
Alibaba HPN: A Data Center Network for Large Language Model
Training

Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang Fu, Xuemei Shi

Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng Zhang, Xianlong Zeng

Zhiping Yao, Ennan Zhai, Dennis Cai

Alibaba Cloud
Abstract
This paper presents HPN, Alibaba Cloud’s data center network

for large language model (LLM) training. Due to the differences

between LLMs and general cloud computing (e.g., in terms of traf-

fic patterns and fault tolerance), traditional data center networks

are not well-suited for LLM training. This requires us to design a

new data center network architecture specifically for LLM training.

Unlike general cloud computing which generates millions of small

flows (e.g., lower than 10Gbps), LLM training produces a small

number of periodic, bursty flows (e.g., 400Gbps) on each host. This

characteristic of LLM training predisposes Equal-Cost Multi-Path

(ECMP), the commonly used load-balancing scheme in traditional

data centers, to hash polarization, causing issues such as uneven

traffic distribution. HPN introduces a 2-tier, dual-plane architecture

capable of interconnecting 15K GPUs within one Pod, typically ac-

commodated by the traditional 3-tier Clos architecture. Such a new

architecture design not only avoids hash polarization by decreasing

the occurrences of ECMP, but also greatly reduces the search space

for path selection, thus allowing us to precisely select network

paths capable of holding elephant flows. Another challenge in LLM

training is that its requirement for GPUs to complete iterations

in synchronization makes it more sensitive to single-point failure

(typically occurring on ToR). HPN proposes a new dual-ToR design

to replace the single-ToR in traditional data center networks by

addressing the layer-2 synchronization challenges. HPN has been

deployed in our production for more than eight months. We share

our experience in motivating, designing, and building HPN, as well

as the operational lessons of HPN in production.

CCS Concepts
• Networks→ Network architectures; Data center networks;
Network components.

Keywords
Network Architecture, AI Infrastructure, Large Language Model,

Model Training, Data Center Networks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0614-1/24/08

https://doi.org/10.1145/3651890.3672265

ACM Reference Format:
Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang

Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng

Zhang, Xianlong Zeng, Zhiping Yao, Ennan Zhai, Dennis Cai, Alibaba Cloud
. 2024. Alibaba HPN: A Data Center Network for Large Language Model

Training. In ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3651890.3672265

1 Introduction
The large language model (or LLM) [13, 15–17, 24] has brought

about tremendous revolutions to today’s AI and cloud services. The

training of an LLM, which has hundreds of billions of parameters,

relies on a large-scale distributed training cluster, typically equipped

with tens of millions of GPUs. Due to its unique characteristics,

LLM training presents new challenges to the design of data center

networks.

Problem 1: Traffic patterns. The traffic patterns of LLM training

are different from those of general cloud computing in terms of

(1) low entropy [19, 22] and (2) bursty traffic. Specifically, general

cloud computing generates millions of flows, which gives the net-

work high entropy. Each flow is continuous and low-utilization

(e.g., typically below 20% of the NIC capacity), as shown in Figure 1.

On the contrary, LLM training generates very few but periodically

bursty flows, resulting in low entropy and high utilization for the

network. The burst can directly reach the NIC capacity, which is

400 Gbps in our production clusters (as shown in Figure 2). Such

traffic pattern undermines the Equal-Cost Multi-Path (ECMP) load

balancing scheme widely deployed in our traditional data center

networks. Since ECMP employs hash algorithms to distribute traffic

evenly across all equivalent paths, ECMP can work well in a net-

work with high-entropy and low-utilization traffic pattern (i.e., the
traditional data center network), but not in the case of LLM training

which is the opposite. As a result of LLM training’s traffic pattern,

our traditional data center networks have recently encountered

multiple performance issues resulting from the above-mentioned

traffic pattern.

Problem 2: Higher sensitivity to faults, especially single-
point failures. The LLM training is a synchronous process, where

all GPUs cooperate to finish a series of iterations; thus, an anomaly

in any GPU can delay or crash the entire training process. This

means LLM training is more sensitive to a fault than traditional

cloud computing. We found that the most significant impact on our

LLM training was caused by Top-of-Rack (ToR)-related single-point

failures, which can affect a wide range of GPUs. Further, the failures

in LLM training are costly. Our production statistics show that a

https://doi.org/10.1145/3651890.3672265
https://doi.org/10.1145/3651890.3672265

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

fault in LLM training can cost the company 20× more than when it

occurs in general cloud computing.

Our contribution: AlibabaHigh Performance Network (HPN).
In this paper, we share our new data center network architecture,

HPN, which is designed for LLM training.
1
Compared to traditional

data centers [19, 21, 53, 58], HPNmakes the following contributions:

• HPN proposes a novel ToR deploying design (i.e., the non-stacked
dual-ToR design) to avoid ToR-related single-point failure (§4.2).

Compared with the stacked dual-ToR solutions proposed by

switch vendors (§4.1), non-stacked dual-ToR eliminates the direct

synchronization between two switches, greatly improving the

reliability in the large-scale deployment.

• By addressing the challenge in adopting the latest 51.2Tbps

switching chip (§5.1) and employing rail-optimized network (§5.2),

1K GPUs can be contained in a tier1 network, making 96.3% of

training jobs enjoy the best network performance. More impor-

tantly, HPN accommodates 15KGPUs—which is the conventional

size of a training cluster—in a 2-tier dual-plane architecture (§6),

rather than a 3-tier Clos architecture, significantly decreasing the

occurrence of ECMPs. Such a design feature not only avoids hash

polarization [18, 72] in the Aggregation layer (by dual-plane de-

sign), but also decreases the searching space by 1-2 magnitudes

for selecting ideal paths carrying different elephant flows.

• We further share the design considerations of supporting larger

scale (§7) and inference (§8) in the coming future, as well as

experience during the design, deployment and operation of

HPN (§10).

Deployment. HPN has been built and used in our production for

over eight months, and we have not encountered any ToR-related

single-node failure. Our experience shows that the LLM training

throughput with HPN is 14.9% higher than that of traditional data

center networks (§9).

Ethics:This work does not raise any ethical issues.

2 Background and Our Goals
2.1 Large Language Model (LLM) Training
LLMs would contain more than 100𝐵 parameters and are con-

structed with multiple layers. The efficient training of these models

requires dozens to thousands of GPUs. Mainstream training frame-

works (e.g., Megatron-LM [41, 67] and Deepspeed [30]) employ a

hybrid of parallel strategies to coordinate all GPUs efficiently.

Data parallelism (DP). The training dataset is evenly distributed

among all GPUs, where each GPU has a replicate of the entire

model. In each iteration, all GPUs employ AllReduce to synchronize

calculated gradients.

Pipeline parallelism (PP).Amodel is divided into multiple stages,

each containing a series of continuous layers of the model and

served by different GPUs. Each GPU in the pipeline receives the

input from the previous stage and sends the output to the next

stage in the pipeline.

1
We choose to design and build a new data center network based on Ethernet rather

than adopting an InfiniBand-based solution (e.g., DGX SuperPod [21]) for two reasons:

(1) avoiding vendor lock-in and (2) leveraging the power of the entire Ethernet Alliance

for faster evolution.

0 4 8 12 16 20 24
Time (hour)

0

1

2

Tr
af

fic
 (G

bp
s) Traffic-In

Traffic-Out

0

100

200

#C
on

ne
ct

io
ns

 (K
)

Connection

Figure 1: Traditional cloud computing traffic pattern.

Tensor parallelism (TP). The entire model or each layer in PP can

further be horizontally split. Therefore, each layer is distributed

across a group of GPUs. In each iteration, GPUs in the same TP

group employ AllReduce/AllGather to synchronize calculated out-

puts and corresponding gradients.

Considering (1) the large training scale and (2) various paral-

lel strategies, traffic patterns observed in LLM training are quite

different from traffic patterns in either elastic cloud computing or

traditional DNN training.

2.2 Traffic Patterns in LLM Training
Traditional data center network architectures (e.g., fat tree [53]) are
mainly designed for general, elastic cloud computing. We observed

that the traffic patterns of LLM training are different from those of

general cloud computing.

Periodic burst in network utilization. In our production, general
cloud computing generates millions of flows, and traffic utilization

generally stays below 20%. The overall traffic pattern is relatively

continuous and steady, which slowly changes on the hourly scale

(as shown in Figure 1). On the contrary, the LLM training generates

very few, but periodically bursty flows, as shown in Figure 2 and

Figure 3. More specifically, Figure 2 shows the throughput of a NIC

(2×200Gbps) in our in-production LLM training. The NIC periodi-

cally transmits a large amount of data, which instantly fulfills the

network capacity (400Gbps) and lasts from a few seconds to tens of

seconds. This traffic pattern arises from the need for gradient syn-

chronization. A typical LLM training involves a series of iterations,

and during each iteration, data synchronization is required between

different parallel groups (each with many GPUs). The bursts occur

during the backward phase of each training iteration, where all

data parallel groups need to synchronize gradients through the

AllReduce collective communication operations.

The sudden bursts of network utilization imply that LLM training

requires extremely high network bandwidth. We, therefore, need

to ensure that the network for LLM training can provide sufficient

physical bandwidth for the bursts to avoid packet loss. In addition,

the synchronicity of traffic indicates that LLM training is particu-

larly sensitive to long-tail delays. Any long-tail flow would be an

obstacle to the completion of the entire collective communication

operations, putting all parallel groups on hold.

Small number of flows. As shown in Figure 1, a general cloud

computing instance typically generates hundreds of thousands

of connections; on the contrary, each node in the LLM training

generates very few connections. As shown in Figure 3, a GPU

uses only a few dozen to hundreds of connections. Combined with

the previously mentioned bursty high network utilization in the

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 50 100
Time (s)

0
100
200
300
400

Th
ro

ug
hp

ut
 (G

bp
s) NIC-1

NIC-2
NIC-3
NIC-4

NIC-5
NIC-6

NIC-7
NIC-8

Figure 2: NIC egress traffic pattern dur-
ing production model training.

100 101 102 103

#Connections

0.0

0.5

1.0

C
D
F

Figure 3: Number of connections per
host.

LLM1 LLM2 LLM3 LLM40

1

2

3

4

C
he

ck
po

in
t I

nt
er

va
l (

h)

Figure 4: Checkpoint intervals of rep-
resentative LLM jobs.

training process, the actual data volume required to be sent per

flow is substantial.

Traditional data centers are a poor fit for the traffic patterns
of LLM training. Traditional data center networks employ ECMP

as the load-balancing scheme. ECMP assumes that the hash algo-

rithm can effectively distribute the traffic evenly across all equiva-

lent paths when there are a large number of flows in the network.

This assumption holds under general cloud computing traffic pat-

terns, which typically generate millions of flows (as shown in Fig-

ure 1). However, such an assumption is no longer valid in the case of

LLM training, which involves a few large flows (also known as hav-

ing an elephant flow distribution). In our practice using traditional

data centers for LLM training, we have already encountered multi-

ple performance issues due to hash polarization, severely affecting

the LLM training efficiency.

Even worse, due to the 3-tier architecture nature of traditional

data center networks, the forwarding of an elephant flow would go

through three times of hashing (i.e., ToR, Aggregation, and Core lay-
ers). Since the input for each hashing (i.e., the five-tuple of the flow)
remains the same, the effect of such “cascading” hashing can lead to

an even more severe load imbalance (i.e. hash polarization [18, 72]).

We have observed many load imbalance cases in our production

caused by hash polarization, especially in the cross-pod communi-

cation scenarios where traffic needs to pass through all three layers

of switches to arrive at the destination.

2.3 LLM Training is Sensitive to Faults
Compared to general cloud computing, failures have a more severe

impact on LLM training.

First, LLM training is more sensitive to failures. In LLM training,

multiple GPUs cooperate to finish each iteration, and we need many

iterations (lasting dozens of days) to complete the entire training

process. Therefore, a failure on any GPU or host can directly slow

down the current iteration, or even crash the entire LLM training

process, (detailed evaluations are in §9.3).

Second, failures in LLM training can result in significant costs.

When a failure occurs, the LLM training typically leverages check-

points to recover from the failure [41, 43]; however, since gener-

ating a checkpoint in LLM training requires substantial storage

(e.g., 30GB per GPU) and high overhead (e.g., 100s), our customers

choose to generate a checkpoint only every few hours. For example,

in Figure 4, we record the checkpoint generation intervals in four

representative production LLMs, which typically range from two

to four hours, (even at these high intervals, the overhead intro-

duced by checkpointing is still around 5%). This means that once a

failure occurs, the entire training must roll back to several hours

02
/23

03
/23

04
/23

05
/23

06
/23

07
/23

08
/23

09
/23

10
/23

11
/23

12
/23

01
/24

0.00

0.05

0.10

Li
nk

 F
ai

lu
re

 R
at

io
 (%

)

Figure 5: Monthly link failure
ratio.

0 1000 2000
#GPUs

0.0

0.5

1.0

C
D
F

Figure 6: #GPUs used in pro-
duction training jobs.

earlier and be retrained. Given that training costs are 20K dollars

per hour for a training task utilizing 3K GPUs, a failure could lead

to a financial loss of 30K dollars.

Single-point failure matters. While the tier2 and tier3 layers

have abundant redundant links, each NIC connects to a ToR via a

single link, posing a single point of failure risk. When the accessing

link (i.e., the link connecting a NIC and a ToR) is down, it causes

the corresponding host to disconnect. Even worse, the failure of a

ToR can make dozens or even hundreds of hosts unavailable, lead-

ing to severe service quality degradation. LLM training requires

thousands of GPUs to train collaboratively, involving dozens of

ToRs and thousands of optical modules and links. With such a large

scale, it is extremely hard to guarantee that no network device is

down. Tools like monitoring and troubleshooting systems work

for reactively localizing root causes of failures, but cannot prevent

training from crashing. In our operating clusters, as shown in Fig-

ure 5, 0.057% of NIC-ToR links fail each month, and about 0.051% of

ToR switches encounter critical errors and crashes. Under this high

failure rate, a single LLM training job would encounter 1-2 crashes

each month. Furthermore, 5K-60K link flapping cases happen each

day, introducing temporary performance degradation as well.

2.4 Goals with Practical Considerations
Based on the unique characteristics of LLM training, we decided to

build a new network architecture specifically for LLM training. We

should meet the following goals.

G1: Scalability. Figure 6 shows that the number of GPUs required

by a single training job in production is less than 3K. To accommo-

date the requirement evolution in the coming future, we set the

primary capacity goal of containing 15K GPUs, which is also in

line with mainstream LLM training providers (e.g., Google, AWS,

Azure, and NVIDIA) offering each training cluster with 10K-30K

GPUs [12, 20, 21, 23]. Based on our experience, the number of

model parameters may continue to rise by an order of magnitude in

the next several years (i.e., from 1 trillion to 10 trillion parameters).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

……

Core256Core1

Agg8Agg1

ToR2ToR1ToR2ToR1

CPFS/OSS Cluster

Agg8Agg1

Frontend Network

High-bandwidth Intra-host NetworkHost 1

GPU1 GPU2 GPU7 GPU8
NIC1 NIC2 NIC7 NIC8NIC0

Backend Network

Core32Core8 Core64Core33

…

ToR1 ToR2 ToR15 ToR16ToR1 ToR2 ToR15 ToR16

…
Agg1 Agg60 Agg1 Agg60

1024 (active) + 64 (backup) GPUs
Host 1 Host 136 Host 1 Host 136

Segment 15Segment 1

Plane1 Plane2
Pod 1

Pod N

NIC1 NIC8

60*400G
(128+8)*200G

8*400G
120*400G

128*400G

64*400G
64*400G Core1 Core25 Core40 Core57Core64 Core193

Pod 1 Pod N

64*400G
64*400G

15K GPUs

Figure 7: HPN overview. A solid parallelogram represents a segment (containing 1024 active GPUs and 64 backup GPUs). Two
dotted parallelograms represent dual-plane. A cube contains an entire Pod (containing 15K GPUs).

The additional capacity goal of our data center, therefore, is to be
able to support the scale at 100K GPUs.

G2: High performance. The performance is important. To en-

hance the performance, our design should minimize network hops

as much as possible. Reducing the number of hops is not only to

lower latency but also to decrease the times of ECMP hashing,

making the path selection scheme more precise. Furthermore, our

design should allow as much direct GPU-to-GPU communication

as possible, rather than through the network.

G3: Single-ToR fault tolerance. Based on our observations in §2.3,
the most critical risk potentially affecting the reliability of the LLM

training is the fault of single-ToR. Our new network architecture,

therefore, should fundamentally avoid the failure of single-ToR at

the topology level.

3 HPN Architecture Overview
We design and build HPN, our new data center network specifically

for LLM training. HPN meets our goals in §2.4. Figure 7 presents
the overview of HPN.

HPN consists of frontend and backend networks. The backend

network mainly supports the traffic during the training process,

while the frontend network carries the others (e.g., the traffic for

management, inference and storage). For LLM training, we mainly

focus on the backend network of HPN. In HPN’s backend network,

each host is equipped with 8 GPUs, each connected through a

dedicated high-bandwidth intra-host network (e.g., NVLINK [49]).

Each GPU can directly communicate with other GPUs via this

intra-host network with 400GBps-900GBps (bidirectional).

To offer the maximum network capacity, we equip each host with

9 NICs, each with 2×200Gbps. One of these nine NICs (i.e., NIC0 in
Figure 7) is connected to the frontend network, while the remaining

eight NICs connect to the backend network to carry traffic during

the LLM training. Each of these eight NICs serves for a dedicated

GPU (named rail), and thus each GPU has a dedicated 400Gbps

of RDMA network throughput, resulting in a total bandwidth of

3.2Tbps. Such a design aims to maximize the utilization of the

GPU’s PCIe capabilities (PCIe Gen5×16), thus pushing the network
send/receive capacity to the limit. The two ports of each NIC are

connected to different ToRs, respectively, forming a dual-ToR design.

This dual-ToR design aims to avoid the single-ToR failure issue,

which is a key design detailed in §4.

In tier1, given that the intra-host network (e.g., NVLINK) has
higher capacity than the inter-host Ethernet network, we employ

the rail-optimized design [21], where NICs belong to different rails

are connect to different set of ToRs. Combined with the abovemen-

tioned dual-ToR design, a host connects to 16 ToRs in the backend

network. By fully utilizing the 51.2Tbps switching chip’s capability,

HPN enables 1024 GPUs to be interconnected through a single-

layer network, called a segment (§5). Figure 6 quantifies our benefit:

about 96.3% of in-production LLM training jobs take less than 1K

GPUs; thus, in HPN, these jobs can be put in one segment, achieving

the utmost network performance.

Tier2 interconnects multiple segments. We incorporated the

dual-ToR feature to design a dual-plane forwarding at this layer (as

shown in Figure 7). The traffic sent from port 0 of the source NIC

can be forwarded through the network and eventually received only

by port 0 of the destination NIC, physically isolated from traffic

from port 1 of source NICs. This dual-plane design avoids the issue

of hash polarization at the Aggregation layer, without affecting

the 1:1 network bisection bandwidth. Furthermore, the dual-plane

design doubles the number of GPUs covered by a Pod, supporting

the interconnection of 15K GPUs (§6).

For a larger scale that may be required by a single job in the

future, we also designed Core layer interconnections between dif-

ferent Pods. Since a single Pod scale has already reached 15K GPUs,

jobs that need to go through the Core layer for coordination are

rare. In our design, we opted for an oversubscription of 15:1 in the

Aggregation-Core layer. Based on the traffic characteristics of LLM

training, we assign the PP communication across Pods, ensuring

that cross-Pod transmission minimally impacts on the end-to-end

training performance (§7).

For the frontend, it is mainly used to carry traffic for manage-

ment, inference and storage. The physical decoupling of the fron-

tend and backend networks ensures that the frontend traffic does

not affect the main procedures of training jobs. Furthermore, the

frontend network is designed with an oversubscription of 1:1, mak-

ing it extensible to more scenarios, such as the mixed deployment

of LLM training and inference (§8).

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Out-of-band networkInband link

ToR1

Host1

Data plane Data plane

NIC 1

Primary Secondary

MAC/ARP/Routing
synchronization

Controller status synchronization

Control plane Control plane

ToR2

ARP message

ARPARP

Bond

BGP info

(a) Stacked dual-ToR.

Host1

ARP Broadcast

NIC 1

Control plane

Data plane

ToR1

BGP

ARP Host RoutesARP Proxy

Control plane

Data plane

ToR2

BGP

ARPHost Routes ARP Proxy

MAC: 1:0:0:0:0:1
IP: 1.0.0.1

MAC: 1:1:1:1:1:1
IP: 1.0.1.1

ARP Proxy
IP:*.*.*.* -> MAC: 1:1:1:1:1:1

BGP update
1.0.0.1/32
1.0.0.0/24

BGP update
1.0.0.1/32
1.0.0.0/24

converge to it after failure

Bond

(b) Non-stacked dual-ToR.

Figure 8: Dual-ToR solutions. In stacked dual-ToR (a), the malfunction of ToR1’s data plane would eventually trigger the offline
of ToR2. In non-stacked dual-ToR (b), two ToRs run independently.

4 Access: Non-stacked Dual-ToR
In traditional data center networks, two ports of each NIC are

aggregated through one cable/fiber connecting to a ToR switch,

called single-ToR design (widely used in the majority of current

cloud providers [21, 53, 55, 63]). Single-ToR is, however, vulnerable

to switch/link failures, significantly affecting the LLM training

(mentioned in §2.3).
Dual-ToR design, on the contrary, connects two ports of each

NIC to different ToRs in an active-active way. These two ports are

configured with the same IP and MAC addresses. If one ToR (or

a port) is down, the other can still work. Furthermore, since two

ports in the same NIC share the same Queue Pair (QP) contexts, the

switching of traffic would not lead to the break of active flows and

be transparent to upper-layer applications. Figure 8a shows a typical

dual-ToR design, called stacked dual-ToR, which has been realized

by commodity solutions such as virtual Port Channel (vPC) [29],

M-LAG [8, 42, 44] and stacking [26, 33, 37]. In the stacked dual-ToR,

the two ToRs are connected through a direct link, an essential de-

sign used to synchronize data plane forwarding information such

as ARP and MAC. The host employs Link Aggregation Control

Protocol (LACP) [2, 39] to aggregate two ToRs as one. In princi-

ple, the stacked dual-ToR solution would significantly reduce the

degradation caused by the independent ToR switch failure, which

is widespread in production.

Nevertheless, directly applying these commodity solutions causes

many issues (detailed in §4.1). We propose a new dual-ToR scheme

called non-stacked dual-ToR (§4.2).

4.1 Stacked Dual-ToR and Problems
As shown in Figure 8a, a typical dual-ToR design uses a link to

connect two ToRs to synchronize the states. The control planes

of the two ToRs operate in a primary-secondary way, synchroniz-

ing the controller states via an out-of-band network to ensure the

correct primary selection. On the host side, dual-ToR access can

be implemented using bond [40] (a built-in Linux module). Specif-

ically, bonding mode 4 (dynamic link aggregation) [38] enables

automatic load balance between two ports and automatic traffic

rerouting when one link/ToR switch fails. Stacked dual-ToR min-

imizes modifications on the host side, providing convenience for

the deployment and upgrade. However, in practice, we found that

the stacked dual-ToR design introduced many risks.

Stack failure. Issues with the direct link between ToRs or a failure

on one ToR can lead to anomalies, causing all NICs under the dual-

ToR offline. For example, as shown in Figure 8a, ToR1 and ToR2 are

primary and secondary, respectively. Suppose that the data plane

of ToR1 does not function due to the MMU overflow [7], while its

control plane does not recognize this root cause. Therefore, ToR1

and ToR2 can no longer synchronize ARP orMAC through the direct

link. Since the out-of-band network is functional, the control planes

of ToR1 and ToR2 still negotiate normally. From ToR1’s perspective,

ToR2 is unreachable in the data plane, and ToR1 should continue

working in primary states. From ToR2’s perspective, ToR1’s data

plane is unreachable, which means that the forwarding information

cannot be synchronized anymore, but ToR1 still runs in Primary

states. To prevent inconsistent forwarding in the data plane, ToR2

chooses to shut down itself. However, since the data plane of the

remaining ToR1 is down, all NICs under this dual-ToR become

unavailable. This rack-level failure causes severe unavailability

issues in production.

Issues resulting from ToR upgrades. During dual-ToR upgrades,

it may happen that one ToR runs the newly upgraded version,

while the other runs the old version. This situation can lead to

incompatibility issues during the synchronization of control-plane

information via RPC, since the values and fields of RPCs of the two

versions may not match at this point in time. ToRs can be down if

such an incompatibility issue happens. While switch vendors have

proposed solutions for In-Service Software Upgrade (ISSU) [3, 25,

52], it only works when the diff between the old and new versions is

sufficiently small. Nevertheless, in the past three years, we observed

that 70% of upgrades in our ToRs do not meet this assumption of

ISSU, resulting in poor upgrading effectiveness.

Summary: Failures caused by stacked dual-ToRs. According
to our internal failure reports, over 40% of critical failures in our

traditional data centers were caused by the abovementioned two

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

categories of issues introduced by stacked dual-ToR in the past

three years.

4.2 Our Solution: Non-stacked Dual-ToR
The root cause of failures in stacked dual-ToR is the strong depen-

dency on synchronization via the direct link between two ToRs.

To eliminate the culprit of failures, we decide to construct a non-

stacked dual-ToR scheme, as shown in Figure 8b, which removes

the direct link between two ToRs.

Such an idea introduces a new challenge: how to synchronize

ToRs without a link directly connecting them? Solving this chal-

lenge is not straightforward. In the existing stacked dual-ToR schemes,

because two ToRs are directly connected by a link, they can ne-

gotiate a shared sysID via the direct link. This enables the host to

talk to stacked dual-ToR switches as one device through LACP [2].

However, since we want to remove the direct link between the

ToRs, causing them to be independent, this means that they can no

longer use the LACP to negotiate. Therefore, we need to design a

new technology to “disguise” the two ToRs as a virtual single device

through an implicit approach, enabling the host to talk to dual-ToR

via LACP.

The original LACP works as follows. Two ToRs’ LACP modules

receive the LACP Data Unit (LACPDU) from the downstream host

(Host1), respectively. Before generating the response LACPDU, to

make dual-ToR functional, two ToRs need to negotiate through the

direct link to ensure that they use (1) the same MAC address and

(2) different portIDs as inputs. The LACP module fills the Actor

information fields in LACPDU including sysID (generated from the

negotiated MAC address), portID and other fields, and then sends

it back to the host.

Bundling two independent links. Building non-stacked dual-ToR
is non-trivial since we must guarantee that the same MAC address

and different portIDs are used in dual-ToR switches during the

LACP negotiation. We deeply cooperate with our switch vendors

to implement a customized LACP module to achieve this goal.

1 Same MAC address: When the ToR’s LACP module re-

ceives a LACPDU, it generates sysID according to a pre-configured

MAC address. Choosing this pre-configured MAC address is not

straightforward. This MAC address should be the same between

two switches in the same dual-ToR set. In addition, this MAC ad-

dress must not be used by any hosts; otherwise, a conflict may

happen. Thus, we choose an RFC-reserved virtual router MAC ad-

dress, 00:00:5E:00:01:01 [1], as the pre-configured MAC address.

Principally, in the same layer2 subnet, ToR switches in different

dual-ToR sets must not use the same pre-configured MAC address

to avoid MAC address conflict. In Alibaba Cloud, we completely

employ layer3 forwarding (via BGP) among different dual-ToR

switches. Therefore, different dual-ToR sets naturally belong to

different layer2 subnets, eliminating the possibility of MAC address

conflicts.

2 Different portIDs: By default, two ToR switches would

generate the same portID for the same host (since their wiring is

similar). To generate different portIDs, each ToR switch performs

a bit shift operation on the original portID. The operation is: 𝑝′ =
𝑝 + offset𝑖 , where 𝑝 is the original portID. We set different offset𝑖
for switches in the same dual-ToR set, and it is an integer higher

than 256 (e.g., 300). Since the total port number on a ToR is less

than 256, the calculated portID (𝑝′) would not conflict with other

system settings.

Last but not least, the host should be able to update ARP infor-

mation concurrently on the two ToRs via duplicating each ARP

message to both ports on the NIC (i.e., ARP Broadcast module in

Figure 8b). and loads by default. By far, all hosts can support our

non-stacked dual-ToR scheme.

Leveraging BGP under failures. In normal situations, each ToR

switch updates BGP with the default subnet route (1.0.0.0/24 in Fig-

ure 8b), making both ToR switches equal-cost paths. When a failure

happens, we need to ensure that routing converges to the remaining

functional path, which is a primary feature of BGP. Therefore, we

decide to maximally multiplex BGP in the failure handling.

In HPN, all ARPs learned on the ToRs are converted to /32 host

routes in BGP (Host Routes module) and recognized in the entire

network. When the NIC-ToR link fails, the corresponding ARP item

will be withdrawn by the switch, as well as the corresponding host

route, triggering the updating of BGP. As visualized in Figure 8b,

1.0.0.1/32 is withdrawn by ToR1 when the failure happens. As a

result, in the entire cluster, the forwarding path to Host1 would

converge to pass through ToR2, since only ToR2 publishes the

longest prefix route (1.0.0.1/32) in BGP.

Specifically, intra-segment traffic should be carefully handled,

since it can be directly forwarded in layer2 by default. The de-

facto aging time of items in the MAC address table is 5 minutes,

which leads to a black hole during the NIC-ToR link failure. To

solve this problem, we turn off the layer2 broadcast. In addition,

we further implement an ARP proxy in the switch. ARP proxy uses

the switch’s own MAC to respond to all ARP requests from hosts,

forcing all layer2 forwarding to terminate at the ToR switch and

enabling layer3 forwarding for intra-segment traffic. Therefore,

intra-segment traffic can be correctly routed according to BGP to

avoid the black hole.

Lessons. First, why not use BGP on the host to replace LACP for

NIC→ToR negotiation? Using BGP requires all hosts to participate

in the entire BGP updating in the cluster, slowing the convergence

speed and greatly complicating the cluster-wide upgrade of BGP

daemons (e.g., from operating O(1K) devices to O(10K) devices).

Second, using configurable LACP and converting ARP to host routes

result in inherent support from vendors in the Ethernet community.

Therefore, this design leads to minimal implementation complexity,

which significantly benefits our production-scale deployment.

5 Tier1: 1K GPUs in one Segment
This section presents how to interconnect 1024 GPUs in a tier1

network by employing the latest 51.2Tbps single-chip switch (§5.1)

and rail-optimized network (§5.2).

5.1 Fully Utilizing 51.2Tbps Single-Chip
We employ the latest 51.2Tbps Ethernet single-chip switch (first

released in early 2023) in HPN. In tier1, each switch possesses 128

active + 8 backup 200Gbps downstream ports and 60 upstream

400Gbps ports. This design ensures a near 1:1 oversubscription

(actually 1.067:1). Each ToR switch reserves 8 backup downstream

ports. We use these ports to connect backup hosts, enabling the

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

3.2T 6.4T 12.8T 25.6T 51.2T
Single-Chip Capacity

0

500

Po
w

er
 (W

)

(a) Power consumption.

Heat Pipe Original VC Optimized VC0

500

1000

Po
w

er
 (W

)

51.2T Power Allowed Operation Power

(b) Cooling efficiency.

Figure 9: Power consumption of 51.2Tbps single-chip switch
and the efficiency of different cooling solutions.

(a) 51.2Tbps single-chip switch

(b) Original VC

(c) Optimized VC

Wicked pillar Cooper pillar

Figure 10: Customized 51.2Tbps single-chip switch. In (b) and
(c), wicked pillar works for cooling and cooper pillar works
for load-bearing.

quick replacement of hosts under host-side failures (including CPU,

Memory, GPU, PCIe, NVLINK and NIC).

Why single-chip switch? The bandwidth capacity of the ToR

switch directly determines the number of GPUs in the same tier1

network. There have been multi-chip chassis switches supporting

higher bandwidth capacity [9, 27, 28, 32, 50]. However, Alibaba

Cloud’s long-term experience in operating data center networks

reveals that multi-chip chassis switches introduce more stability

risks than single-chip switches. Specifically, our operational single-

chip switches outnumber multi-chip switches by 32.6×. On the

contrary, the total number of critical hardware failures in multi-

chip switches is 3.77× higher than in single-chip switches. The

root cause is that the multi-chip switch is a distributed switching

system, with multiple chips interconnecting through a chip fabric.

Failures in the internal fabric, inter-chip interactions, and chip-to-

CPU communication all contribute to the overall critical outages.

We, therefore, decide to take single-chip switches for all newly

designed network architectures.

Challenges introduced byhigh-throughput single-chip switch.
A single chip supporting higher throughput means more traffic is

handled per unit area, leading to increased power consumption

in practice. As shown in Figure 9a, the power consumption of the

51.2Tbps switching chip has increased by 45% compared to the

previous generation 25.6Tbps chip.
2
However, the chip’s max junc-

tion temperature (𝑇jmax) remains unchanged (105°C). If the chip’s

working temperature exceeds 𝑇jmax, it will immediately trigger the

over-temperature protection, shutting down all data transmission.

2
Data from chip vendor B, we omit the name due to confidentiality.

1

2

8

ToR1

1

2

8

1

2

8

1

2

8

Host 1 Host 2 Host 3 Host N

ToR2

ToR3 ToR4

ToR15 ToR16

GPU1 GPU1 GPU1 GPU1

GPU2 GPU2 GPU2 GPU2

GPU8 GPU8 GPU8 GPU8

Inter-host link

Intra-host link

Intra-rail forwarding

Cross-rail forwarding

Figure 11: Rail-optimized network under dual-ToR.

As shown in Figure 9b, none of the existing cooling solutions,

including basic heat pipe solutions [34, 51] and the recommended

vapor chamber (VC) heat sink [35, 36] provided by switch vendors,

could support the 51.2Tbps single-chip work at full power (see Heat

Pipe and Original VC in Figure 9b). In our experiments, we gener-

ated various high-pressure scenarios that could happen online, and

the above solutions encountered shutdowns triggered by exceeding

𝑇jmax. Leaving this cooling issue unsolved would lead to server

outages in large-scale deployments.

Through comprehensive investigation, we find out the root cause:

the heat generated at the center of the chip could not be effectively

carried out. As shown in Figure 10, we design a new VC heat sink to

resolve this issue. By optimizing the wick structure and deploying

more wicked pillars at the center of the chip, heat could be carried

out more efficiently. This design increases the cooling efficiency

by 15% (see Optimized VC in Figure 9b). We deeply cooperate with

our switch vendors to customize switches to equip this optimized

VC, ensuring no overheating in all pressure cases.

5.2 Rail-Optimized Network
The de-facto configuration is that 8 GPUs inside the host are con-

nected with a high bandwidth intra-host network (e.g., NVLINK).
Although the intra-host network bandwidth varies under different

types of GPUs, it is 4-9× greater than the 2×200Gbps bandwidth
provided by a NIC. To fully leverage the different forwarding ca-

pabilities, NVIDIA is the first to propose the concept of the rail-

optimized network [21], which has been widely adopted in training

clusters. In a rail-optimized network, NICs in the same rail are con-

nected through the same set of dual-ToR switches. NICs in different

rails can communicate via a combination of intra-host + inter-host

forwarding. For example, in Figure 11, if GPU1 in host1 wants to

talk to GPU2 in host 3, the forwarding path is GPU1 in host1→
GPU2 in host1→ ToR3→ GPU2 in host3.

Figure 11 shows how we employ the rail-optimized network in

practice, which allows the 3.2Tbps (8×400Gbps) of a single host
to be served across up to 16 ToR switches (under dual-ToR). The

number of GPUs a segment can contain is increased by 8×, com-

pared to the original topology, where 3.2Tbps for a host is served

by 2 ToR switches. Each set of dual-ToR switches can serve 128

GPUs, and the 16 ToRs collectively connect 1024 GPUs in a seg-

ment, substantially reducing the forwarding latency and providing

the utmost performance. More importantly, it significantly reduces

traffic crossing the Aggregation layer, lowering the possibility of

load imbalance in the network.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

ToR1 ToR2

Agg1 Agg2

ToR3 ToR4

Server1

NIC 1

Server2

NIC 1

Load imbalance

(a) Typical Clos.

ToR2

Agg1 Agg2

ToR3 ToR4

Server1

NIC 1

Server1

NIC 1

Plane 1 Plane 2

ToR1 ToR2

Agg1 Agg2

ToR3 ToR4

Server1
NIC 1

Server2
NIC 1

Plane 1 Plane 2

(b) Dual-plane.

Figure 12: Tier2 network architecture.

0 2 4 6 8 10
Time (min)

0

100

200

Th
ro

ug
hp

ut
 (G

bp
s)

Port 1 Port 2

(a) Typical Clos.

0 2 4 6 8 10
Time (min)

0

100

200

Th
ro

ug
hp

ut
 (G

bp
s)

Port 1 Port 2

(b) Dual-plane.

Figure 13: Traffic on ToRs’ ports towards the same NIC.

6 Tier2: 15K GPUs in one Pod
This section presents how HPN minimizes load imbalance (§6.1)

and contains 15K GPUs (§6.2) in one Pod.

6.1 Conquering Load Imbalance
With dual-ToR in tier1 network, if we simply deploy a typical Clos

topology between ToR and Aggregation, as shown in Figure 12a,

hash polarization would still exist. In the downstream direction,

owing to dual-ToR, there is a high convergence of traffic from 60

Aggregation switches to 2 ToR switches. Figure 13a shows the egress

traffic of two downstream ports in the dual-ToR set towards the

same NIC, measured during the real training job of a variant GPT-3

175B in production. The load of these two ports is significantly

different (3×), degrading training performance as well.

Dual-plane: Eliminating hash polarization in a Pod. As shown
in Figure 12b, in dual-plane, ToR switches in each dual-ToR set are

categorized into two separate groups. With this design, once a flow

enters one of the uplinks in the ToR, its forwarding path inside the

Pod is completely determined. Therefore, hash polarization is elim-

inated in the Pod. After deploying the dual-plane design, as shown

in Figure 13b, the ingress traffic of different ports becomes even,

and the queue length at the ToR downstream ports decreases by

91.8%. Further ablation study reveals that the dual-plane design con-

tributes up to 71.6% performance improvement for cross-segment

traffic. We statistic the queue length of two downstream ports in

the dual-ToR set towards the same NIC, measured during the real

training job of a variant GPT-3 175B in production. As shown in

Figure 14, when the tier2 network deploys typical Clos connect-

ing, the imbalanced load would cause consistent congestion on

the switch. The queue length is continuously kept at 267KB and

3KB, respectively. After deploying dual-plane, the load of two ToRs

becomes even and the average queue length is 20KB.

Optimized path selection. Many efforts have been focused on

solving the load imbalance caused by ECMP [54, 56, 57, 60, 61, 64,

0 5 10
Time (min)

0

200

400

Q
ue

ue
 L

en
gt

h
(K

)

Port 1 Port 2

(a) Typical Clos.

0 5 10
Time (min)

0

200

400

Q
ue

ue
 L

en
gt

h
(K

)

Port 1 Port 2

(b) Dual-plane.

Figure 14: Queue length at downstream ports of ToR.

66, 68, 70, 71]. However, many switch-based solutions [54, 57, 61,

66, 68, 70] require switches executing load-aware stateful packet

forwarding, which is unavailable (e.g., dynamic flow bin-packing

or cross-switch negotiation) or unverified in large-scale deploy-

ment (e.g. flowlet splitting or per-packet spray). Most host-based

solutions [56, 60, 64, 71] blindly select multiple paths and balance

load on them according to congestion signals (e.g., ECN, RTT, and
INT). However, they may fall to suboptimal results if selected paths

are not entirely disjoint. Furthermore, most host-based solutions

require modifications in the transport layer, which is impractical

in deploying commodity RDMA, whose transport layer is fully

implemented in hardware.
3

To overcome shortcomings of existing solutions, HPN gets pre-

cise disjoint equal paths efficiently and balances the load on them

in the collective communication library. First, for each new con-

nection request, we generate a set of connections passing through

disjoint paths. With large-scale deployed RePaC [72], the host can

directly reprint the exact hash results in each switch. Based on the

results, we find all disjoint paths and corresponding 5-tuples, and

establish RDMA connections accordingly. We deploy a host-switch

collaborating system to ensure all hosts maintain the latest link

states and calculate the correct disjoint paths, which is out of the

scope of this paper. Second, we implement a simple yet effective

application layer load-balancing scheme to fully utilize all RDMA

connections. Specifically, for each connection, HPN maintains a

counter that records the total number of bytes in the current active

Work Queue Elements (WQEs). The counter reveals the congestion

status of the current connection: a congested connection drains

the Work Queue slower. Therefore, our scheme (in the collective

communication library) sends messages via the connection with

the smallest counter (detailed pseudo-code is in Appendix B).

With a test of four AllReduce tasks concurrently running on

512 GPUs, this optimized path selection can improve the collective

communication performance by up to 34.7%.

Thanks to the dual-plane design, when searching for disjoint

paths, we only need to search the links in each ToR switch (i.e.,
search at most 60 links), significantly decreasing the time consump-

tion. Table 1 illustrates the calculation costs under different network

architectures. HPN can greatly decrease the computation complex-

ity by 1-2 magnitudes. More importantly, when failures happen, a

host only needs to get the new ECMP group from ToR switches to

recalculate disjoint paths (rather than maintaining ECMP groups

from different tiers in a global controller).

3
PLB [64] is a large-scale deployed load balance in Google, but it only works in TCP,

rather than hardware-offloaded RDMA.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Table 1: Complexity of path selection
Supported #GPUs #Tiers Switches participating load balance Path selection complexity

Pod in HPN 15360 2 ToR O(60)

SuperPod [21]
†

16384 3 ToR+Aggregation+Core O(32×32×4)=O(4096)
Jupiter [63] 26000 [12] 3 ToR+Aggregation O(8×256)=O(2048)

Fat tree (k=48) [53] 27648 3 ToR+Aggregation O(48×48)=O(2304)
†
SuperPod is representing the network architecture of many in-production clusters (e.g., NVIDIA DGX Cloud [47], Meta’s AI

supercomputer [6] and CoreWeave’s cloud platform [10]).

Table 2: Key mechanisms affecting maximal scale
Tier1 scale Tier2 scale

51.2Tbps Clos 64 2K

Dual-ToR 128 (×2) 4K (×2)
Rail-optimzed 1K (×8) -

Dual-plane – 8K (×2)
Oversubscription of 15:1 – 15K (×1.875)

Table 3: Traffic patterns of different parallelisms
DP PP TP

Traffic volume 5.5GB 6MB 560MB

Operations AllReduce Send/Recv AllReduce/AllGather

In addition, there are 60 equivalent Agg switches in each plane.

Therefore, even if one Aggregation switch fails, the other 59 Aggre-

gation switches can still work to balance loads in the same plane.

6.2 15K GPUs in One Pod
The dual-plane design brings another important benefit: it halves

the number of link connections between ToR and Aggregation,

allowing Aggregation switches to support more segments in the

same Pod. As a result, the scale of the tier2 network is doubled.

In addition, we set the Aggregation-Core oversubscription to be

15:1, which releases 87.5% more ports on the Aggregation switches

for interconnecting extra segments. Finally, we achieve the goal

of containing 15K cards within the same Pod and we provide each

GPU with 400Gbps network accessing capacity.

Table 2 summarizes key mechanisms in HPN that contribute to

expanding the network scale. First, dual-ToR allows the single NIC’s

2×200Gbps bandwidth to be served by two ToR switches, doubling

the network scale. Coupled with the latest 51.2Tbps single-chip

switches and rail-optimized network, a single segment can cover 1K

GPUs. The dual-plane design at the Aggregation layer liberates half

of the ports in each Aggregation switch and doubles the coverage of

tier2. Finally, with the Aggregation-Core oversubscription of 15:1,

HPN achieves the design goal of supporting 15K GPUs in one Pod.

As shown in Figure 6, a Pod covers 100% of the training jobs we have

served to date. Supporting 15K GPUs with a single Pod rather than

multiple Pods further cuts unnecessary links and switches used for

connecting multiple Pods, saving the overall network building cost

by around 30% according to our statistics.

7 Supporting Larger Scale
To meet the long-term planning for supporting more GPUs (e.g.,
O(100K) GPUs), we have also designed the tier3 network connecting

multiple Pods. There is a trade-off between the Aggregation-Core

oversubscription and the scale of the entire cluster. As aforemen-

tioned, we compromise the Aggregation-Core oversubscription

(15:1) to increase the Pod scale. Deep diving into the communica-

tion pattern in the LLM training, we find that the single training

job across tens of thousands of GPUs does not require excessive

tier3 bandwidth capacity.

As shown in §2.1, the model training is distributed by multiple

parallel strategies. Different parallel strategies introduce different

volumes of data transmission. Take the training of GPT-3 175B

with TP=8, PP=8, DP=512 as an example (requiring 32K GPUs).

As shown in Table 3, PP generates the lowest traffic and utilizes

the basic Send/Recv for communication, which is insensitive to

network bandwidth. Thus, by proper cooperation with the worker

scheduler, we can ensure that only PP traffic passes through Core

layers, minimizing side effects introduced by multi-hop forwarding.

Minimizing load imbalance in tier3. Deploying tier3 may intro-

duce additional load imbalance risks. To minimize this side effect,

we make two enhancements. (1) We carry on the dual-plane design

in the Core layer. (2) In each Core switch, we employ a prior per-

port hash [69] to ensure traffic towards Pod 𝑖 from physical port 𝑗

would uniquely forward to port 𝑘 (5-tuple irrelevant), eliminating

hash polarization. If link failure happens at port 𝑘 , traffic would

fall back to execute the default 5-tuple-based hash. Potential small

(affecting PP) performance degradation only occurs under failure

cases, which is acceptable in production.

Till now, we have comprehensively presented the entire design

of the HPN backend network.

8 Independent Frontend Network
In HPN, each host equips an additional 2×200Gbps NIC for fron-

tend network access, and we design an independent frontend net-

work. The frontend network primarily handles management and

storage traffic (e.g., cluster management, dataset loading, image

loading and checkpoint saving/loading). It can also carry inference

requests/responses while serving model inferences. Since the traffic

supported by the frontend network is similar to traditional cloud

computing scenarios, as shown in Figure 7, we adopted the classic

3-tier topology for the frontend network. To ensure reliability, each

frontend NIC connects to two ToRs in the non-stacked dual-ToR

way. In the frontend network, we design the convergence ratio to

be 1:1 at both Aggregation and Core layers, guaranteeing maximal

bisection bandwidth.

Isolating storage traffic from training. To provide optimal train-

ing performance, the storage cluster is settled in the frontend net-

work (detailed discussion about the location of the storage cluster

is shown in §10). A storage cluster consists of 96-128 storage hosts,

running CPFS and OSS storage services to store training datasets,

container images needed for training, and checkpoints saved during

the training process.

Supporting inference compatibly. In the past few years, the

mainstream GPUs for training and inference have been different.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 5 10 15 20 25 30
Time (min)

200

250

300

Pe
rf

or
m

an
ce

 (S
am

pl
e/

s)

DCN+ HPN

(a) End-to-end training performance.

0 0.5 1 1.5 2
Time (min)

0

100

200

Th
ro

ug
hp

ut
 (G

bp
s)

DCN+ HPN

(b) Aggregation switch ingress traffic
(averaged every 10s).

0 0.5 1 1.5 2
Time (min)

0.0

2.5

5.0

Q
ue

ue
 L

en
gt

h
(M

)

DCN+ HPN

(c) Queue length in Aggregation switches (max
every 10s).

Figure 15: Model training performance on 2300+ GPUs under different network architectures.

DCN+ HPN0

250

500

750

Pe
rf

or
m

an
ce

 (S
am

pl
e/

s)

(a) LLaMa-7B.

DCN+ HPN0

250

500

750

Pe
rf

or
m

an
ce

 (S
am

pl
e/

s)

(b) LLaMa-13B.

DCN+ HPN0

10

20

Pe
rf

or
m

an
ce

 (S
am

pl
e/

s)

(c) GPT-175B.

Figure 16: Performance of training representative LLMs on
different network architectures.

For example, NVIDIA V100, A100 and H100 are designed for train-

ing, and NVIDIA T4, A10 and H10 are mainly for inference. How-

ever, there is a trend to use training GPUs in inference. The reasons

are twofold: (1) As the size of models increases, requiring GPUs

with higher memory and performance for inference services, the

specifications for GPUs used for inference are becoming increas-

ingly similar to those used for training. (2) We observe that many

customers prefer deploying both training and inference jobs on the

same rented cluster for better GPU utilization.

When designing the HPN frontend network, we fully consid-

ered the above requirements, and the 2×200Gbps frontend network
offers good performance. Therefore, such a design ensures that

hosts in HPN can be flexibly used for both training and inference,

building a unified platform supporting users’ various demands.

9 Evaluation
This section presents the evaluations of HPN. HPN is deployed in

multiple clusters connecting O(10K) GPUs in Alibaba Cloud, and

serves thousands of model training jobs from dozens of customers.

We compared HPN with our previous generation of training net-

work architecture (DCN+). DCN+’s backend network is a traditional

3-tier Clos Data Center Network with full bisection bandwidth and

dual-ToR enabled. In DCN+, each segment contains 128 GPUs, and

each Pod contains 4 segments (detailed topology in Appendix §C).

First, we show that HPN can improve the end-to-end large-scale

training (taking up to 2300+ GPUs) performances by 14.9% com-

pared with DCN+ (§9.1). Furthermore, we conduct network layer

monitoring and different collective communication operations to

show HPN’s network layer performance improvement (§9.2). Last

but not least, we quantify the reliability improvement (§9.3).

In evaluations, each host is equipped with 8 NVIDIA H800

GPUs [48] and 9 NVIDIA BlueField3 2×200Gbps DPUs [45]. GPUs
in the same host are interconnected with 400GBps (bidirectional)

NVLINK.

9.1 LLM Training Performance
Large-scale training performance in production. One of Al-
ibaba Cloud’s proprietary LLMs was trained with 2300+ GPUs (288+

hosts) for several months. This model was first trained on DCN+,

and then migrated to HPN. In DCN+, the training job spans 19

segments, while HPN fits the training job within 3 segments. We

observed significant performance improvement after the migration.

As shown in Figure 15a, the end-to-end training performance is

improved by more than 14.9%. This end-to-end performance gain

is actually a big value in production. Considering the construction

of the entire training cluster may consume billions of dollars. 14.9%

performance improvement contributes to significant cost savings.

We further collect the statistics of Aggregation switches during

training. Aggregation switches carry traffic across segments and

their statistics directly reflect the network status. As shown in Fig-

ure 15b, the cross-segment traffic is decreased by 37% on average.

Less cross-segment traffic triggers less congestion in the network.

Figure 15c illustrates the queue length distribution of Aggregation

switches’ downlinks. The high traffic volume and hash collisions

constantly build up queues in DCN+. While in HPN, this problem

is greatly alleviated.

Representative LLM training performance. We further eval-

uate the training performance of three popular LLMs: LLaMa-7B,

LLaMa-13B and GPT3-175B under 448 GPUs (56 hosts). As shown in

Figure 16, by employing HPN, the end-to-end training performance

is improved by 7.9%, 14.4% and 6.3%, respectively.

9.2 Network-Level Performance
We evaluate the collective communication performance of HPN

with NCCL 2.18.3 [46].

Collective communication results.We evaluate the performance

of typical collective communication operations (AllReduce and All-

Gather) with 448 GPUs (56 hosts), where AllReduce is the predomi-

nant operation in LLM training jobs. Figure 17 lists the results. HPN

increases the performance of AllReduce by up to 59.3%. Since a seg-

ment in HPN contains 1K GPUs, there is no contention between

traffic. The performance of AllGather is similar between HPN and

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1M 4M 16M 64M 256M 1G 4G
Size (B)

0

200

B
us

B
w

 (G
B

/s
)

DCN+
HPN

(a) AllReduce.

1M 4M 16M 64M 256M 1G 4G
Size (B)

0

100

B
us

B
w

 (G
B

/s
)

DCN+
HPN

(b) AllGather.

1M 4M 16M 64M 256M 1G 4G
Size (B)

0

50

B
us

B
w

 (G
B

/s
)

DCN+
HPN

(c) Multi-AllReduce.

Figure 17: Collective communication performance.

� 	��
�� ���
��������

�

	��

��

���

�
��
��
�
��
��
���
��
��
��
��

��������
����������

Failure
Recovery

(a) Link failure.

0 5 10 15 20 25 30
Time (s)

0

100

200

300

Pe
rf

or
m

an
ce

 (S
am

pl
e/

s)

Dual-ToR
Single-ToR

(b) Link flapping.

Figure 18: Performance under different types of NIC-ToR
link malfunctions.

DCN+. The main reason is that we employ NVLS in AllReduce.

It can conduct aggregation in the NVSwitch, therefore providing

higher intra-host throughput for AllReduce. NVLS, however, can-

not accelerate AllGather. Therefore, the results of AllGather are all

bounded by NVSwitch.

Multi-AllReduce is mainly used for gradient synchronization in

the Megatron framework when setting TP=8. In Multi-AllReduce,

GPUs with the same index in the same DP group conduct AllReduce

in parallel. All data is exchanged through the inter-host network

rather than the NVLink. HPN can increase Multi-AllReduce’s per-

formance by up to 158.2%, as shown in Figure 17c. The root cause

is that HPN balances load better in the inter-host network and

maximizes the network utilization.

9.3 Reliability
During our eight months of operation in production, no single-point

failure is observed in HPN. In this subsection, we train LLaMa-7B

with 256 GPUs (32 hosts), and inject link malfunctions (link failure

and link flapping) on a NIC-ToR link. We compare dual-ToR with

typical single-ToR design to validate the reliability improvement.

Case study1: Link failure and repair. As shown in Figure 18a,

a link failure occurs at 10s, and the training halts immediately

in single-ToR topology. If the failure can be located and repaired

within 1 minute, the training can recover. However, if the repair

takes more than two minutes, then training cannot recover. On

the contrary, with dual-ToR, the failure of a single link only causes

6.25% performance degradation. While the failure is repaired, the

training throughput returns to normal immediately.

Case study2: Link flapping. Figure 18b shows the impact of

link flapping. In single-ToR, the temporary link flapping halts the

training for more than nine seconds. In dual-ToR, the performance

degradation is negligible.

10 Experience & Lessons

One Pod in a single data center building. All data center build-
ings in commission in Alibaba Cloud have an overall power con-

straint of 18MW, and an 18MW building can accommodate approx-

imately 15K GPUs. In conjunction with HPN, each single building

perfectly houses an entire Pod, making predominant links inside

the same building. All optic fibers within the building are less than

100 meters, significantly simplifying the wiring complexity and

allowing for the use of lower-cost multi-mode optical transceivers

(cutting 70% cost compared with single-mode optical transceivers).

Detailed data center layout can be seen in Appendix §D.

The forwarding capacity of a single Ethernet chip doubles every

two years. While operating the current HPN, we are designing

the next-generation network architecture equipping the higher-

capacity single-chip switch. In the land construction planning of

our next-generation data centers, the total power constraints for

a single building have been adjusted to cover more GPUs. Thus,

when the new data center is delivered, it can be directly equipped

with 102.4Tbps single-chip switches and the next-generation HPN.

Asymmetric link states are possible. In the majority of cases,

the link status observed from both sides of the link is identical.

However, the deployments in practice still encounter exceptions. A

case causing a large-scale performance degradation is due to the

invalidation of Link Fault Signaling (LFS) negotiation. The optical

signal quality in the NIC->ToR direction is abnormal, while the

quality in the ToR->NIC direction is normal. The ToR switch detects

this issue and attempts to notify the NIC through the standard LFS

negotiation [38]. However, due to a bug in the NIC firmware, the

notification has not responded correctly. The NIC still perceives

the link as normal and sends data through the problematic link,

ultimately leading to substantial packet loss. Owing to the low oc-

curring possibility, this asymmetrical link states issue is difficult to

discover in the testbed. It only emerges in large-scale deployments.

Thanks to our dual-ToR design, this link fault leads to training per-

formance degradation rather than the entire training job crashes.

HPN complicates wiring. HPN introduces extra designs (i.e., rail-
optimized and dual-plane designs) compared with DCN+, making

wiring much more complex. Especially at the nascent stage of con-

structing HPN, on-site staff make a lot of wiring mistakes, leading

to wired end-to-end network performances. To eradicate wiring

mistakes before end-to-end testing, we employ INT-based probes

to check that each hop (switchID and PortID) in paths precisely

aligns with HPN’s blueprint definition.

Why not employ the rail-optimized idea on tier2 to support
larger scale? In HPN, we design a fully interconnected network on

tier2. Meta [14] suggests that, during the training of LLMs, there is

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Table 4: Any-to-any tier2 vs. Rail-only tier2
Any-to-any tier2 Rail-only tier2

Tier2 planes 2 16

GPUs in a Pod 15360 122880

Communication limitations None Rail-only

completely no requirement for cross-rail network communication;

thus, the network could be designed in a pure rail-only way.

If we take this assumption, most ToR-Aggregation links are un-

necessary, which could lead to a great scale expansion of one Pod.

As shown in Table 4, if HPN is modified to a tier2 rail-only design,

a Pod could support over 120K GPUs.

However, rail-only tier2 heavily relies on models only gener-

ating intra-rail traffic. In current mainstream dense large models,

all traffic patterns have been specifically optimized to satisfy this

constraint. However, the evolution of new models would break this

assumption. For example, training the increasingly popular MoE

models [65] involves substantial all-to-all traffic towards different

Experts, where the source and destination may inherently reside

on different rails. Furthermore, in the serverless scenario, a host

is shared by multiple tenants (i.e., different tenants possess differ-
ent NICs in a host). Relaying traffic across the intra-host network

would be greatly limited, making the cross-rail network vital. There-

fore, we decide to construct any-to-any tier2, and leverage tier3 to

support a larger scale.

The location of the storage cluster. During the design of HPN,

we conducted detailed analysis and discussions on the location of

the storage cluster (in the frontend or backend network). From the

perspective of a host, the backend network bandwidth is signifi-

cantly higher than the frontend network (3.2Tbps versus 400Gbps),

which is attractive for bandwidth-intensive storage services.

However, there are three main disadvantages to placing the stor-

age cluster in the backend network: (1) Typically, the container

images and dataset used by customers are usually stored in other

data centers or customers’ self-built clusters. This external data can-

not be directly accessed through the backend network. Hence, this

network design requires traffic to pass through a proxy between the

frontend and backend networks, increasing software development

complexity and associated stability risks. (2) As aforementioned,

injecting storage traffic in the backend network would result in

fluctuations in training performance. (3) Deploying a storage cluster

in the backend consumes ToR ports, reducing the number of GPUs

the backend network can support. Therefore, we finally chose to

place the storage cluster in the frontend network.

Why not leverage rail-optimized topology for handling ToR-
related failures? With rail-optimized topology, different NICs on

the same host are connected to different ToR switches, naturally

providing an opportunity to reroute traffic among different rails

bypassing single-point failures mentioned in §2.3. With comprehen-

sive assessments, we do not adopt this solution in production for

two main reasons. First, proactively rerouting requires significant

modifications on NCCL, which makes it hard to be employed by

customers. A new relay module implemented on the critical data

path is necessary for rerouting. Furthermore, manipulating the I/O

direction of collective communication would introduce extra risks

in production. For example, monitoring noise would cause misjudg-

ment of the port status and trigger unnecessary traffic rerouting. As

a result, the training performance would be greatly damaged (e.g.,

doubling communication time). We actually implemented a proto-

type of this solution, but it was abolished after our comprehensive

internal evaluations.

11 Related Work

Topology for LLM training. Many companies have published

their network architecture for LLM training. Google designs a 3D

torus topology [62] to connect 4K TPUv4 with six uniform Ethernet

ports [59]. This torus topology, however, is unsuitable for commod-

ity GPUs, which are equipped with heterogeneous ports with vastly

different speeds (e.g., PCIe and NVLINK). NVIDIA [21], Google [12],

and Meta [19] disclose their 3-tier network architecture deployed

in their GPU clusters, making hash polarization unavoidable. Meta

also proposes a radical rail-only topology [14] achieving a larger

scale in one layer network but sacrificing the performance of all

cross-rail traffic. Furthermore, it relies on the large-scale intra-host

network (e.g., NVLINK Switch System connecting 256 GPUs), which

is not yet a commodity as of now.

Dual-ToR solutions. The disadvantages of stacked dual-ToR so-

lutions [8, 26, 29, 33, 37, 42, 44] are illustrated in §4 in detail. In

2022, Microsoft cooperates with Credo to implement the hardware-

based active-standby dual-ToR [4, 5], and it evolves to active-active

dual-ToR in 2023 [31]. However, it heavily relies on deploying FPGA-

based SmartNIC and dedicated cables from the sole cable vendor [4],

which is hard for large-scale deployment and prone to vendor lock-

in. Besides equipping switches at the top-of-rack, another design

is equipping switches at the middle-of-rack (MoR) [11], where each

switch can serve hosts in multiple racks. Actually, with the em-

ployment of the dual-ToR solution and the rail-optimized topology,

each ToR switch is worked in the MoR way.

Load balance. Tremendous research efforts have been devoted

to improving load balance through schedule flows/packets to the

optimal paths [54, 56, 57, 60, 61, 64, 66, 68–71]. The primary con-

tribution of HPN is that it simplifies the search space for finding

optimal paths. We also share the accurate path selection scheme

deployed in our production.

12 Conclusion
This paper presents HPN, a new network architecture for training

GPU clusters, which has been largely deployed in Alibaba Cloud

for over eight months. HPN avoids single-point failure caused by

single-ToR design in traditional data center topologies. HPN inter-

connects 15K GPUs with a 2-tier dual-plane network, eliminating

hash polarization and simplifying the optimal path selections. HPN

improves the end-to-end LLM training performance by 14.9%.

Acknowledgements
We acknowledge all teams within Alibaba Cloud that contributed

to the success of HPN, including the High-Performance Network,

Lingjun Production, Network Automation, Network Operation,

Network Systems, Optical Network, and PAI teams, to name a few.

We also thank our shepherd Ganesh Ananthanarayanan, and the

SIGCOMM reviewers for their insightful comments. Ennan Zhai

and Dennis Cai are the co-corresponding authors.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] 2004. Virtual Router Redundancy Protocol (VRRP) . https://datatracker.ietf.org/

doc/html/rfc3768#page-19. (2004).

[2] 2010. IEEE Standard for Information technology– Local and metropolitan area

networks– Specific requirements– Part 3: CSMA/CD Access Method and Physical

Layer Specifications Amendment 5: Media Access Control Parameters, Physical

Layers, and Management Parameters for Energy-Efficient Ethernet. https://

standards.ieee.org/ieee/802.3az/4270/. (2010).

[3] 2019. In-Service Software Upgrade (ISSU). https://www.cisco.com/c/en/us/

td/docs/switches/lan/catalyst_standalones/b-in-service-software-upgrade-

issu.html. (2019).

[4] 2021. Credo Announces HiWire SWITCH AEC – Enabling Simpler, Faster and

More Reliable Dual TOR Connectivity. http://go.aussiebum.com/1KiYZf. (2021).

[5] 2021. Demystifying Dual TOR – Credo’s SWITCH AEC and Upstream NOS

Support. https://stordis.com/wp-content/uploads/documents/Credo-Stordis-

Webinar-5-19-22.pdf. (2021).

[6] 2022. Meta Works with NVIDIA to Build Massive AI Research Supercomputer.

https://blogs.nvidia.com/blog/meta-ai-supercomputer-dgx/. (2022).

[7] 2022. Troubleshoot The SwitchPort Packet Loss. https://img-en.fs.com/file/user_

manual/switch-port-packet-loss-troubleshooting.pdf. (2022).

[8] 2022. Understanding Multichassis Link Aggregation Groups. https://www.

juniper.net/documentation/us/en/software/junos/mc-lag/topics/concept/mc-

lag-feature-summary-best-practices.html. (2022).

[9] 2023. Cisco Nexus 9800 Series Switches Data Sheet Data Sheet.

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-

series-switches/nexus9800-series-switches-ds.html. (2023).

[10] 2023. CoreWeave partners with Vast Data for AI cloud. http://go.aussiebum.com/

xmGt7T. (2023).

[11] 2023. Data center cabling, EoR, MoR, or ToR? https://www.anfkomftth.com/data-

center-cabling-eor-mor-or-tor/. (2023).

[12] 2023. Google unveils A3 supercomputer VMs capable of scaling to 26,000 Nvidia

H100 GPUs. http://go.aussiebum.com/WrjpXtng. (2023).

[13] 2023. GPT-4 Technical Report. (2023). arXiv:cs.CL/2303.08774

[14] 2023. How to Build Low-cost Networks for Large Language Models (without

Sacrificing Performance)? https://arxiv.org/abs/2307.12169. (2023).

[15] 2023. Introducing ChatGPT. https://openai.com/blog/chatgpt. (2023).

[16] 2023. Introducing Gemini: our largest and most capable AI model. https://blog.

google/technology/ai/google-gemini-ai/sundar-note. (2023).

[17] 2023. LLaMA: Open and Efficient Foundation Language Models. (2023).

arXiv:cs.CL/2302.13971

[18] 2023. Load Balancing on Aggregated Ethernet Interfaces. https://www.juniper.

net/documentation/us/en/software/junos/high-availability/topics/topic-

map/load-balancing-aggregated-ethernet-interfaces.html. (2023).

[19] 2023. Meta’s evolution of network for AI - presented by Meta. https://www.

youtube.com/watch?v=5gOOtFySrqA. (2023).

[20] 2023. Microsoft Azure Eagle is a Paradigm Shifting Cloud Supercomputer. https:

//www.servethehome.com. (2023).

[21] 2023. NVIDIA DGX SuperPOD: Next Generation Scalable Infrastructure for

AI Leadership. https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-

reference-architecture-dgx-h100.pdf. (2023).

[22] 2023. NVIDIA Spectrum-X Network Platform Architecture. https://www.

virtualgraffiti.com.au/datasheets/Nvidia/pdf7.pdf. (2023).

[23] 2023. Project Ceiba: AWS and Nvidia plan to build world’s largest cloud AI

supercomputer. http://go.aussiebum.com/kx21Ey4b. (2023).

[24] 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT

Quality. https://lmsys.org/blog/2023-03-30-vicuna/. (2023).

[25] 2023. What Is ISSU? https://info.support.huawei.com/info-finder/encyclopedia/

en/ISSU.html. (2023).

[26] 2023. What Is Stacking? https://info.support.huawei.com/info-finder/

encyclopedia/en/Stacking.html. (2023).

[27] 2024. 7800 Series. https://www.arista.com/en/qsg-7800-series/7800-series-

overview. (2024).

[28] 2024. CloudEngine 16800 Series Data Center Switches. https://e.huawei.com/en/

products/switches/data-center-switches/ce16800. (2024).

[29] 2024. Configuring Virtual Port Channels. https://www.cisco.com/c/en/us/td/

docs/switches/datacenter/nexus5000/sw/layer2/503_n2_1/503_n2_1nw/Cisco_

n5k_layer2_config_gd_rel_503_N2_1_chapter8.html. (2024).

[30] 2024. DeepSpeed. https://www.microsoft.com/en-us/research/project/

deepspeed/. (2024).

[31] 2024. Dual ToR Evolution: Active-Active ToR Deep Dive. https://drive.google.

com/file/d/1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view?usp=drive_link.

(2024).

[32] 2024. H3C S12500X-AF Data Center Cloud Core Series Switches.

https://www.h3c.com/en/Products_and_Solutions/InterConnect/Switches/

Products/Data_Center/Core/S12500/H3C_S12500/. (2024).

[33] 2024. H3C S5500-SI Series Ethernet Switches Operation Manual(V1.01) 36-Stack

Management Configuration. https://www.h3c.com/en/d_200712/211816_294551_

0.htm. (2024).

[34] 2024. Heat Pipe Technology. https://www.heatpipe.com/. (2024).

[35] 2024. Heat Pipes & Vapor Chambers – What’s the Difference? https://celsiainc.

com/heat-sink-blog/heat-pipes-vapor-chambers-difference/. (2024).

[36] 2024. HEATSINK TECHNOLOGY VAPOR CHAMBER HEATSINK. https://

radianheatsinks.com/vapor-chamber-heatsink/. (2024).

[37] 2024. HPE E5500 - Stacking with HUAWEI or H3C Brand Switches.

https://support.hpe.com/hpesc/public/docDisplay?docId=c03662589&

docLocale=en_US. (2024).

[38] 2024. IEEE 802.3ad. https://standards.ieee.org/ieee/802.3ad/1088/. (2024).

[39] 2024. Link Aggregation Overview. https://www.cisco.com/assets/sol/sb/

Switches_Emulators_v2_3_5_xx/help/250/index.html/page/tesla_250_olh/

aggregating_ports.html. (2024).

[40] 2024. Linux Bonding Modes. https://thelinuxcluster.com/2010/01/08/linux-

bonding-modes/. (2024).

[41] 2024. Megatron-LM. https://github.com/NVIDIA/Megatron-LM. (2024).

[42] 2024. MLAG vs. Stacking vs. LACP. https://community.fs.com/article/mlag-vs-

stacking-vs-lacp.html. (2024).

[43] 2024. Model Checkpointing. https://deepspeed.readthedocs.io/en/latest/model-

checkpointing.html. (2024).

[44] 2024. Multi-Chassis Link Aggregation - MLAG. https://docs.nvidia.com/

networking-ethernet-software/cumulus-linux-55/Layer-2/Multi-Chassis-Link-

Aggregation-MLAG/. (2024).

[45] 2024. NVIDIA BLUEFIELD-3 DPU PROGRAMMABLE DATA CENTER INFRAS-

TRUCTURE ON-A-CHIP. https://www.nvidia.com/content/dam/en-zz/Solutions/

Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf. (2024).

[46] 2024. NVIDIA Collective Communications Library (NCCL). https://developer.

nvidia.com/nccl. (2024).

[47] 2024. NVIDIA DGX Cloud. https://www.nvidia.com/en-us/data-center/dgx-

cloud/. (2024).

[48] 2024. NVIDIA H800 PCIe 80 GB. https://www.techpowerup.com/gpu-specs/h800-

pcie-80-gb.c4181. (2024).

[49] 2024. NVLink andNVSwitch. https://www.nvidia.com/en-us/data-center/nvlink/.

(2024).

[50] 2024. RG-N18010-XH – Next Generation Data Center Network High-Density

Centralized Modular Core Switch with 100GE/400GE Line Cards and Eight

Service Slots. https://www.ruijienetworks.com/products/switches/data-center-

switches/RG-N18010-XH/. (2024).

[51] 2024. The Basics of Heat Pipes – Their History, Principle, and Varieties explained.

https://www.global.dnp/biz/column/detail/10162360_4117.html. (2024).

[52] 2024. Understanding In-Service Software Upgrade (ISSU) in ACX5000 Series

Routers. https://www.juniper.net/documentation/us/en/software/junos/high-

availability/topics/concept/issu-on-acx5000-overview.html. (2024).

[53] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scalable,

commodity data center network architecture. In Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication (SIGCOMM ’08). Association
for Computing Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/

1402958.1402967

[54] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed

congestion-aware load balancing for datacenters. In Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Machinery,

New York, NY, USA, 503–514. https://doi.org/10.1145/2619239.2626316

[55] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre, Paramvir

Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad Cheema,

Rebecca Chow, Jeff Cohen, Mahmoud Elhaddad, Vivek Ette, Igal Figlin, Daniel

Firestone, Mathew George, Ilya German, Lakhmeet Ghai, Eric Green, Albert

Greenberg, Manish Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader,

Neetha John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit

Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu, Chen Liu,

Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,

David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda Murthi, Anup Namdhari,

Aaron Ogus, Jitendra Padhye, Madhav Pandya, Douglas Phillips, Adrian Power,

Suraj Puri, Shachar Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali

Sheriff, Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,

Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying Xie, Joyce

Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. 2023. Empowering Azure

Storage with RDMA. In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23). USENIX Association, Boston, MA, 49–67.

https://www.usenix.org/conference/nsdi23/presentation/bai

[56] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella. 2013.

On the impact of packet spraying in data center networks. In 2013 Proceedings
IEEE INFOCOM. 2130–2138. https://doi.org/10.1109/INFCOM.2013.6567015

[57] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and Amin

Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center

Networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for Computing Machinery,

https://datatracker.ietf.org/doc/html/rfc3768#page-19
https://datatracker.ietf.org/doc/html/rfc3768#page-19
https://standards.ieee.org/ieee/802.3az/4270/
https://standards.ieee.org/ieee/802.3az/4270/
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_standalones/b-in-service-software-upgrade-issu.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_standalones/b-in-service-software-upgrade-issu.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_standalones/b-in-service-software-upgrade-issu.html
http://go.aussiebum.com/1KiYZf
https://stordis.com/wp-content/uploads/documents/Credo-Stordis-Webinar-5-19-22.pdf
https://stordis.com/wp-content/uploads/documents/Credo-Stordis-Webinar-5-19-22.pdf
https://blogs.nvidia.com/blog/meta-ai-supercomputer-dgx/
https://img-en.fs.com/file/user_manual/switch-port-packet-loss-troubleshooting.pdf
https://img-en.fs.com/file/user_manual/switch-port-packet-loss-troubleshooting.pdf
https://www.juniper.net/documentation/us/en/software/junos/mc-lag/topics/concept/mc-lag-feature-summary-best-practices.html
https://www.juniper.net/documentation/us/en/software/junos/mc-lag/topics/concept/mc-lag-feature-summary-best-practices.html
https://www.juniper.net/documentation/us/en/software/junos/mc-lag/topics/concept/mc-lag-feature-summary-best-practices.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus9800-series-switches-ds.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/nexus9800-series-switches-ds.html
http://go.aussiebum.com/xmGt7T
http://go.aussiebum.com/xmGt7T
https://www.anfkomftth.com/data-center-cabling-eor-mor-or-tor/
https://www.anfkomftth.com/data-center-cabling-eor-mor-or-tor/
http://go.aussiebum.com/WrjpXtng
https://arxiv.org/abs/cs.CL/2303.08774
https://arxiv.org/abs/2307.12169
https://openai.com/blog/chatgpt
https://blog.google/technology/ai/google-gemini-ai/sundar-note
https://blog.google/technology/ai/google-gemini-ai/sundar-note
https://arxiv.org/abs/cs.CL/2302.13971
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/load-balancing-aggregated-ethernet-interfaces.html
https://www.youtube.com/watch?v=5gOOtFySrqA
https://www.youtube.com/watch?v=5gOOtFySrqA
https://www.servethehome.com
https://www.servethehome.com
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://docs.nvidia.com/https:/docs.nvidia.com/dgx-superpod-reference-architecture-dgx-h100.pdf
https://www.virtualgraffiti.com.au/datasheets/Nvidia/pdf7.pdf
https://www.virtualgraffiti.com.au/datasheets/Nvidia/pdf7.pdf
http://go.aussiebum.com/kx21Ey4b
https://lmsys.org/blog/2023-03-30-vicuna/
https://info.support.huawei.com/info-finder/encyclopedia/en/ISSU.html
https://info.support.huawei.com/info-finder/encyclopedia/en/ISSU.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Stacking.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Stacking.html
https://www.arista.com/en/qsg-7800-series/7800-series-overview
https://www.arista.com/en/qsg-7800-series/7800-series-overview
https://e.huawei.com/en/products/switches/data-center-switches/ce16800
https://e.huawei.com/en/products/switches/data-center-switches/ce16800
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5000/sw/layer2/503_n2_1/503_n2_1nw/Cisco_n5k_layer2_config_gd_rel_503_N2_1_chapter8.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5000/sw/layer2/503_n2_1/503_n2_1nw/Cisco_n5k_layer2_config_gd_rel_503_N2_1_chapter8.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5000/sw/layer2/503_n2_1/503_n2_1nw/Cisco_n5k_layer2_config_gd_rel_503_N2_1_chapter8.html
https://www.microsoft.com/en-us/research/project/deepspeed/
https://www.microsoft.com/en-us/research/project/deepspeed/
https://drive.google.com/file/d/1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view?usp=drive_link
https://drive.google.com/file/d/1RtYYk1JHv7WnyABrUVj7FiRMZu2KEYtL/view?usp=drive_link
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Switches/Products/Data_Center/Core/S12500/H3C_S12500/
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Switches/Products/Data_Center/Core/S12500/H3C_S12500/
https://www.h3c.com/en/d_200712/211816_294551_0.htm
https://www.h3c.com/en/d_200712/211816_294551_0.htm
https://www.heatpipe.com/
https://celsiainc.com/heat-sink-blog/heat-pipes-vapor-chambers-difference/
https://celsiainc.com/heat-sink-blog/heat-pipes-vapor-chambers-difference/
https://radianheatsinks.com/vapor-chamber-heatsink/
https://radianheatsinks.com/vapor-chamber-heatsink/
https://support.hpe.com/hpesc/public/docDisplay?docId=c03662589&docLocale=en_US
https://support.hpe.com/hpesc/public/docDisplay?docId=c03662589&docLocale=en_US
https://standards.ieee.org/ieee/802.3ad/1088/
https://www.cisco.com/assets/sol/sb/Switches_Emulators_v2_3_5_xx/help/250/index.html/page/tesla_250_olh/aggregating_ports.html
https://www.cisco.com/assets/sol/sb/Switches_Emulators_v2_3_5_xx/help/250/index.html/page/tesla_250_olh/aggregating_ports.html
https://www.cisco.com/assets/sol/sb/Switches_Emulators_v2_3_5_xx/help/250/index.html/page/tesla_250_olh/aggregating_ports.html
https://thelinuxcluster.com/2010/01/08/linux-bonding-modes/
https://thelinuxcluster.com/2010/01/08/linux-bonding-modes/
https://github.com/NVIDIA/Megatron-LM
https://community.fs.com/article/mlag-vs-stacking-vs-lacp.html
https://community.fs.com/article/mlag-vs-stacking-vs-lacp.html
https://deepspeed.readthedocs.io/en/latest/model-checkpointing.html
https://deepspeed.readthedocs.io/en/latest/model-checkpointing.html
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/Layer-2/Multi-Chassis-Link-Aggregation-MLAG/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/Layer-2/Multi-Chassis-Link-Aggregation-MLAG/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-55/Layer-2/Multi-Chassis-Link-Aggregation-MLAG/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.nvidia.com/en-us/data-center/dgx-cloud/
https://www.nvidia.com/en-us/data-center/dgx-cloud/
https://www.techpowerup.com/gpu-specs/h800-pcie-80-gb.c4181
https://www.techpowerup.com/gpu-specs/h800-pcie-80-gb.c4181
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.ruijienetworks.com/products/switches/data-center-switches/RG-N18010-XH/
https://www.ruijienetworks.com/products/switches/data-center-switches/RG-N18010-XH/
https://www.global.dnp/biz/column/detail/10162360_4117.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/concept/issu-on-acx5000-overview.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/concept/issu-on-acx5000-overview.html
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/2619239.2626316
https://www.usenix.org/conference/nsdi23/presentation/bai
https://doi.org/10.1109/INFCOM.2013.6567015

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

New York, NY, USA, 225–238. https://doi.org/10.1145/3098822.3098839

[58] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. 2009. VL2: a scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ’09).
New York, NY, USA, 51–62. https://doi.org/10.1145/1592568.1592576

[59] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,

Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,

Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically

Reconfigurable Supercomputer for Machine Learning with Hardware Support

for Embeddings. In Proceedings of the 50th Annual International Symposium on
Computer Architecture (ISCA ’23). Association for Computing Machinery, New

York, NY, USA, Article 82, 14 pages. https://doi.org/10.1145/3579371.3589350

[60] Naga Katta, Mukesh Hira, Aditi Ghag, Changhoon Kim, Isaac Keslassy, and

Jennifer Rexford. 2016. CLOVE: How I learned to stop worrying about the core

and love the edge. In Proceedings of the 15th ACM Workshop on Hot Topics in
Networks (HotNets ’16). Association for Computing Machinery, New York, NY,

USA, 155–161. https://doi.org/10.1145/3005745.3005751

[61] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.

In Proceedings of the Symposium on SDN Research (SOSR ’16). Association for

Computing Machinery, New York, NY, USA, Article 10, 12 pages. https://doi.org/

10.1145/2890955.2890968

[62] Hong Liu, Ryohei Urata, Kevin Yasumura, Xiang Zhou, Roy Bannon, Jill Berger,

Pedram Dashti, Norm Jouppi, Cedric Lam, Sheng Li, Erji Mao, Daniel Nelson,

George Papen, Mukarram Tariq, and Amin Vahdat. 2023. Lightwave Fabrics: At-

Scale Optical Circuit Switching for Datacenter and Machine Learning Systems.

In Proceedings of the ACM SIGCOMM 2023 Conference (ACM SIGCOMM ’23).
Association for Computing Machinery, New York, NY, USA, 499–515. https:

//doi.org/10.1145/3603269.3604836

[63] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq, Rui

Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble, Rishi

Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein,

Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang,

Junlan Zhou, and Amin Vahdat. 2022. Jupiter evolving: transforming google’s

datacenter network via optical circuit switches and software-defined networking.

In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association
for Computing Machinery, New York, NY, USA, 66–85. https://doi.org/10.1145/

3544216.3544265

[64] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam

Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul

Kabbani. 2022. PLB: congestion signals are simple and effective for network

load balancing. In Proceedings of the ACM SIGCOMM 2022 Conference (SIGCOMM
’22). Association for Computing Machinery, New York, NY, USA, 207–218. https:

//doi.org/10.1145/3544216.3544226

[65] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani

Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-

MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. In Proceedings of the 39th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research), Kamalika Chaudhuri,

Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.),

Vol. 162. PMLR, 18332–18346. https://proceedings.mlr.press/v162/rajbhandari22a.

html

[66] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J. Freedman. 2013.

Scalable, optimal flow routing in datacenters via local link balancing. In Pro-
ceedings of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’13). Association for Computing Machinery, New York,

NY, USA, 151–162. https://doi.org/10.1145/2535372.2535397

[67] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,

and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parame-

ter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019).

arXiv:1909.08053 http://arxiv.org/abs/1909.08053

[68] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.

2017. Let it flow: resilient asymmetric load balancing with flowlet switching.

In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation (NSDI’17). USENIX Association, USA, 407–420.

[69] Yunhong Xu, Keqiang He, Rui Wang, Minlan Yu, Nick Duffield, Hassan Wassel,

Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin Vahdat. 2022. Hashing

Design in Modern Networks: Challenges and Mitigation Techniques. In 2022
USENIX Annual Technical Conference (USENIX ATC 22). USENIX Association,

Carlsbad, CA, 805–818. https://www.usenix.org/conference/atc22/presentation/

xu

[70] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy

Katz. 2012. DeTail: reducing the flow completion time tail in datacenter net-

works. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM ’12). Association for Computing Machinery, New York, NY, USA, 139–150.

https://doi.org/10.1145/2342356.2342390

n=4 n=8 n=16 n=320

50

100

B
us

bw
 (G

B
ps

)

Single-Plane Dual-Plane

Figure 19: AllReduce performance of dual-plane.

Algorithm 1 EstablishConns

1: function EstablishConns(𝑠𝑖𝑝 , 𝑑𝑖𝑝 , 𝑑𝑝𝑜𝑟𝑡)

2: 𝑠𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 ← findPaths(𝑠𝑖𝑝, 𝑑𝑖𝑝, 𝑑𝑝𝑜𝑟𝑡)
3: 𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡 ← []

4: for 𝑠𝑝𝑜𝑟𝑡 in 𝑠𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡 do
5: 𝑐𝑜𝑛𝑛 ← Connect(𝑠𝑖𝑝, 𝑑𝑖𝑝, 𝑠𝑝𝑜𝑟𝑡, 𝑑𝑝𝑜𝑟𝑡)
6: Add(𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡, 𝑐𝑜𝑛𝑛)

7: end for
8: return 𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡

9: end function

Algorithm 2 PathSelection

1: function PathSelection(𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡)

2: 𝑐𝑜𝑛𝑛 ← getLeastLoad(𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡)
3: return 𝑐𝑜𝑛𝑛

4: end function

[71] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury.

2017. Resilient Datacenter Load Balancing in the Wild. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 253–266. https:

//doi.org/10.1145/3098822.3098841

[72] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning Yu, Chenchen Qi, Xuemei

Shi, and Guohui Wang. 2021. Hashing Linearity Enables Relative Path Control

in Data Centers. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 855–862. https://www.usenix.org/conference/atc21/

presentation/zhang-zhehui

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A Performance of Dual-plane
This part compares HPN’s collective communication performance

with and without dual-plane. The scales of experiments vary from

32 to 256 GPUs. We split the GPUs used in each experiment evenly

into two different segments, so that all experiments generate cross-

segment traffic. Results are shown in Figure 19. We test the perfor-

mance of AllReduce under different scales and present the perfor-

mance under a large message size (4GB). By employing dual-plane,

the performance of AllRedcue increases by 50.1% to 63.7%.

B Path Selection Pseudo-code
Algorithm 1 illustrates the detailed procedure of establishing multi-

ple disjoint paths. In line 2, findPaths() leverages RePaC [72] to

calculate disjoint paths. As the source IP (𝑠𝑖𝑝), destination IP (𝑑𝑖𝑝)

and destination port (𝑑𝑝𝑜𝑟𝑡) are determined, findPaths() returns

https://doi.org/10.1145/3098822.3098839
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3005745.3005751
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/2890955.2890968
https://doi.org/10.1145/3603269.3604836
https://doi.org/10.1145/3603269.3604836
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544265
https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://proceedings.mlr.press/v162/rajbhandari22a.html
https://doi.org/10.1145/2535372.2535397
https://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://www.usenix.org/conference/atc22/presentation/xu
https://www.usenix.org/conference/atc22/presentation/xu
https://doi.org/10.1145/2342356.2342390
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3098822.3098841
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui
https://www.usenix.org/conference/atc21/presentation/zhang-zhehui

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Backend Network

Host 1 Host 16

ToR1 ToR2

Segment 1

Agg8Agg1

Host 1 Host 16

ToR1 ToR2

Segment 4

Pod 1
Agg2 Agg7

Core64Core1 Core128Core65

Agg8Agg1 Pod 32 Agg2 Agg7

64*400G
128*200G

64*400G
64*400G

128*400GCore256Core1

Agg8Agg1

ToR2ToR1ToR2ToR1

CPFS/OSS Cluster

Agg8Agg1

Frontend Network

High-bandwidth Intra-host NetworkHost 1

GPU1 GPU2 GPU7 GPU8
NIC1 NIC2 NIC7 NIC8NIC0

64*400G
64*400G Core64 Core193

Pod 1 Pod N

64*400G
64*400G

128 GPUs

512 GPUs

Figure 20: DCN+ topology. The frontend network is the same as that in HPN. In backend network, a segment contains 128
GPUs and a Pod contains 4 segments.

Backend
Building 1

Core32 Core64Core33Core1

Frontend
Building

Data Center

Core256Core1

Agg8Agg1

ToR2ToR1ToR2ToR1

CPFS/OSS Cluster

Agg8Agg1

Frontend Network Backend Network in a Building

…

ToR1 ToR2 ToR15 ToR16ToR1 ToR2 ToR15 ToR16

…
Agg1 Agg60 Agg1 Agg60

1024 (active) + 64 (backup) GPUs
Host 1 Host 136 Host 1 Host 136

Segment 15Segment 1

Plane1 Plane2 Pod 1

NIC1 NIC8

60*400G
(128+8)*200G

8*400G
120*400G

64*400G
64*400G Core64 Core193

Pod 1 Pod N

64*400G
64*400G

15K GPUs

(a) Data center layout.

(b) HPN frontend network. (c) HPN backend network in a building.

Backend
Building N

Figure 21: The layout of the entire data center that employs HPN. Each Pod in the backend is contained by an independent
backend building. The frontend building contains the frontend network of the entire data center, as well as the storage cluster.

a list of source ports (𝑠𝑝𝑜𝑟𝑡_𝑙𝑖𝑠𝑡) for establishing connections pass-

ing through disjoint paths. In line 4-7, we generate connections

accordingly and return the final 𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡 .

Algorithm 1 illustrates the detailed procedure of the optimized

path selection scheme. We maintain a counter (𝑊𝑄𝐸𝑖) for each

connection 𝑐𝑜𝑛𝑛𝑖 , representing the bytes of unfinished WQEs on

the connection.𝑊𝑄𝐸𝑖 increases when a new WQE is injected to

𝑐𝑜𝑛𝑛𝑖 .𝑊𝑄𝐸𝑖 decreases when a new CQE is returned from 𝑐𝑖 . In

line 2, getLeastLoad() search paths in the 𝑐𝑜𝑛𝑛_𝑙𝑖𝑠𝑡 to find out

the 𝑐𝑜𝑛𝑛𝑖 with the minimal𝑊𝑄𝐸𝑖 .

C DCN+ Topology
Figure 20 illustrates the DCN+ network architecture, which is Al-

ibaba Cloud’s previous version of network architecture deployed

in training clusters. In the backend network, DCN+ deploys a typ-

ical three-layer Clos network with the enhancement of dual-ToR.

With the deployment of dual-ToR, each segment is composed of

128 GPUs (16 servers). Each Pod is equipped with 8 Aggregation

switches and each ToR switch connects to all Aggregation switches

with a 400Gbps link. Therefore, each Pod contains 4 segments (i.e.,
512 GPUs). With DCN+, the entire cluster contains up to 32 Pods,

making the scale up to 16384 GPUs. The frontend network in DCN+

remains the same compared with that in HPN.

D Data Center Layout
Figure 21 visualizes the layout of buildings in Alibaba Cloud’s data

center. In the backend network, a Pod (containing 15K GPUs) is

completely accommodated by a backend building. Pods in different

backend buildings are interconnected through a set of Core switches.

There is an independent frontend building work for containing the

entire frontend network and storage (CPFS/OSS) clusters. All hosts

access the frontend network through the cross-building links. This

data center layout leads to some benefits. (1) Cross-building links

only occupy about 12.9% of the overall links, greatly decreasing the

overall cost and simplifying the wiring and operating complexity.

(2) GPUs in different backend Pods can share storage services at

the data center scope, greatly decreasing the overall storage data

volume.

	Abstract
	1 Introduction
	2 Background and Our Goals
	2.1 Large Language Model (LLM) Training
	2.2 Traffic Patterns in LLM Training
	2.3 LLM Training is Sensitive to Faults
	2.4 Goals with Practical Considerations

	3 HPN Architecture Overview
	4 Access: Non-stacked Dual-ToR
	4.1 Stacked Dual-ToR and Problems
	4.2 Our Solution: Non-stacked Dual-ToR

	5 Tier1: 1K GPUs in one Segment
	5.1 Fully Utilizing 51.2Tbps Single-Chip
	5.2 Rail-Optimized Network

	6 Tier2: 15K GPUs in one Pod
	6.1 Conquering Load Imbalance
	6.2 15K GPUs in One Pod

	7 Supporting Larger Scale
	8 Independent Frontend Network
	9 Evaluation
	9.1 LLM Training Performance
	9.2 Network-Level Performance
	9.3 Reliability

	10 Experience & Lessons
	11 Related Work
	12 Conclusion
	References
	A Performance of Dual-plane
	B Path Selection Pseudo-code
	C DCN+ Topology
	D Data Center Layout

