing I/O work-
flow of SA. We conduct a comprehensive evaluation with
various types of workloads and show that BurstCBS effec-
tively protects base-level tenants while incurring a negligible
overhead. Overall, BurstCBS reduces average latency by up to
85% and achieves up to 5× throughput for base-level tenants
under congestion. A database service that internally relies on
CBS reports that up to 83% reduction of SQL query average
latency is observed with BurstCBS deployed.

2 Background

CBS architecture. Figure 1 shows the three-layer architec-
ture of CBS at Alibaba Cloud. User VMs are hosted in the
compute cluster, and all I/Os generated by VMs are forwarded
to the partitioning cluster for further processing. The parti-
tioning cluster controls data placement and failover, hiding
the complexity from the compute cluster [5, 9]. The persis-
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Figure 3: I/O workflow on xDPU.

tence cluster has tens of SSDs equipped on each node and
is responsible for data persistence. Nodes in different layers
are fully connected through a proprietary storage-optimized
protocol to achieve load balancing at the backend clusters
(i.e., partitioning cluster and persistence cluster).

CBS characteristics. A virtualized user disk is divided into
multiple segments which are then distributed among all parti-
tioning nodes. A partitioning node again divides each segment
into smaller chunks which are evenly stored and replicated
among persistence nodes. With this two-layer load-balancing
design, storage I/Os are evenly distributed among all partition-
ing nodes and persistence nodes. An interesting phenomenon
in the backend clusters is the asymmetry between IOPS/BPS
utilization and disk capacity utilization. Figure 2 shows the
distribution of IOPS/BPS per backend node in one of our most
active production clusters in a peak hour. Storage accesses are
balanced among all backend nodes resulting in low IOPS/BPS
utilization on them while 78% disk capacity is utilized.

xDPU. At Alibaba Cloud, we design and build xDPU, an SoC
that offloads infrastructure services from CPUs of compute
nodes. It consists of its own compute resources (CPU, mem-
ory), programmable hardware accelerators (FPGA), network
interfaces, and a DMA engine that can directly access guest
VM memory over PCIe. The latest version of xDPU integrates
eight 2.0GHz cores which are shared among storage, network,
and administration functions. There are two 100Gbps net-
work Ethernet ports available for use, and the DMA engine
has about the same data movement throughput.

Storage agent. A storage agent (SA) is installed on an xDPU.
It abstracts virtualized storage for VMs and connects the back-
end storage. SA consists of a control plane and a data plane.
The SA control plane runs in wimpy cores of xDPU in user
space. Among all cores, 2–4 of them are dedicated to SA
control threads. The SA datapath logic is burned into FPGA,
which moves data with the assistance of the DMA engine.
A total of 100Gbps NIC/PCIe bandwidth is made available
for SA. In Figure 3, we take NVMe WRITE operation as an
example to explain how an I/O is processed by SA on xDPU.
When a VM issues an NVMe WRITE command, the com-
mand is directly forwarded to FPGA on xDPU. The control

Table 1: Block storage burst capability of public clouds.

CloudA CloudB Alibaba Cloud

Burst support ✓ ✓ ✓
Credit-based burst ✓ ✓ ✓

Paid burst ✗ ✓ ✓
Max burst IOPS 3k 30k 1000k

Max burst BPS (MB/s) N/A 1000 4096
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Figure 4: CDF of base-level throughput utilization in a pro-
duction cluster.

threads of SA keep polling FPGA for new I/Os. When a con-
trol thread receives a new I/O, it splits the I/O into packets
and constructs headers for them. Meanwhile, FPGA fetches
the actual data via DMA. Once the header and body are ready,
FPGA sends the packet to the backend via fabric.

We adopt an FPGA-CPU cooperative SA design instead
of a fully FPGA-offloaded solution for three reasons. First,
there is complex branching in I/O splitting and packet encap-
sulation for cloud block storage, which can hardly utilize the
parallelism provided by FPGA. The wimpy CPU cores on
xDPU yet have a much higher clock speed than FPGA, which
makes CPU cores the right place to handle that part of logic.
Second, SA must maintain a significant amount of states in-
cluding thousands of connections to the distributed backend.
The FPGA on xDPU does not have that much memory, while
FPGA with more memory does not justify the cost. Third,
from an engineering perspective, development and testing of
FPGA code require much more effort which prevents us from
rolling out new features quickly. We only consider offloading
a software feature when it becomes mature enough.

3 Key Observations and Implications

We explain why the partitioning and persistence clusters are
not the bottleneck in §2. In this section, we share two obser-
vations on the compute nodes of production CBS at Alibaba
Cloud and reveal the corresponding challenges of providing
predictable performance for cloud block storage.

Observation 1: The Burst capability of CBS makes com-
pute nodes a common bottleneck. Conventionally, cloud
providers provision VMs with fixed CPU, memory, and I/O
resources to customers. However, a fixed amount of resources
can barely match the dynamic workload faced by cloud users.
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Figure 5: An incident of tenant interference under burst.

To bridge this gap, public clouds provide burstable
VMs [26–29] as an option. Essentially, burstable VMs pro-
vide a base level of resources with the ability to burst above
that when needed. Burstable VMs often come with a credit
system. A VM accumulates credits when running below its
base-level throughput while spending them to burst when it
needs extra resources to saturate its demand.

Making block storage burstable is crucial for delivering
burstable VMs because many workloads are bottlenecked on
storage I/Os. In Table 1, we compare the burst capability of
three widely used public clouds. All three cloud providers
support credit-based burst which accumulates tokens for a
user that does not use all of its base-level throughput. These
tokens allow a user to burst when its desired throughput is
beyond its provisioning. CloudB and Alibaba Cloud further
allow users to burst on demand and pay for the extra through-
put. What makes our case unique is that we allow a disk to
burst up to 1 million IOPS and 4GB/s read/write BPS (subject
to VM instance types and configurations).

We decide to allow this extreme burst capability for two rea-
sons. First, it is a substantial requirement of our customers, as
some of our CBS users have extremely bursty traffic. Figure 4
shows the distribution of base-level throughput utilization per
disk in a production cluster. Some disk bursts over 300% of
its base-level throughput. Second, fulfilling the burst require-
ment can further improve the overall resource utilization as
well. The majority of our users over-provision their base-level
throughput. In Figure 4, over 80% of disks use less than half of
their base-level throughput. This is not a unique phenomenon
at Alibaba Cloud. There is also previous work that reports the
over-provisioning tendency of cloud users [30].

Although credit-based burst is attractive, it raises a strong
challenge for us to provide predictable performance. Because
users keep accumulating tokens as long as they are below
base-level throughput, many VMs may possess tokens and
start to burst at the same time. When it happens, every tenant
on the impacted compute node observes higher latency and
lower throughput due to congestion.
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Figure 6: Impact of imbalanced load.

Our existing system addresses this problem by limiting the
number of co-located VMs. Under a simplified model, assume
a VM has the probability p to burst in a time interval, and we
have N VMs on the compute node. We know that VMs will
experience performance interference if k out of N VMs burst
concurrently. The chance of performance interference is:

P(X ≥ k) = 1−
k−1

∑
i=0

(
N
i

)
(1− p)N−i pi (1)

If we want to limit this probability to a small number, we
have to limit the number of VMs that can co-locate on a
compute node, which hurts the overall resource utilization.
In production, over 95% of the compute nodes have 32 or
fewer VMs allocated, which helps us maintain our SLA dur-
ing 99% of the time. Indeed, although we have made this
number small enough, we still observe performance interfer-
ence occasionally. Figure 5 shows one such incident. During
half an hour, multiple tenants were bursting and the software
limit on xDPU was frequently triggered resulting in throttling.
Although Victim1 and Victim2 ran below their base-level BPS
steadily, they both observed many unexpected millisecond-
scale average latency spikes during that time.

Observation 2: Inter-thread load imbalance and intra-
thread resource contention are the major sources of per-
formance interference on xDPU. In a VM, each vCPU cor-
responds to a queue pair. These queue pairs are mapped to
an SA control thread in a round-robin manner by FPGA on
xDPU. However, this mapping cannot adapt to dynamic work-
load in real time and is prone to cause load imbalance among
SA control threads. Figure 6 gives an example. CPU 1-1 of
VM 1 and CPU 2-2 of VM 2 are both mapped to SA control
thread 1. When CPU 1-1 is creating a burst I/O stream, control
thread 1 becomes congested. I/Os from CPU 2-2 experience
a high queuing delay even if other control threads are idle. In
short, uneven I/O intensity per vCPU created by users and
static vCPU to SA control thread mapping through FPGA
together lead to inter-thread load imbalance.

Bursting from a single thread in a VM is a common pattern
of many I/O intensive applications because they are generally



Table 2: Parallel execution support of popular databases. Non-
modifying ops refer to operations that do not change any
database records.

PE support Enabled by default

Oracle ✓ ✗
MySQL ✗ ✗

SQL server non-modifying ops ✓
PostgreSQL non-modifying ops ✓
MongoDB ✓ ✓

Redis ✗ ✗
Elasticsearch ✓ ✓

Db2 ✓ ✗
SQLite non-modifying ops ✗
Access ✗ ✗

built under the assumption that host CPU is not the bottleneck.
In Table 2, we surveyed parallel execution support of the top
10 database management systems in terms of popularity [31].
Relational databases either do not fully support parallel sub-
queries on multiple CPUs or do not enable parallel execution
by default. Redis is also known for its single-threaded design.

Our online experience also confirms this phenomenon. Fig-
ure 7 shows the I/O intensity per vCPU for 1000 randomly
sampled 4-core VMs in a minute in a production cluster. Over
80% of the total I/Os are from the most I/O-intensive core.

Besides inter-thread load imbalance, intra-thread resource
contention is another cause of unexpected performance degra-
dation. Processing an I/O consumes CPU cycles in the SA
control plane to construct the packet header and interconnect
bandwidth in the SA data plane to transmit the actual data.
When there is a resource contention, an I/O has to wait in
queues until the resources are available.

We observe there are two typical cases that an I/O stream
is impacted as an undesired result. First, a burst tenant with
a high I/O parallelism has a significantly better chance of
acquiring the resources than a base-level tenant. In Figure 8a,
when we increase the I/O parallelism of a burst tenant which
creates a mixture of 4KB to 128KB I/Os in the background,
serial write I/Os from the base-level tenant are also queued up
and average latency increases sharply due to HoL blocking.

Second, various CBS product offerings are available to
customers. Through our measurement and analysis, different
CBS product offerings differ in their capability on compet-
ing SA resources since they have significantly different I/O
processing pipelines. For example, in Figure 8b, we start a
ProductA disk and let it burst in the background, and no mat-
ter how much I/O parallelism we add to the ProductB disk, it
cannot reach a similar level of throughput to ProductA.

Summary of implications. Based on our observations, we
draw a few important implications for designing BurstCBS:

• The performance bottleneck is generally on compute
nodes rather than backend servers and devices.

• The burst capability of cloud block storage that we must
support is a main trigger of this bottleneck.

1st - 80.51 %
2nd - 13.77 %
3rd - 3.27 %
4th - 2.45 %

Figure 7: Distribution of I/Os from each vCPU of 4-core VMs
(1st is the busiest core, 4th is the least busy core).
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Figure 8: Resource competition on a control thread.

• The root causes are load imbalance among control
threads and resource competition within a thread.

4 BurstCBS Overview

BurstCBS is designed and implemented as a standalone sys-
tem package on xDPU (Figure 9). BurstCBS consists of three
key components: high-performance queue scaling, burstable
I/O scheduler, and vectorized I/O cost estimator.

High-performance queue scaling (§5.1). We rely on xDPU
hardware features to balance I/O distribution among SA con-
trol threads. However, it creates an extra challenge for SA
control threads to achieve high-performance I/O processing.
We propose a two-tier memory pool where BurstCBS moves
free buffers between the shared pool and queue-dedicated
pools for efficient use of the limited memory.

Burstable I/O scheduler (§5.2). Burst capability with perfor-
mance isolation requires non-uniform and dynamic resource
allocation among multiple co-located tenants. We design a
burst-capable I/O scheduler that periodically runs on every SA
control thread for resource allocation. It allows each tenant to
burst when possible while keeping performance interference
among tenants within an acceptable range.

Vectorized I/O cost estimator (§5.3). The key to allocating
the right amount of resources to tenants is an accurate estima-
tion of the resource consumption of each I/O. SA manages
multiple resources including CPU cycles and interconnect
bandwidth. Any of these resources can become the bottleneck
under various I/O patterns. We design a vectorized I/O cost
estimator that decouples the estimation of each resource.
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Figure 10: 1 : 1 binding vs. 1 : N binding.

5 BurstCBS Design

The goal of BurstCBS is to address the two aforementioned
issues: (i) lack of load balancing among control threads; (ii)
lack of resource scheduling among tenants. In this section, we
describe the design choices we make for each system module,
as well as the considerations behind them.

5.1 High-Performance Queue Scaling
When we design the queue scaling mechanism among threads,
there are two key requirements. First, load balancing must
be achieved with low overhead to avoid hurting latency and
throughput. Second, the mechanism should provide near-
perfect load balancing to avoid further thread synchronization.

Today’s DPUs are in the early stages and evolving fast.
Unlike NICs supporting Receive Side Scaling (RSS) [32],
there are no ASIC-based scaling solutions between host and
DPU cores. Instead, DPUs provide programmable hardware
on the datapath so that users can implement custom logic. For
example, NVIDIA BlueField-3 consists of a set of embedded
RISC-V cores named datapath accelerator (DPA) [23], and
our xDPU has FPGA as the equivalent. FPGA is capable of
performing lookup operations at a very high rate, which re-
sembles a programmable switch that controls packets through
match-action tables, making it an attractive candidate for of-
floading logic such as load balancing and rate control [33].

Evolution of load balancing on xDPU. Due to the limitation
of FPGA resources on early versions of xDPU, it does not
support load balancing by any means. We first make a com-
promise on the software side by creating one egress queue for
every ingress queue, and equally assign the egress queues to
all the SA control threads (Figure 10a). Assuming we have
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many ingress queues (one ingress queue per vCPU) and the
throughput of each ingress queue only varies in a narrow
range, we expect to see near-perfect load balancing.

This design works relatively well with our non-bursting
CBS product types. After we launch burstable disks, we start
to observe frequent load imbalance between control threads.
Although we can dynamically adjust queue binding, it takes a
few seconds to drain inflight I/Os and reconfigure I/O queues,
making it impossible to handle transient bursts.

For early versions of xDPU, we have explored two potential
software-based approaches to mitigate this issue: (i) designat-
ing a thread as a centralized dispatcher [34] and (ii) allowing
idle threads to steal I/Os from others [14, 35]. However, both
approaches create additional overhead that we cannot bear.
They require intensive messaging between threads, which
occupies a significant amount of time on wimpy cores. Fig-
ure 11 shows a 35% throughput loss if we switch to a work
stealing prototype which we develop using DPDK’s lockless
ring buffer [36] with a reasonable level of batching.

The newest version of xDPU adds support for load bal-
ancing by allowing mapping one ingress queue to multiple
egress queues (Figure 10b). We leverage this capability to
realize queue scaling to multiple threads. Although no sys-
tem assumptions are broken with multiple egress queues, it
significantly changes how we manage DPU memory.

Two-tier memory pool for fast I/O processing. In the early
years of SA development, we kept a shared pool of buffers
for I/O processing because DPU memory was very limited.
When an I/O arrives, I/O metadata which is required for
packet header generation is written to a buffer retrieved from
the memory pool. When we take the leap to support mil-
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lions of IOPS per node, we discover that a lot of CPU cycles
are wasted on writing disk/queue specific metadata into the
buffers. To achieve the best I/O performance (i.e., latency and
maximum IOPS), we make a design choice to let each queue
maintain its own memory pool, so every memory buffer can
be prefilled and will not be overwritten.

Adding extra queues makes each memory pool have even
fewer buffers, which means that the number of inflight I/Os a
queue can support becomes very limited. Not having enough
buffers diminishes the burst maximum we can support for
a disk. To remedy this loss, we move to a two-tier memory
pool design (Figure 12). Each queue still keeps its own mem-
ory pool with a few dedicated buffers, but we add a global
shared pool. When a queue experiences increased I/O depth,
it acquires extra buffers on demand from the global pool and
prefills them with its disk/queue specific metadata. It keeps
the extra buffers in its own memory pool and only returns
them when the burst terminates. With this design, we avoid
slow I/Os caused by repetitive metadata filling to the buffers
but keep memory allocation flexible enough.

5.2 Burstable I/O Scheduler

With load imbalance among threads addressed, we next focus
on resource scheduling within a thread. There are two essen-
tial requirements guiding our design of the scheduler. First, a
tenant should be able to use its base-level provisioning (i.e.,
base-level IOPS and BPS) with bounded latency no matter
how other co-located tenants behave. Second, a tenant should
be able to burst, but not exceed its burst provisioning. Every
tenant should have an equal chance and ability to burst when
they share the same burst provisioning and I/O pattern. Note
that providing each tenant an equal fraction of the resources
is a non-requirement for BurstCBS.

Base-level performance guarantee. Achieving base-level
performance consists of two implications: (i) a tenant can
achieve base-level IOPS/BPS with enough I/O parallelism;
(ii) average read/write latency is bounded for a tenant if it is
within its base-level IOPS/BPS. The latency guarantee is par-
ticularly important because it also determines the maximum
throughput that an application can achieve if synchronous
system calls are mostly used. In Figure 8a, we show that the
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Figure 14: Queuing delay for WildCBS.

latency of a victim tenant starts increasing dramatically with
more parallelism of other tenants on a compute node. The
reason is that a large amount of queuing delay is added when
a hardware/software bottleneck is hit.

These two requirements intuitively translate to a group of
rate controllers that limit the admission rate to prevent con-
gestion, which resembles Gimbal [11]. We call this design
BaseCBS, which provides performance isolation for base-
level performance. There are two major differences between
BaseCBS and Gimbal. First, Gimbal strives for black-box
SSD congestion avoidance, so it limits the number of in-
flight I/Os. On the contrary, we try to avoid congestion on
DPU. When an inflight I/O is being processed by the backend
servers and devices, it does not consume any resources on
DPU. Therefore, BaseCBS limits the I/O admission rate in-
stead. Second, Gimbal enforces strict fair sharing of resources
among tenants to achieve absolute fairness while we need
each tenant to get a share in proportion to its purchased base-
level provisioning as a cloud provider.

Bounded burst support. Although BaseCBS provides a
strong base-level performance guarantee, it does not provide
burst support because each tenant has a static throughput
limit. In Figure 13, even if VM3 is completely idle with no
incoming I/O, and admitting an additional I/O will not result
in congestion, VM2 is only allowed to process one I/O per
window. To this end, BaseCBS is only applied to some of the
legacy non-burstable CBS disks.

An easy modification that lets this design work is to as-
sign only part of the total resource Resbase to BaseCBS while
keeping the rest Resburst in a shared pool for potential bursts.
However, this design does not work out for CBS products.
On the one hand, this design limits the burst capability we
can provide on a compute node to Resburst . On the other hand,
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keeping separate and smaller resource pools directly leads to
lower resource utilization, which would force us to provide
CBS products at a higher price.

As Figure 4 shows, many of the tenants run way below their
base-level IOPS/BPS. An ideal design is to harvest the idle
base-level resources to support bursts and return the resources
when they are needed. Therefore, bounded burst support es-
sentially requires a work-conserving fair queuing scheduler
with a per-tenant rate limiter which enforces provisioning lim-
its (WildCBS). To this end, we use a weighted round-robin
(WRR) scheduler, a classic work-conserving fair queuing
scheduler that iterates through all ingress queues and pro-
cesses requests in proportion to their weights.

Figure 14 shows an example of three tenants that are provi-
sioned 1 base IOPS and 3 burst IOPS. 1 base IOPS per tenant
is achieved by having a global rate limiter of 3 IOPS and
each tenant is weighted equally in WRR scheduling. In this
example, VM1 runs at base-level usage, VM2 tries to burst
to 3 IOPS, and VM3 is completely idle. Due to the work-
conserving nature of WRR, WildCBS is able to fully utilize
idle resources from VM3, and the base-level IOPS of VM1
is still guaranteed. WildCBS is integrated into the existing
version of SA to enable burst capability in production.

However, a side effect of WildCBS is that a VM that runs
at or below base-level usage observes a significantly higher
latency while the bursting VM is barely impacted. We observe
that if some VMs dispatch I/Os at a much higher rate than
others, they can quickly consume all the resource budget,
leaving the rest of the VMs to wait until the next window. In
Figure 14, VM2 causes all I/Os from a base-level tenant VM1
to delay by a time window. It becomes very common when
the bursting VMs employ an extremely high I/O parallelism.

Burstable I/O scheduler. To remedy inadequacies of
BaseCBS and WildCBS, we leverage resource usage history
to instruct dynamic rate limiting. Figure 15 shows the design
of our burstable I/O scheduler (BIOS). BIOS actively col-
lects usage data and allocates resources in proportion to user
demands. It provides strong protection on base-level perfor-
mance by (i) enforcing the total resource allocation limit and
(ii) resuming base-level provisioning as soon as it discovers
insufficient resource allocation to under-utilizing tenants.

Algorithm 1 BIOS algorithm
1: procedure RUN_SCHEDULING( )
2: unused = total_alloc− reserved
3: for all tenants i = 1..n do
4: if statusi = burst or throttlei > 0 then
5: alloci← res_basei
6: else
7: alloci← alloc_histi×α

8: unused← unused−alloci

9: for all tenants i = 1..n do
10: wi =

usagei+throttlei×weight_throttle
∑usagei+∑ throttlei×weight_throttle

11: alloci← min(alloci +unused×wi,res_bursti)
12: if alloci > res_basei then
13: burst_tenants.append(tenanti)
14: function THROTTLE_IO(tenantk, io)
15: if allock ≥cost(io) then
16: allock← allock−cost(io)
17: else
18: tenantb←power_of_two_choices(burst_tenants)
19: if allocb ≥cost(io) then
20: allocb← allocb−cost(io)
21: else if reserved≥cost(io) then
22: reserved←reserved−cost(io)
23: else
24: return true
25: return false

Algorithm 1 depicts how resources are allocated. The al-
gorithm first allocates base-level provisioning to all tenants
unless they were below base-level and did not consume all
resources in the last window (lines 4-5). Otherwise, the algo-
rithm tries to lower their allocated resources to allow others
to burst (line 7). In the second round of allocation, it allo-
cates the remaining resources in proportion to the weighted
sum of consumed and throttled I/Os in the last window, but
it cannot exceed burst provisioning (lines 10-11). We add a
higher weight to throttled I/Os because they may have more
follow-up I/Os. The running time of this algorithm only in-
creases linearly with the number of tenants. This is important
because (i) there is not enough headroom on wimpy cores
for a complex algorithm, and (ii) we may have hundreds of
tenants running on the same compute node in extreme cases.

Fast base-level performance recovery. A scheduling algo-
rithm that relies on historical statistics needs to tolerate bad
predictions. The consequence of harvesting idle base-level
resources is that if a tenant suddenly starts dispatching I/Os
after being idle for a long time, it may observe high queuing
delay and inadequate IOPS, which breaks our commitment
on base-level performance guarantee.

A fast recovery mechanism is added as compensation be-
fore the algorithm catches its mis-prediction in the next
scheduling cycle. As shown in Algorithm 1 lines 18-20, a
base-level tenant that runs out of resources first tries to re-
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claim the extra resources from bursting tenants. Ideally, we
should reclaim resources from the tenant with the most re-
maining resources, which involves sorting all bursting tenants.
However, applying sorting on a per-I/O basis hurts I/O per-
formance significantly. We adopt power of two choices as an
alternative to eliminate sorting on the I/O processing path.

This mechanism could fail to take effect if bursting tenants
quickly consume all the allocated resources, leaving noth-
ing left for a base-level tenant to reclaim. Therefore, we add
another layer of protection of a shared resource pool (Algo-
rithm 1 lines 21-22). The intuition behind this optimization is
that, through our online measurements, it is unlikely multiple
base-level tenants would resume their usage at the same time.
So we reserve a small amount of pooled resources that are
just enough for two tenants to resume base-level provisioning.
It diminishes a little of burst maximum we can support, but
greatly helps us guarantee base-level performance.

5.3 Vectorized I/O Cost Estimator
BIOS is a proper framework for serving a mixture of base-
level and burst tenants. A key assumption of BIOS is that
consumed resource per I/O is known. However, IOPS and BPS
that an SA control thread on DPU can saturate are dynamic
subject to hardware specification, software implementation,
system configuration, and I/O pattern. To avoid overloading
SA, it is necessary to estimate the I/O cost accurately. Previous
storage systems focus on I/O cost estimation of SSDs [10,
11, 17]. Because manufacturers of SSDs reveal limited design
details of their products, existing work estimates SSD I/O cost
by profiling each device with synthetic workloads.

For CBS, the bottlenecks are on xDPU and SA, rather than
SSDs. Based on our online measurement, we identify three
major bottlenecks in xDPU and SA. (i) CPU: it takes a few
microseconds to process an I/O on an SA control thread on
average, so a control thread can handle a few hundreds of
thousands of IOs per second at maximum. (ii) Interconnect:
SA is able to use 100Gbps NIC bandwidth and ∼100Gbps
DMA bandwidth. (iii) Software: the read/write bandwidth
of SA is also constrained by a software rate limiter which
protects other non-storage services from resource starvation.
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Figure 17: Normalized CPU cost estimation of four I/O types.

Table 3: Effectiveness of estimation adjustment.

WildCBS BurstCBS
w/o adjustment

BurstCBS
with adjustment

Read Lat (us) 1096.89 848.57 248.97
Write Lat (us) 868.79 749.57 270.49

Furthermore, the relative ratios across consumed resources
are divergent on a per I/O basis. Our experiments show that a
4KB write I/O consumes 8× higher CPU time per byte com-
pared to a 128KB write I/O, while they always consume the
same egress bandwidth per byte. Therefore, the bottlenecks
are CPU and egress bandwidth for 4KB and 128KB write
I/Os respectively. This result implies that it is necessary to
model the cost of different I/O types independently.

If we describe I/O cost as a scalar, it creates resource under-
utilization. In Figure 16, a scalar cost must be given the value
of the most consumed resource, which unnecessarily leaves
other resources idle, limiting our ability to burst. In contrast,
if we decouple the costs of different resource types, higher
resource utilization can be achieved without breaching the
latency target. Therefore, we describe the cost of an I/O as a
vector of 4 dimensions: CPU time, ingress, egress, and soft-
ware limit. Ingress, egress, and software limits are shared
among all threads. We simply divide the global limit by the
number of threads to get the per-thread limit. Out of them,
only CPU time requires profiling. We derive the CPU time
of (product_type, rw, size) tuple from the maximum IOPS it
can achieve. We only profile I/O sizes from 4KB to 16KB, be-
cause the bottleneck is no longer on CPU beyond 16KB. We
fit the observed values into a linear model so that we can esti-
mate CPU time for all sizes. Figure 17 shows the normalized
estimation of different I/O types on the newest xDPU. Pro-
ductA and ProductB are both burstable CBS product classes.
Compared to ProductB, ProductA is further optimized for
higher throughput and lower latency by adopting advanced
hardware features and optimized software implementation.

Unpredictable misestimation handling. Although vector-
ized cost estimator accurately reflects I/O cost in common
cases, there are many circumstances that we cannot foresee
and integrate into our cost model in advance. A typical mis-
estimation happens when SA takes a different path for I/O
processing when the FPGA of xDPU experiences transient
hardware failures. During uncommon failures, SA enters a
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0 20 40 60
Burst VM I/O depth

0

100

200

300

400

Av
er

ag
e 

La
te

nc
y 

(u
s) WildCBS

BaseCBS
BurstCBS

(a) ProductA write

0 20 40 60
Burst VM I/O depth

0

200

400

600

Av
er

ag
e 

La
te

nc
y 

(u
s) WildCBS

BaseCBS
BurstCBS

(b) ProductA read

0 20 40 60
Burst VM I/O depth

0

200

400

600

Av
er

ag
e 

La
te

nc
y 

(u
s) WildCBS

BaseCBS
BurstCBS

(c) ProductB write

0 20 40 60
Burst VM I/O depth

0

200

400

600

800

1000

Av
er

ag
e 

La
te

nc
y 

(u
s) WildCBS

BaseCBS
BurstCBS

(d) ProductB read

Figure 19: I/O latency (I/O depth=1) with a BPS-intensive burst VM in the background.
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Figure 20: I/O latency (I/O depth=1) with an IOPS-intensive burst VM in the background.

heavy error handling branch which retries failed I/Os multiple
times until they reach the configured timeout and generates
error logs for further investigation. Doing so at a per I/O basis
consumes more CPU resources and bandwidth than a nor-
mal code path usually does. Based on our observation, the
amortized cost per successful I/O can be doubled when SA
experiences such unexpected failures.

To alleviate this impact, we introduce a delay-based cost
adjustment mechanism. BurstCBS is anchored to a target de-
lay. When the target delay is breached, we gradually increase
the cost. And we reduce the cost when the delay drops be-
low the target. Note that backend time is excluded from this
delay. The reason is that SSD is notorious for its high tail
latency [37–39], which may wrongly trigger the cost adjust-
ment mechanism. To allow the cost adjustment mechanism to
react quickly with only a few data points, irrelevant outliers
should be avoided. In Table 3, we show a case that SA keeps
detecting FPGA failures. BurstCBS without the cost adjust-
ment mechanism mis-estimates I/O cost and admits more I/Os
than its capacity, which results in high latency on the base-

level tenant. Adding cost estimation adjustment significantly
reduces the latency by admitting the right amount of I/Os.

6 Evaluation

In this section, we evaluate the performance of BurstCBS. Our
main baseline is WildCBS which combines WRR schedul-
ing and per-tenant rate limiters. Currently, WildCBS is the
most widely deployed version in our production clusters. We
also compare BurstCBS with BaseCBS which is a variant of
Gimbal and provides strong performance isolation between
tenants. All of the experiments are conducted on a compute
node with the newest version of xDPU.

Our experiments run two different FIO [40] workloads
which we typically use at Alibaba Cloud to make sure our
products can adapt to different usage patterns. One is IOPS-
intensive and contains a mix of 4KB-16KB I/Os. This work-
load consists of small I/Os which resembles the I/O pattern
of many transactional databases. The other is BPS-intensive
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Figure 21: IOPS with a BPS-intensive burst VM (I/O depth=64) in the background.
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Figure 22: IOPS with a IOPS-intensive burst VM (I/O depth=128) in the background.

and contains a mix of 4KB-128KB I/Os. Most of the I/Os are
within this range in our production environment. We include
both ProductA and ProductB I/Os in each workload.

We mainly evaluate three aspects of BurstCBS: thread load
balancing with high-performance queue scaling (§6.1), la-
tency (§6.2) and IOPS (§6.3) of base-level tenants with burst-
ing neighbors, and overall resource utilization at burst (§6.4).
We also evaluate effectiveness of the fast base-level through-
put recovery mechanism (§6.5) and the scalability of
BIOS (§6.6). At last, we perform a set of database experi-
ments to evaluate how BurstCBS performs under real use
cases (§6.7), and collect results from a node that serves an
internal database service (§6.8).

6.1 Inter-thread Load Balancing

We first evaluate inter-thread load balancing to understand the
effectiveness and overhead of FPGA-based load balancing
with high-performance queue scaling. Figure 18a shows the
maximum write IOPS that a tenant can achieve with one
or two SA control threads behind the FPGA load balancer.
We observe near-linear scaling on pure 4KB workload and
IOPS-intensive workload because the bottleneck is on the SA
control threads which run on CPU cores when a large amount
of small I/Os are being processed. Scaling on BPS-intensive
workload and pure 128KB workload is limited because the
NIC is already congested while the SA control threads are
not fully occupied. In Figure 18b, we repeat the experiment
with I/O depth unchanged and compare average latency, from
which we can draw a similar conclusion.

To show how well the load is balanced among multi-
ple threads, in Figure 18c, we compare BurstCBS with the
case that a user intentionally dispatches I/Os equally to each
ingress queue (by using multiple vCPUs which are mapped
to different queues) through FIO. We start six SA control
threads in total and take the ratio of maximum to minimum
values of throughput across threads to reflect uniformity. The
results demonstrate that they are almost equivalent in terms
of inter-thread load balancing.

6.2 Base-level Tenant Latency
A main goal of BurstCBS is to keep average latency under
SLO for tenants running below their base-level IOPS/BPS.
In this experiment, we run an I/O stream with different I/O
depths from a background VM. While the background VM is
running, we start a 4KB I/O stream of depth 1 on the victim
VM and observe its average latency. In Figure 19, we use
a read/write BPS-intensive I/O workload in the background
VM with I/O depths from 1 to 64, and we record the average
latency of four types of I/Os. We evaluate both read and write
I/Os from two burstable CBS product classes, ProductA and
ProductB. With the current implementation, ProductA is faster
than ProductB, and write is faster than read. Overall, average
latency is reduced by 68%–85% compared to WildCBS, and
is very close to BaseCBS which shows the ideal latency we
can possibly achieve with strong isolation.

Figure 20 shows the results on the IOPS-intensive workload
in the background. The latency reduction ranges from 40%
to 66% which is slightly less than that of the BPS-intensive
workload. This difference is because the IOPS-intensive work-
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Figure 23: Overall resource utilization during a burst.
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Figure 24: Responsiveness to sudden tenant activation.

load shifts bottleneck to the CPU cores. When the CPU cores
are congested, the performance gap between BaseCBS and
WildCBS is not as significant.

6.3 Base-level Tenant Throughput

Another critical requirement for BurstCBS is that a tenant
should be able to reach its base-level IOPS with a relatively
small I/O depth. In this experiment, we set the base-level IOPS
of the victim VM to 20k, and we expect it to reach that IOPS
on a 4KB I/O stream within I/O depth 8. We again validate the
effectiveness of BurstCBS on both BPS-intensive workload
and IOPS-intensive workload with all four different I/O types.
Figure 21 and Figure 22 show that BurstCBS can achieve the
desired IOPS for all the cases, while WildCBS at I/O depth
8 fails to meet our goal for seven out of eight cases, and the
IOPS is as low as 4,000. Similar to §6.2, there is a smaller
performance gap between BaseCBS and WildCBS on the
IOPS-intensive workload, which leaves limited space for us to
optimize. And ProductB read I/O is the most costly operation
out of the four I/O types, so BurstCBS barely reaches 20k
IOPS in Figure 22d, which is the lowest.

6.4 Burst Resource Utilization

Although protecting base-level performance is our first prior-
ity, we also seek for high resource utilization during bursts. In
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Figure 25: Scheduler scalability with number of VMs.

this experiment, the available bandwidth is limited to 3GB/s,
which is the maximum that an SA control thread can handle.
We start two VMs and let one VM burst as much as possible
while keeping the other VM running at I/O depth 2 which
produces an I/O stream below its base-level provisioning. In
Figure 23, the results demonstrate that BurstCBS loses about
5%–8% throughput compared to WildCBS, which meets our
expectation because we keep 5% of the total resources in the
shared pool for fast recovery. BaseCBS enforces fair resource
distribution at all times, which limits the resources that the
burst VM can use to half of the limit. Note that the maxi-
mum bandwidth cannot be achieved with the IOPS-intensive
workload due to the extra CPU overhead incurred by small
I/Os. And mixing ProductA and ProductB I/Os slightly im-
proves resource utilization because ProductA and ProductB
use different polling loops and idle loops waste CPU cycles.

6.5 Responsiveness to Sudden Activation

We next evaluate the fast base-level provisioning recovery
mechanism. A tenant should be able to recover its base-level
provisioning seamlessly even when the resources are lent to
other tenants. In this experiment, we create a VM with base-
level provisioning of 45k IOPS. We run I/O streams of depths
1-16 on this VM. Before we run each stream, we let the VM
stay idle for a few seconds to make sure that its resource
allocation drops to zero. When we run an I/O stream, the
metric we record is the number of throttled I/Os. We expect
to see no throttled I/Os when an I/O stream is within the
base-level provisioning. In Figure 24, we do not observe any
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throttled I/Os until we kick off a 60k IOPS stream which
already makes the VM a burst tenant.

6.6 Scalability
Scalability of the scheduler is also our concern because if
the periodic scheduler runs for too long, successive I/Os will
experience high latency and it will also hurt overall throughput
by occupying too many CPU cycles. In this experiment, we
solely run the scheduler on xDPU and vary the number of
VMs from 4 to 1024. 1024 is the theoretical maximum number
of VMs on a compute node in any near future. In Figure 25,
the scheduling time increases linearly with the number of
VMs and is always below 100µs. We introduce an additional
optimization that removes a VM from scheduling after it
becomes idle for a while. We run the experiment again with
64 active VMs at maximum. It takes less than 5µs to run the
scheduler once no matter how many VMs are there in total.

6.7 Application Performance
Transactional databases are one of the targeted use cases
of burstable CBS. We evaluate both a SQL database
(MySQL [41]) and a NoSQL database (RocksDB [42]) to
validate its improvement on real-world use cases. Following
our production specification, we provision 16 I/O-burstable
VMs with 100k base-level IOPS and 200k burst IOPS on a
compute node. The corresponding base-level BPS and burst
BPS we provision are 1400MB/s and 2800MB/s respectively.
Each VM has 8 vCPUs, 16GB memory, a 40GB ProductB
virtual disk as the OS disk, and another 1TB ProductB virtual
disk as the database data disk.

We first evaluate the latency of DB operations. For the
MySQL experiment, we install MySQL 8.0 on one of the
VMs. We develop a simple C program that connects to the
MySQL database, executes each type of operation 100k times,
and records the execution time. For RocksDB, we write a C++
program and again run put/get/delete 100k times with the
sync flag enabled to force an immediate disk I/O per write
request. When we execute the programs, we let the other
15 VMs burst by starting a BPS-intensive workload of I/O
depth 32 on each of them. In Figure 26, for all write operations
(insert, update, put, and delete), we observe about 60% latency
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Figure 27: YCSB throughput.

reduction. Databases extensively use cache for read operations
(select and get). Therefore, we do not observe significant
improvement on read operations in this experiment.

We next evaluate the performance improvement brought by
burst capability. In this experiment, we focus on YCSB [43]
over RocksDB which creates higher throughput than MySQL
with the same compute power. We leave the other 15 VMs idle
and set up eight RocksDB instances to better leverage burst
capability. For each DB instance, we create 10 million 1KB
entries and execute 1 million operations. As shown in Fig-
ure 27, 2× burst on BurstCBS results in 1.7×-2.5× through-
put improvement on various workloads over BaseCBS, and
the results are close to those of WildCBS.

6.8 Practical Benefits

We last confirm that BurstCBS improves our database user
experience. Here, we deploy BurstCBS to a production com-
pute node that serves the internal Relational Database Ser-
vice (RDS) and evaluate performance. RDS creates VM in-
stances with CBS disks and manages databases on the VMs
for users. A typical RDS VM instance comes with two data
disks: one ProductB disk as the main storage, and one Pro-
ductA disk as a buffer pool extension. Previously, RDS has
noticed neighbor interference and informed us.

In this experiment, an RDS VM instance is started and
preloaded with 100 tables of 10 million rows. Another VM is
used to connect to the RDS instance through a virtual private
network and run single-threaded sysbench [44]. In Figure 28,
8 or 16 burst tenants of I/O depth 32 run in the background.
The distribution of I/O sizes and the read/write ratio follow
the same pattern in production [7]. The results show that
average query latency is reduced by up to 83%. Note that
RDS read operations can also trigger disk writes because the
ProductA disk is used as a buffer pool extension.

This experiment is also run against a more fluctuant trace
for 30 minutes. A 30-minute second-scale monitoring his-
tory of a burst disk in production is amplified to the scale of
10GB/s to generate the I/O trace. The trace is replayed in the
background, and sysbench is used to record average query
latency. In Figure 29, while WildCBS creates latency spikes
of 20-50ms, BurstCBS is able to keep it under 10ms.
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Figure 28: RDS query latency with burst neighbors.

7 Discussion

We discuss a number of future improvements on our roadmap
that will further enhance BurstCBS.

Co-optimization with user OS kernel. Rate control at SA
requires a significant amount of DPU memory to buffer the
requests and may eventually cause out-of-memory. Limiting
I/O rate on the user side can mitigate this issue. Furthermore,
newer Linux kernel supports NVMe WRR [45], a feature that
allows a user to prioritize certain I/Os, which helps protect
the performance of critical I/Os when SA is congested.

Automated cost profiling. We currently maintain three differ-
ent versions of xDPU and many more system configurations
in our production environment. It brings a heavy operational
burden if we need to manually profile I/O cost every time we
make a software/configuration update. Instead, we are devel-
oping an automated I/O cost profiler which profiles I/O cost
offline at system bootstrap and adjusts cost adaptively online.

Inter-server scheduling. The best way to handle congestion
is always to avoid it in the first place. Once we detect multiple
co-located VMs often burst at the same time, we can signal the
control plane of VM instances to migrate them when possible.
Because the time to migrate a VM ranges from a few seconds
to several minutes and it causes temporary unavailability, we
still rely on BurstCBS to handle short-term congestion.

8 Related Work

Cloud storage systems. There is a large body of work on
cloud storage systems [5–9, 16, 17, 46–52]. Despite the differ-
ent interfaces these systems expose (e.g., block store, object
store), most of them are distributed systems to meet the scale
of cloud. Existing research mainly focuses on the backend
system design. Tectonic [51] and Pangu [52] provide unified
backend storage for a large number of tenants and different use
cases. To overcome the inefficiency of traditional in-kernel
network stacks, RDMA [5, 6, 48] and other kernel bypassing
network stacks [7, 8] are deployed. BurstCBS instead focuses
on burst capability support of cloud block storage. We reveal
and tackle the major challenges to achieve both extreme burst
and base-level performance protection.
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Figure 29: RDS query latency with replayed production back-
ground traffic.

Resource sharing for storage systems. Previous work has ex-
plored how to achieve work-conserving scheduling and/or fair
sharing for storage systems [11,17,53–62]. Many of them also
involve estimating per I/O cost for efficient resource schedul-
ing. However, previous work mainly targets the bottleneck of
storage media (e.g., HDD and SSD), while the bottleneck we
encounter is on DPU. A highly related system is Gimbal [11]
which designs a fair queuing scheduler for performance isola-
tion on the server side of disaggregated storage with DPUs.
BurstCBS distinguishes itself by supporting dynamic bursts
and addressing unique challenges (i.e., load imbalance and
cost estimation) on client-side DPUs.

9 Conclusion

This paper presents BurstCBS, a hardware-software co-
designed storage I/O scheduling system that achieves inter-
thread load balancing and intra-thread resource schedul-
ing. BurstCBS applies three techniques: a high-performance
queue scaling mechanism, a burstable I/O scheduler, and a
vectorized I/O cost estimator. We implement and evaluate
BurstCBS on xDPU-based servers. We show that BurstCBS
provides base-level performance protection while allowing
tenants to burst as much as possible.
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