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ABSTRACT
This paper presents YU, the first verification system for checking

traffic load properties under arbitrary failure scenarios that can scale
to production Wide Area Networks (WANs). Building a practical

YU requires us to address two challenges in terms of generality
and efficiency. The state-of-the-art efforts either assume shortest-

path-based forwarding (e.g., QARC) or only target single-failure

reasoning (e.g., Jingubang). As a result, the former inherently cannot

generalize to widely used protocols (e.g., SR and iBGP) that are

beyond shortest-path forwarding, while the latter cannot efficiently

handle arbitrary failure scenarios. For the generality challenge,

we propose an approach inspired by symbolic execution, called

symbolic traffic execution, to model the forwarding behavior of

a range of practically deployed protocols (e.g., eBGP, iBGP, iGP,
and SR) under failure scenarios. For the efficiency challenge, we

propose diverse equivalence classification techniques (i.e., k-failure-
equivalence and link-local-equivalence reduction) to reduce the

symbolic traffic execution overhead caused by both the large size of

the productionWAN and the huge number of traffic flows traversing

it. YU has been used in the daily verification of our WAN for several

months and has successfully identified potential failure scenarios

that would lead to traffic load violations.

CCS CONCEPTS
• Networks→ Network reliability; Network manageability; •
Theory of computation→ Automated reasoning.
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1 INTRODUCTION
Alibaba Cloud’s global wide area network (WAN) infrastructure

interconnects tens of data centers through ∼ 1000 routers. These

routers are operated in a distributed setting, running a diverse

set of protocols including BGP [2], IS-IS [3], and segment routing

(SR) [19]. ThisWAN supports core services such as cloud computing

and e-commerce, serving more than one billion customers globally.

As thisWAN carries and forwards a substantial amount of service

traffic every day, failures in links or routers may cause abnormal

traffic load changes on links (e.g., due to unexpected changes in

the traffic’s forwarding paths), resulting in severe service outages.

For example, a link failure in a SR tunnel may lead to traffic unex-

pectedly falling back to tunnels with bottleneck links, causing the

links to be overloaded, and thus downgrading the QoS of the hosted

service (see §6 for more real-world examples). According to our

recent five-year internal network outage records, more than 90% of

the outages are caused by traffic load violations, with a majority of

them caused by failures in links and routers. Therefore, proactively
verifying whether the network meets traffic load properties (TLP)
(e.g., no overloaded links) under arbitrary failures (up to a given

degree 𝑘) is vital to the availability and reliability of the network.

We refer to this problem as the 𝑘-failure TLP verification problem.

Why prior work does not help? State-of-the-art network verifica-
tion systems have been focused on checking reachability properties

(e.g., if routes/packets from a router C can reach another router D)

in terms of control plane [4, 8, 17, 20, 23, 24, 33, 46, 47, 50, 55–57, 59]

and data plane [9, 29, 31, 32, 34, 35, 43, 45, 51, 54]; however, they

are not designed to verify TLPs in the network.

In recent years, we have seen some first-step exploration on the

𝑘-failure TLP verification problem. QARC [52] proposed a verifica-

tion technique to detect overloaded links when at most 𝑘 links can

fail. QARC assumes that traffic forwarding always follows the short-

est paths, and thus models the network control plane as a weighted

graph. This modeling allows the 𝑘-failure TLP verification problem

to be encoded as an integer linear programming problem, which

can be solved effectively by modern solvers. However, QARC’s

shortest-path-based modeling is fundamentally limited in modeling

a number of key features used in production networks, such as SR,

iBGP, and BGP local preference, under which traffic forwarding

is beyond the shortest paths. Moreover, QARC is unlikely to scale

to production WANs with thousands of links (see §7.2). Another

recent work Jingubang [39] proposed a general verification algo-

rithm, supporting a wide range of features (e.g., iBGP/eBGP, SR), to
check TLPs for production networks. While Jingubang proposed

an efficient incremental algorithm to verify TLPs under a specific
failure scenario, it is hard to extend the algorithm to efficiently

check TLPs under arbitrary 𝑘-failure scenarios, which can be pro-

hibitively many. Thus, the fundamental research question that, how

https://doi.org/10.1145/3651890.3672246
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to build a verification system for 𝑘-failure TLP verification at the

production scale while supporting practically deployed features,

still remains open.

1.1 Our Approach: YU
This paper presents YU, the first verification system for 𝑘-failure

TLP verification targeting production networks.
1

Generality. In order to support various network features (beyond

shortest-path forwarding), YU must model the forwarding behavior

of each flow on every router at the foundation level, including basic

primitives such as route selection, (weighted) equal-cost multipath

(ECMP) forwarding, and route iteration, for both IP and SR for-

warding. Meanwhile, YU must be able to reason about all possible

forwarding behaviors under arbitrary 𝑘-failure scenarios.

Inspired by the principle of symbolic execution on computer

programs [36], YU adopts a general symbolic traffic execution ap-

proach, by viewing the forwarding process of a given flow in the

network as a program and the failure state of links/routers as the

input. First, YU conducts symbolic route simulation [57] for all used

routing protocols in our network and generates guarded routing

tables, where each route is guarded with a constraint encoding all

the scenarios under which the route can present. Second, for each

flow entering the network, YU simulates its forwarding process on

each router, including route selection and ECMP, while recording

and propagating the constraints encountered in each step. As a

result, YU computes a symbolic traffic load for each link of the flow,

encoding the mapping of each failure scenario to a concrete traffic

load number. Finally, with the symbolic traffic load on each link, a

TLP can be effectively verified by solving the constraint (§4).

Efficiency. With the general symbolic traffic execution approach,

the key challenge then is how to improve its efficiency to the pro-

duction network scale. First, given the large number of routers

and links in the network, the number of failure scenarios can be

prohibitively large. Thus, a naive encoding of constraints in the

symbolic traffic execution can grow extremely fast. Second, the

network forwards billions of flows. Thus, verifying TLPs for a link

by trivially combining all flows’ symbolic traffic load on it induces

huge overhead.

To address the two efficiency challenges above, YU makes the

following two contributions accordingly. First, to compactly encode

the constraints, YU employsmulti-terminal binary decision diagrams
(MTBDDs) [6, 15, 22], which succinctly represents a constraint as

a single-source-multiple-sink directed acyclic graph (DAG). We

observe that the MTBDD can be greatly simplified under the 𝑘-

failure constraint while maintaining the correctness of verification.

For example, if a MTBDD encodes more than 𝑘 failed links, then it

can be pruned, since such a failure scenario is beyond the degree 𝑘 .

Motivated by this insight, we propose a novel MTBDD 𝑘-failure-

equivalence reduction technique that effectively reduces the size of

MTBDDs propagated in the symbolic traffic execution process.

Second, while different flows typically have different global for-

warding behavior in the network, they may exhibit the same for-

warding behavior on a specific link under all failure scenarios. As a

result, the MTBDDs encoding the flows’ symbolic traffic load on the

1
In ancient Chinese mythology, Yu the Great is famed for his efforts at flood control.

Therefore, we named our network traffic load verification system YU.

link are equivalent to one another. This link-local flow-equivalence
relation allows us to greatly reduce the number of flows to be

checked on a link by replacing a large number of equivalent flows

with one, thus improving the efficiency of verification for that link.

YU has been used in the daily verification of our WAN for sev-

eral months. Our operators used YU to check crucial TLPs and

successfully identified a number of failure scenarios under which

those properties would be violated, leading to severe outages. Our

performance evaluation based on our production networks shows

that YU (1) only takes tens of minutes to verify 𝑘-failure TLPs for

our global network with more than one thousand routers and (2) is

orders of magnitude faster than alternative approaches.

Ethics. This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

Background. Alibaba Cloud’s global WAN consists of ∼ 1000

routers and thousands of links, interconnecting tens of data centers

and external ISP peers. This WAN runs a traditional distributed

control plane, using protocols such as BGP (eBGP and iBGP), IS-IS,

and SR. The mainstream SR used in this WAN is Segment Routing

IPv6 (or SRv6). As of Jan 2024, this WAN has millions of IP prefixes

and carries billions of flows.

The WAN is intended to tolerate some degree of failures (e.g.,
link failures) such that no critical traffic load properties are violated,

e.g., no overloaded links and no unexpected traffic load dropping.

2.1 Motivating Example
Inspired by real configurations in our WAN, Figure 1 illustrates

an example that motivates the need for a new verification system

checking traffic load properties under arbitrary failure scenarios.

This example network consists of six routers (router A-F), con-

nected with 100 Gbps links. Those routers are configured into three

autonomous systems (AS 100-300) and run eBGP on the border to

exchange routes. Routers in AS 300 runs iBGP with IS-IS as IGP,

where the IGP cost is 10000 for all links and 5 for loopback inter-

faces. Router D is configured with a segment routing (SR) policy

that forwards matched traffic (i.e., DSCP=5) through paths D-E-F

and D-C-F with weights 75 and 25 respectively. Green boxes show

the BGP and IS-IS RIBs for selected routers; the yellow box shows

the SR configuration of router D. The RIBs and configurations of

other routers are omitted due to space limits.

The network forwards two flows 𝑓1 and 𝑓2 to the destination

100.0.0.0/24, with each flow carrying 20 Gbps and 80 Gbps traffic,

respectively. To offer high availability and reliability, the network

is intended to maintain the following two TLPs: (P1) the traffic load

delivered to the destination should not drop significantly (e.g., <
70 Gbps) and (P2) no link is overloaded (e.g., ≥ 95 Gbps).

Clearly, when no link fails, both P1 and P2 are satisfied, as shown

by the traffic load on each link in Figure 1(a). Note that router B

forwards 𝑓2 to both C and D via ECMP; thus each one of the links

B-C and B-D carries 40 Gbps traffic, respectively.
2
Based on the

configured SR policy, router D forwards 75/(75 + 25) = 75% of 𝑓2’s

2
We assume that traffic is distributed equally across multiple equal-cost paths or

proportionally according to the pre-configured weights. This assumption is reasonable

given our WAN settings, as detailed in [39].
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Figure 1: Motivating example: (a) shows the non-failure scenario. The network is configured with eBGP/iBGP, IS-IS, SR and
forwards the traffic of two flows. The green boxes show the routing tables of router A, B, D. Selected routes are labeled with *.
The yellow box shows router D’s SR policy. Each link is labeled with the amount and direction of the traffic it forwards. (b)-(e)
show how the two flows’ traffic is forwarded on each link under specific failed links (labeled with red-cross markers), 𝑓1’s traffic
is labeled in green and 𝑓2’s traffic is in red.

incoming traffic to E and 25/(75 + 25) = 25% of that to C; thus, link

D-E and D-C carry 30 Gbps and 10 Gbps traffic of 𝑓2, respectively.

To ensure that the network can tolerate some degree of failures,

network operators may want to check whether P1 and P2 still hold

under arbitrary link failures. For example, when any single link

can fail, it can be checked that P1 always holds. However, when

link B-D fails in the network, all traffic of 𝑓2 has to be forwarded to

router C, which forwards all 100 Gbps traffic of both flows via link

C-E (as shown in Figure 1(c)), causing the link to be overloaded.

Therefore, while P1 is satisfied under all considered scenarios, P2

would be violated when link B-D failed, resulting in a severe outage.

Why existing approaches do not help? Route verifiers (e.g.,
Minesweeper [8] and Hoyan [57]) mainly focus on checking route

reachability properties (e.g., whether a route advertised from A

can reach B) and are not easily extensible to verify TLPs. On the

other hand, recently proposed TLP verification systems, QARC

and Jingubang, face fundamental difficulties in their generality and

efficiency. QARC critically relies on the shortest-path-forwarding

assumption, thus, it cannot be applied to the example network

above (e.g., 𝑓2’s forwarding path with SR is not the shortest). While

Jingubang proposes a general model to support a wide range of

features, it can only verify a single failure scenario at a time. Thus,

to detect the risk in the example, Jingubang needs to enumerate

and check all possible failure scenarios, which is inefficient.

2.2 Technical Challenges
Designing a general verification system checking TLPs under arbi-

trary failures faces significant challenges in its efficiency:

C1: Reasoning a large space of traffic forwarding behaviors
under failures. A flow’s forwarding behaviors vary significantly

under different failure scenarios. In our motivating example, 𝑓2
is forwarded by router B to both C and D via ECMP, with each

link taking 50% of the flow’s traffic load, when no failure happens.

However, when one of the links B-C and B-D fails, 𝑓2 is forwarded

to the other link with 100% traffic load (Figure 1(b) and 1(c)); in the

scenario that both B-C and B-D fail, 𝑓2 is forwarded to A with 100%

traffic load (Figure 1(e)). Such fluctuation further leads to cascading

effects along the entire forwarding path across the network (e.g., the
far-away links C-E and D-E). As a result, the space of all possible

forwarding behaviors can be as large as the entire failure scenario

space, which is of size 𝑂 (𝑛𝑘 ) (𝑛 denotes the size of the network,

e.g., the number of links). This makes the verification system hard

to scale for production networks with thousands of links.

C2: Reasoning a large number of flows.As production networks
employ a rich set of network features, flows’ forwarding behaviors

differ greatly from one another, especially under various failure

scenarios. For example, as shown in Figure 1(b)-(e), the network-

wide forwarding behaviors of 𝑓1 and 𝑓2 differ in each failure scenario.

Thus, it is hard to reason traffic loads under failures by simply
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Figure 2: YU’s high-level workflow.

treating a large number of flows as having identical effects. As

a result, to verify TLPs for a link, a trivial approach may have

to reason about traffic introduced by a large number of flows on

the link, which is inefficient. Thus, the large number of flows in

production networks remains a significant challenge.

3 OVERVIEW
In this section, we discuss YU’s key insights to address the above

challenges, and then describe its high-level workflow.

3.1 Key Insights
YU’s design is driven by the following key insights.

I1: Symbolic traffic execution. To model the complex traffic

behavior under various network features, one may have to simulate

the forwarding behavior of each flow, similar to the approach in

Jingubang [39]. However, given the large space of traffic forwarding

behaviors under failure (C1) this concrete traffic simulation approach

has to enumerate all failure scenarios and simulate the traffic load

under each scenario, which is inefficient. YU adopts a symbolic
execution approach (which we refer to as symbolic traffic execution),
where each router/link’s state (i.e., alive or failed) is encoded as

a boolean variable and the traffic load of a flow on each link is

then represented symbolically as a function of those variables. The

symbolic traffic execution allows YU to compute the traffic load in

all failure scenarios in a single run of execution. It not only avoids

running concrete simulations mulitple times (up to𝑂 (𝑛𝑘 )), but also
offers opportunities to summarize similar forwarding behaviors

among different flows across various failure scenarios (see below),

thereby reducing redundant computations significantly.

I2: Compact symbolic representation and size reduction. A
key challenge of the symbolic traffic execution approach, induced

by the large space of traffic forwarding behavior (C1), is that the

symbolic representation of traffic loads may grow fast and quickly

exhaust system resources. Thus, such a representation must be

compact throughout the entire symbolic execution. To this end,

we investigate a variant of binary decision diagrams [12], called

multi-terminal binary decision diagrams (MTBDDs), to compactly

encode such representations. To avoid the exponential explosion

of MTBDDs during symbolic traffic execution, we propose novel

Table 1: Comparison with the state-of-the-art efforts.

Generality Efficiency

eBGP iBGP IGP SR for 𝑘-failure TLP

QARC [52] Y N Y N Low

Jingubang [39] Y Y Y Y Low

YU Y Y Y Y High

MTBDD size reduction techniques based on 𝑘-failure equivalence.

By replacing exact encodings with 𝑘-failure equivalent ones, we

can effectively reduce the size of a MTBDD while still ensuring ver-

ification correctness under scenarios with no more than 𝑘 failures.

I3: Equivalence-relation reduction for efficient checking.With

the MTBDD representation of traffic loads of each flow, checking a

TLP on a link requires to add a large number of MTBDDs for all

flows (C2). To address this challenge, we establish link-local equiva-
lence relations among flows, allowing us to consider a significantly

smaller number of flows when verifying TLPs regarding each link.

3.2 Workflow
Figure 2 shows the high-level workflow of YU. First, taking the

(i) network topology, (ii) configurations of all routers, and (iii) all

input routes as input, YU runs symbolic route simulation [57] to

compute the guarded RIB and guarded SR policies for each router. In

a guarded RIB, each route is guarded with a constraint, encoding

all the scenarios under which the route can appear on the router.

Second, given the guarded RIB and SR policies of each router

and all the input flows, YU runs symbolic traffic execution for each

input flow. YU computes a MTBDD for each flow and each link as

the symbolic representation of the traffic load, i.e., the symbolic

traffic load (STL) (§4). Meanwhile, YU actively applies size reduction

techniques to reduce the MTBDD size to improve efficiency (§5.2).

Finally, YU checks the desired TLP on each link. Specially, YU

aggregates the STLs of all flows on that link, and checks whether

there exists a solution to the violation of the TLP for the aggregated

STL. If that is the case, YU finds a failure scenario and link where the

TLP is violated and our operators will manually analyze the failure

scenario to locate the root cause (§6); otherwise, the TLP is satisfied

in all failure scenarios with no more than 𝑘 failures. To improve

the efficiency of checking, YU identifies link-local equivalent flows

(§5.3), which reduces the number of flows to be considered.

Traffic load properties of interest. Similar to Jingubang, we

define a TLP as required ranges of traffic loads enforced on a list of

specific links. Formally, a TLP is a set of {𝑙𝑖 : [𝑣1, 𝑣2]} pairs, where
𝑙𝑖 is a link and [𝑣1, 𝑣2] specifies the range of required traffic loads.

Comparison with existing work. Revisiting the existing work
discussed in §2, we highlight the difference of YU in Table 1. Only

YU meets the generality goal of supporting a wide range of network

features, and can efficiently check TLPs for production networks

under arbitrary 𝑘 failures.

4 SYMBOLIC TRAFFIC EXECUTION BASED
𝑘-FAILURE TLP VERIFICATION

Given a set of flows entering a network, YU symbolically executes

the forwarding process of each flow’s traffic in the network, viewing

the state of each router/link as a symbolic variable. In this section,
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Table 2: Summary of notations.

Description Range

𝑟1 ≺ 𝑟2 rule 𝑟1 has higher preference than 𝑟2 -

𝑤𝑝 the weight of a SR path 𝑝 -

𝑙1, 𝑙2, ... network links -

𝑥1, 𝑥2, ..., 𝑦 the state of links {0, 1}
𝑔𝑟 (𝑔𝑝 ) guard of a rule 𝑟 (a SR path 𝑝) {0, 1}
𝑠
ip
𝑟 whether 𝑟 is selected for the destination IP ip {0, 1}

𝜔
𝑓

𝑙
symbolic traffic fraction (STF) of 𝑓 on link 𝑙 [0, 1]

𝜔
𝑓

𝑅
symbolic traffic fraction (STF) of 𝑓 on router 𝑅 [0, 1]

𝜏𝑙 symbolic traffic load (STL) of link 𝑙 R

we elaborate on the design of the symbolic traffic execution algo-

rithm, focusing on link failures for presentation purposes (router

failures are supported similarly). First, we introduce the guarded

RIBs and SR policies generated by symbolic route simulation. Then

we describe how to represent traffic load on a link symbolically.

Next, we describe the symbolic traffic execution framework and

YU’s symbolic encodings of forwarding behavior.

Notations and terminologies.We consider a flow as a (intf , srcip,
dstip, dscp) tuple, indicating all the packets entering the network

via the interface intf with the source IP srcip, destination IP dstip,
and DSCP value dscp. We use 𝑉𝑓 to denote the total traffic volume

of the flow 𝑓 . For SR forwarding, packets in a flow are forwarded

in tunnels with label stacks indicating the configured list of routers

in the SR path (YU also supports SR policies specifying outgoing

interfaces; the details are omitted due to space limit). For simplicity,

we use the list of routers in the SR path to denote its label stack,

e.g., [E, F] denotes the label stack of the first SR path configured

on router D (Figure 1). To model the direction of a flow forwarded

on a link, we model a network link with directions, and use the

term incoming/outgoing links to refer to the links with correspond-

ing forwarding directions. Table 2 summarizes commonly used

notations in this paper.

4.1 Symbolic Route Simulation
YU employs the techniques proposed in [57] to run symbolic route

simulation and generates the symbolic representation of RIBs (in-

cluding BGP and IS-IS) and SR policies, which we refer to as guarded
RIBs and guarded SR policies, respectively.

Guarded RIBs. A guarded RIB extends a concrete RIB with a

symbolic constraint (called guard) for each route, encoding the

scenarios where the route can present in the router’s RIB. For the

motivating example, the guarded (BGP) RIB of router A is shown in

Figure 3. Here, for brevity of illustration, we only consider the state

of three links, i.e., A-C, B-C, and B-D, denoted as variable 𝑥1, 𝑥2,

and 𝑥3, respectively (e.g., 𝑥1 = 1 if A-C is alive, otherwise 𝑥1 = 0).

In the guarded RIB, there are two rules, namely 𝑟1 and 𝑟2, cor-

responding to the two concrete routes in Figure 1. 𝑟1 is guarded

with constraint 𝑥1, indicating that 𝑟1 can appear in the RIB if and

only if A-C is alive. Similarly, 𝑟2 is guarded with 𝑥2 ∨ 𝑥3, denoting
𝑟2 can appear if and only if either B-C or B-D is alive. A guard only

constrains the presence of a route without changing any attribute.

Thus, the precedence of rules in a guarded RIB is determined in

the normal fashion. For the example above, 𝑟1 is preferred to 𝑟2
(denoted 𝑟1 ≺ 𝑟2), since 𝑟1’s AS path is shorter than that of 𝑟2.

Figure 6 briefly demonstrates the symbolic route simulation pro-

cess for the guarded RIB; we refer to §5 of [57] for the detailed

algorithm. In the symbolic route simulation, a route advertisement

message is also extended with a guard. For example, the advertise-

ment message𝑚1 sent from router C to router A has the guard 𝑥1,

indicating that the message can be sent when link A-C is alive. As

shown in step (1)-(3) in the figure, routers in AS 300 first sends mes-

sages𝑚1-𝑚3 to router A and B. After receiving𝑚2 and𝑚3, router

B generates message𝑚4 and sends it to A, as shown in step (4). The

guard of𝑚4 is the disjunction of that of𝑚2 and𝑚3 (namely, 𝑥2∨𝑥3),
since the routes in𝑚2 and𝑚3 have equal precedence. Finally, after

receiving𝑚1 and𝑚4, router A can generate the guarded RIB.

Guarded SR policies. Similarly, in a guarded SR policy, each SR

path is guarded with a constraint encoding the scenarios where the

SR tunnel for the path can be established. For example, Figure 4

shows the guarded SR policy on router D. In order to establish the

SR tunnel D-E-F, i.e., 𝑝1, the following two conditions must be met:

(1) router D can reach router E via IS-IS in AS 300 and (2) router E

can reach router F via IS-IS in AS 300. We denote the two conditions

as reach𝐷,𝐸 and reach𝐸,𝐹 . Thus, the guard of 𝑝1 can be computed

as reach𝐷,𝐸 ∧ reach𝐸,𝐹 . The guard of 𝑝2 can be computed similarly.

As an example, we illustrate the computation of reach𝐷,𝐸 , by

only considering the state of link C-E (denoted as variable 𝑦1) and

link D-E (denoted as variable 𝑦2). First, we run symbolic router

simulation to generate the guarded IS-IS RIB for all routers in AS

300 (the process is similar to the one shown in Figure 6). For the

simple example, router D’s guard IS-IS RIB has two routes to router

E: (1) a preferred route with the next hop directly to E and guard

𝑦2, and (2) a less preferred route with the next hop to C and guard

𝑦1. As a result, reach𝐷,𝐸 is computed as the disjunction of the two

guards, namely reach𝐷,𝐸 = 𝑦1 ∨ 𝑦2.

4.2 Symbolic Traffic Load and Fraction
By encoding each link’s state as a symbolic variable, the traffic load

on a link 𝑙 in a set of scenarios can be represented as a symbolic

formula 𝜏𝑙 , which we refer to as symbolic traffic load (STL). We also

use 𝜏
𝑓

𝑙
to denote the STL on 𝑙 but only considering 𝑓 ’s traffic. We

also represent the fraction of traffic of a flow 𝑓 on a link 𝑙 (a router

𝑅, resp.) as a symbolic formula 𝜔
𝑓

𝑙
(𝜔

𝑓

𝑅
, resp.), which we refer to as

symbolic traffic fraction (STF). Since 𝜏
𝑓

𝑙
= 𝑉𝑓 ∗𝜔

𝑓

𝑙
where 𝑉𝑓 is total

traffic volume of 𝑓 , we will use STF in the process of symbolic traffic

execution discussed later, as it offers additional convenience (see

§5.3). STLs and STFs are functions mapping {0, 1}𝑛 to real numbers.

They are known as pseudo-boolean functions [27]. We consider a

symbolic constraint (e.g., a guard) also as a pseudo-boolean function,
for ease of operation.

Example. Consider the flow 𝑓1 and link C-E in the scenarios shown

in Figure 1(a)-(e). Similar to the previous example, we only consider

the state of link A-C, B-C, and B-D (with 𝑥1, 𝑥2, and 𝑥3 as the

symbolic variables, respectively) for brevity. The STF of 𝑓1 on link

C-E is shown in Figure 5.

To explain, consider failure scenario (b), where only link B-C

fails. The link state of this scenario can be represented as 𝑥1𝑥2𝑥3,

where 𝑥1 and 𝑥3 denote that A-C and B-D are alive, and 𝑥2 denotes

that B-C is failed, correctly encoding the failure scenario. Since link
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Prefix Next Hop AS Path Guard

𝑟1 : 100.0.0.0/24 1.3.0.2 [100,300] 𝑥1
𝑟2 : 100.0.0.0/24 1.2.0.2 [100,200,300] 𝑥2 ∨ 𝑥3

Figure 3: Guarded RIB of router A.

SR path Weight Guard

𝑝1 : [E, F] 75 reach𝐷,𝐸 ∧ reach𝐸,𝐹
𝑝2 : [C, F] 25 reach𝐷,𝐶 ∧ reach𝐶,𝐹

Figure 4: Guarded SR policy of router D.

scenario (a): 1 ∗ 𝑥1𝑥2𝑥3
scenario (b): 1 ∗ 𝑥1𝑥2𝑥3
scenario (c): 1 ∗ 𝑥1𝑥2𝑥3
scenario (d): 0.5 ∗ 𝑥1𝑥2𝑥3
scenario (e): 1 ∗ 𝑥1𝑥2𝑥3

Figure 5: 𝑓1’s STF on C-E

A C

DB

1

2

3

4

m! = 100/24, 𝐶, 300 , 𝑥!

m"
= 100

/24,
𝐶, 3

00 ,
𝑥"

m# = 100/24, 𝐷, 300 , 𝑥#

m$ =
100/24, 𝐵, 200,300 , 𝑥" ∨ 𝑥#

Figure 6: Demonstration of symbolic route simulation for
themotivating example. Here a route advertisementmessage
is represented as ⟨prefix, next hop, AS path, guard⟩, where
the guard is highlighted in red.

C-E carries 100% of 𝑓1’s traffic, the STF of 𝑓1 on the link is thus

represented as 1 ∗ 𝑥1𝑥2𝑥3 (note that 𝑥2 is equivalent to 1 − 𝑥2).
Summing up all the symbolic formulas, we can succinctly repre-

sent the STF of 𝑓1 on C-E in all five scenarios as 1 ∗𝑥1 + 0.5 ∗𝑥1𝑥2𝑥3.
Note that there are three remaining failure scenarios not shown in

Figure 1(a)-(e), and this formula does not cover them either.

4.3 Symbolic Traffic Execution Framework
Given a network with generated guarded RIBs and SR policies for

all routers, YU then runs symbolic traffic execution for each flow

entering the network. Below we describe the high-level framework

of the algorithm and §4.4 discusses how to encode the forwarding

process of a router.

At a high level, the symbolic traffic execution algorithm on a

flow 𝑓 runs in iterations, simulating the propagation of 𝑓 ’s traffic.

In each iteration, the algorithm updates the STF of 𝑓 on each link by

executing the forwarding process of each router given the incoming

traffic computed in the last iteration. Thus, for a given link 𝑙 , the

𝑖-th iteration computes the traffic fraction of 𝑓 that can reach 𝑙 in 𝑖

hops in arbitrary failure scenarios. The algorithm terminates when

a fixed point is achieved (i.e., no update of STF on any link; not

shown in Algorithm 1) or it reaches the maximum iteration number

(which can be determined by the TTL [1] setting in practice).

To implement the above algorithm when no SR is configured, we

can maintain a vector storing the STF of each link and then update

the vector iteratively. However, when SR is configured, packets in

the flow may be attached to different label stacks based on the SR

path and forwarded differently. For example, router D in Figure 1(a)

needs to attach two label stacks, namely [E, F] and [C, F], to packets

in 𝑓2; router E has to forward those labeled packets based on the

labels. Thus, the algorithm must consider the various label stacks

attached to the flow 𝑓 , and maintain a matrix M mapping each

link 𝑙 and label stack S to a symbolic formula, representing the

fraction of traffic of 𝑓 on 𝑙 when 𝑓 has the label stack S. Note that
the number of label stacks is bounded by the sum of all SR paths’

length, which is typically small in practice.

Algorithm 1: symbolic traffic execution

1 Function simulate(𝑓 ):
2 M0 [𝑙, S] ← 0 for all link 𝑙 and label stack S;
3 construct a pseudo incoming link 𝑙𝑅 to 𝑓 ’s receiving router 𝑅;

4 M0 [𝑙𝑅 , ∅] ← 1;

5 for 𝑖 = 1 to maximum iteration number 𝐼 do
6 M𝑖 [𝑙, S] ← 0 for all outgoing link 𝑙 and label stack S;
7 forall router 𝑅 and label stack S do
8 𝜔

𝑓

𝑅
← sum{M𝑖−1 [𝑙, S]} for all incoming link 𝑙 of 𝑅;

9 M𝑖 ← M𝑖 + forward(𝑅, 𝑓 , S, 𝜔 𝑓

𝑅
) ;

10 returnM𝐼

Algorithm 1 shows the high-level symbolic traffic execution

algorithm for one flow. For illustration, the algorithm maintains

multiple copies ofM, denotedM𝑖 for the 𝑖-th iteration. The algo-

rithm first constructs a pseudo incoming link 𝑙𝑅 to the router 𝑅

where 𝑓 enters the network, and initializes the matrixM0 by only

assigningM0 [𝑙𝑅, ∅] to 1, representing 100% of 𝑓 ’s traffic at 𝑙𝑅 with

no labels attached (i.e., ∅) on any packets (line 2-4). Then, the al-

gorithm iteratively updatesM. In the 𝑖-th iteration, the algorithm

updatesM𝑖 for all routers and label stacks (line 7-9) by computing

the STF of 𝑓 that router 𝑅 receives (line 8) and executing the for-

warding process of 𝑅 (shown as the forward function, elaborated

below) given the flow 𝑓 , label stack S, and received STF 𝜔 𝑓

𝑅
(line 9).

4.4 Symbolic Traffic Forwarding
Wenowdiscuss how to symbolically execute the forwarding process

of a router in order to implement the forward function referenced

above. First, we discuss how to encode several key forwarding

primitives, including route selection, (weighted-)ECMP, and route

iteration. Those encodings can be pre-computed and cached (with

prefix classification) for high efficiency. Based on those encodings,

we then describe the symbolic forwarding algorithm.

Encoding route selection.Given a guard RIB gRIB, traffic sending

to dstip is forwarded to the next hops of selected routes; we use

a boolean formula 𝑠
dstip
𝑟 to represent whether 𝑟 is selected for the

dstip. Without failures, selected routes are the most preferred routes

in the RIB that match dstip. However, with failures, less preferred

routes can also be selected. For example, in the guard RIB of router

A (Figure 3), 𝑟2 can be selected if 𝑟1 does not present. Therefore, for

a rule 𝑟 , if dstip cannot match 𝑟 , 𝑠
dstip
𝑟 is trivially 0; for a matching

rule 𝑟 , we need to ensure that all more preferred rules do not present

and 𝑟 should present. So,

𝑠
dstip
𝑟 =

{
0, if dstip does not match 𝑟

𝑔𝑟 ∧
∧

𝑟 ′ :dstip matches 𝑟 ′ and 𝑟 ′≺𝑟 𝑔𝑟 ′ , otherwise.

Encoding (weighted-)ECMP. If there are multiple selected rules in

a guarded RIB gRIB for traffic sending to dstip, the traffic is equally

balanced among those rules. Given a rule 𝑟 in gRIB, we encode the
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ratio of such traffic that would be forwarded by 𝑟 as a symbolic

formula 𝑐
dstip
𝑟 , shown as

𝑐
dstip
𝑟 = 𝑠

dstip
𝑟 /

∑︁
𝑟 ′

𝑠
dstip
𝑟 ′ ,

where

∑
𝑟 ′ 𝑠

dstip
𝑟 ′ encodes the total number of selected rules for dstip.

Note that when 𝑠
dstip
𝑟 = 1 (i.e., 𝑟 is selected for dstip), the encoding

of 𝑠
dstip
𝑟 ensures that all more preferred rules do not present and

all less preferred rules are not selected; thus,

∑
𝑟 ′ 𝑠

dstip
𝑟 ′ naturally

encodes the number of equally preferred rules.

For a SR policy containing multiple weighted SR paths, traffic

matching the policy is load-balanced proportional to the configured

weights. We encode the ratio of the matching traffic forwarded on

each path 𝑝 as 𝑐𝑝 , which is shown as

𝑐𝑝 =
𝑔𝑝 ∗𝑤𝑝∑
𝑝′ 𝑔𝑝′ ∗𝑤𝑝′

,

where

∑
𝑝′ 𝑔𝑝′ ∗𝑤𝑝′ encodes the total weights of valid paths based

on the guard 𝑔𝑝′ .

Encoding route iteration.When a flow 𝑓 matches a route with

an indirect next hop IP nip, it needs to resolve the direct next hop

by looking up the IGP RIB or SR policies. For the IGP RIB, multiple

directly connected links are resolved based on the selected rules.

We use a vector VIGPnip to encode the ratio of traffic forwarded on

each link resolved for nip, as

VIGPnip [𝑙] =
∑︁

𝑟 :nh𝑟=𝑙

𝑐
nip
𝑟 for all outgoing link 𝑙 .

Thus, if the traffic that needs to forward to nip is 𝑉 , the traffic that

link 𝑙 will forward is 𝑉 ∗ VIGPnip [𝑙].
When a SR policy is matched for the flow 𝑓 and the indirect next

hop nip, multiple SR paths may be used for forwarding. For each

SR path 𝑝 , we need to further resolve the direct next hops for the

first node in the path by looking up the IGP RIB. We use the vector

VSR𝑝 to encode the ratio of traffic forwarded on each link resolved

for 𝑝 . Suppose ip is the address of the first node in 𝑝 , then

VSR𝑝 [𝑙] = 𝑐𝑝 ∗ VIGPip [𝑙] for all outgoing link 𝑙 .

Symbolic forwarding algorithm. With the encoding of key for-

warding primitives, Algorithm 2 shows the symbolic forwarding

of a flow 𝑓 ’s traffic. At the top level, Function forward takes the

router 𝑅, flow 𝑓 , its potential label stack S, and the 𝑓 ’s symbolic

traffic fraction 𝜔 as input, and computes a matrixM, which stores

the symbolic traffic fraction for each outgoing link and label stack.

When the label stack is empty, the algorithm calls Function for-
wardIp to forward 𝑓 based on its dstip; otherwise, it calls Function
forwardSr to forward the 𝑓 based on its label stack (line 2).

Due to space limit, we only explain Function forwardIp in detail.

First, the function initializes the matrixM to be returned (line 4).

Then for each rule 𝑟 in the guarded RIB which can match 𝑓 ’s dstip,
it checks if the next hop of 𝑟 is a direct next hop. If so, 𝑓 would be

forwarded to the associated link 𝑙 without any label stacks (line 9);

thus only M[𝑙, ∅] is updated by adding the incoming fraction 𝜔

times the ECMP encoding 𝑐𝑟 . Otherwise, it needs to resolve the

indirect next hop and updateM (line 7), using Function resolveNhIp
which is based on the encoding of route iteration.

Algorithm 2: symbolic traffic forwarding on a router

1 Function forward(𝑅, 𝑓 , S, 𝜔):
2 return S = ∅? forwardIp(𝑅, 𝑓 , 𝜔) : forwardSr(𝑅, 𝑓 , S, 𝜔);

3 Function forwardIp(𝑅, 𝑓 , 𝜔):
4 M[𝑙, S] ← 0 for all link 𝑙 and label stack S;
5 forall rule 𝑟 in gRIB𝑅 s.t. 𝑓 can match 𝑟 do
6 if nh𝑟 is an indirect next hop then
7 M← M + resolveNhIp(𝑅, 𝑓 , nh𝑟 , 𝜔 ∗ 𝑐𝑟 ) ;
8 else
9 M[𝑙, ∅] ← M[𝑙, ∅] +𝜔 ∗ 𝑐𝑟 where 𝑙 = nh𝑟 ;

10 returnM;

11 Function resolveNhIp(𝑅, 𝑓 , nip, 𝜔):
12 if (𝑓 , nip) matches some SR policy 𝑃 then
13 returnM whereM[𝑙, S] = 𝜔 ∗∑𝑝∈𝑃 :𝑝 has label stack S V

SR
𝑝 [𝑙 ]

14 returnM whereM[𝑙, ∅] = 𝜔 ∗ VIGP
nip [𝑙 ] andM[𝑙, S] = 0 for all link 𝑙

and label stack S ≠ ∅;
15 Function forwardSr(𝑅, 𝑓 , S, 𝜔):
16 let S = [𝑅1, 𝑅2, ..., 𝑅 𝑗 ];
17 if 𝑅 = 𝑅1 then
18 return forward(𝑅, 𝑓 , [𝑅2, ..., 𝑅 𝑗 ], 𝜔);

19 returnM whereM[𝑙, S] = 𝜔 ∗ VIGP
ip [𝑙 ] andM[𝑙 ′, S′ ] = 0 elsewhere,

ip is the address of 𝑅1 ;

Example. Consider the forwarding of 𝑓2 on router D in Figure 1.

For simplicity, we only consider the state of link D-E and use 𝑦

as the symbolic variable for it. Figure 7 shows the (intermediate)

results of the execution of Algorithm 2.

When 𝑓2 reaches router D, Function forwardIp looks up the

guarded RIB and finds the only (iBGP) rule with the indirect next

hop to router F. Next, it uses Function resolveNhIp to resolve the

indirect next hop, which further looks into the configured SR policy.

For the SR path 𝑝1, it needs to resolve the address of E using IGP,

as E is the first node in the path. As shown in Figure 7(a), there

are two IS-IS routes to E; the route selection encoding 𝑠 and ECMP

encoding 𝑐 indicate that the traffic to E is forwarded via one of

𝑙1 and 𝑙2 entirely, which leads to the IGP route iteration encoding

VIGP
10.0.0.5

for E, shown as the left vector in Figure 7(b). The middle

and right vectors in Figure 7(b) show the route iteration encoding

for the SR path 𝑝1 and 𝑝2, respectively (note that 𝑐𝑝1 = 0.75 and

𝑐𝑝2 = 0.25). Finally, resolveNhIp returns the matrix in Figure 7(c)

which indicates that the STF of 𝑓2 on 𝑙1 (D-E) is 0.75𝑦 and that of 𝑙2
(D-C) is 0.75𝑦 + 0.25, as expected.

4.5 Verifying TLPs
Given the computed matrixM𝑓 by Algorithm 1 for each incoming

flow 𝑓 , the STL 𝜏𝑙 of link 𝑙 can be computed as

∑
𝑓 ,S 𝑉𝑓 ∗M𝑓 [𝑙,S],

where 𝑉𝑓 is the traffic volume of 𝑓 . Thus, to verify that 𝑙 ’s traffic

load is in a range [𝑣1, 𝑣2], we just need to check if there is a satisfi-

able solution to the negation of this property under the 𝑘-failure

constraint, shown as(∑︁
𝑖

𝑥𝑖 ≤ 𝑘

)
∧ (𝜏𝑙 (𝑥) > 𝑣2 ∨ 𝜏𝑙 (𝑥) < 𝑣1) .

When a solution exists, there is a violating failure scenario where

the TLP does not hold; otherwise, the TLP is verified under arbitrary

𝑘 failures. We will describe the algorithm used to check if the above

inequality is satisfiable in the next section (Theorem 5.1).
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Prefix Next Hop IGP Cost Guard 𝑠 𝑐

𝑟1 : 10.0.0.5/32 𝑙1 10005 𝑦 𝑦 𝑦

𝑟2 : 10.0.0.5/32 𝑙2 20005 1 𝑦 𝑦

(a) The (partial) guarded IS-IS RIB for router D annotated with route
selection and ECMP encodings (𝑠 and 𝑐) for 10.0.0.5.

(
𝑙1 𝑦

𝑙2 𝑦

) (
0.75𝑦

0.75𝑦

) (
0

0.25

)
(b) The route iteration encodings: (Left)
VIGP
10.0.0.5

, (Middle) VSR
𝑝
1

, (Right) VSR
𝑝
2

.

( S1 S2
𝑙1 0.75𝑦 0

𝑙2 0.75𝑦 0.25

)
(c) Output of Function forward, for-
wardIp, and resolveNhIp.

Figure 7: Illustrative execution of Algorithm 2. 𝑦 is the symbolic variable for link D-E. 𝑙1 and 𝑙2 denote link D-E and D-C; S1 and
S2 denote the label stack [E,F] and [C,F], respectively.

5 SYMBOLIC ENCODING SIZE REDUCTION
The symbolic traffic execution framework offers a general approach

toward verifying TLPs. However, a naive implementation of this

framework may induce significantly high overhead when applied

to production-scale networks, due to the large number of failure

scenarios and flows. In this section, we propose several optimiza-

tion techniques that significantly improve the efficiency. First, we

discuss our choice of MTBDD as the symbolic representation to

concisely encode a large number of failure scenarios (up to 𝑂 (𝑛𝑘 )).
Second, we propose 𝑘-failure equivalence reduction optimization

to reduce the size of MTBDD encodings. Last, we propose link-local

flow-equivalence optimization that reduces the number of flows

needed to be considered when verifying TLPs on one link.

5.1 Symbolic Representation as MTBDD
Like any symbolic execution framework, one of the keys to building

a highly efficient implementation of the symbolic traffic execution

framework is to compactly represent the symbolic encodings (e.g.,
symbolic traffic load/fraction), while supporting efficient opera-

tions required in symbolic traffic execution (e.g., multiplication and

inverse of the symbolic encodings). Naive representations, such as

SMT formulas, do not suffice in both the compactness and efficiency,

thus are not suitable for our purpose.

As seen in §4, the symbolic encodings are pseudo-boolean func-

tions. A compact representation of pseudo-boolean functions is

well studied in formal verification, known as multi-terminal binary
decision diagrams or MTBDDs [6, 15, 22].

Similar to a binary decision diagram (BDD) [12], a MTBDD is

a single-source directed acyclic graph, but with multiple terminal

nodes. As an example, consider the symbolic traffic fraction 1 ∗𝑥1 +
0.5∗𝑥1𝑥2𝑥3 as shown in §4.2. Its MTBDD representation is shown in

Figure 8(a), where each intermediate node is labeled with a variable

while the terminal node with concrete numbers. A path from the

source node to a terminal node corresponds to an assignment to

all encountered variables on the path, where a dashed (solid, resp.)

edge denotes assigning the variable to 0 (1, resp.), and the terminal

node denotes the resulting number under that assignment. For

example, when 𝑥1 = 0 and 𝑥2 = 𝑥3 = 1, the corresponding path

in the MTBDD reaches the terminal node 0.5, which represents

that 1 ∗ 𝑥1 + 0.5 ∗ 𝑥1𝑥2𝑥3 is evaluated to 0.5, corresponding to the

failure scenario (d) in §4.2. For a MTBDD F , we use F |𝑝 to denote

the sub-graph following the path 𝑝 . For example, let F denote the

MTBDD in Figure 8(a). Then F |𝑥1=0 denotes the sub-graph starting

from variable 𝑥2.

0
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𝑥"

𝑥!
𝑥#
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Figure 8: MTBDD Examples

All the operations required in the symbolic traffic execution can

be easily performed on MTBDDs, such as inverse (e.g., 1/𝜏), arith-
metic operations (e.g., addition and multiplication), and equivalence

checking of pseudo-boolean functions. For example, the inverse of

a pseudo-boolean function can be simply performed by inverting

the numbers on all terminal nodes of its MTBDD. Moreover, as

we show next, verifying TLPs using MTBDD is significantly faster

than using naive techniques (e.g., SMT solving). Therefore, we use

MTBDD as the symbolic representation in our implementation of

the symbolic traffic execution framework.

5.2 𝑘-Failure Equivalence Reduction
Even with the compact symbolic representation using MTBDD,

the symbolic traffic execution may still incur high performance

overhead. Specifically, during the iterative computation, the MTB-

DDs may grow as large as 𝑂 (2𝑛) (𝑛 is the network size), as the

general symbolic traffic execution framework essentially encodes

all possible failure scenarios, which is of the size 𝑂 (2𝑛).
However, for 𝑘-failure TLP verification, we only need to consider

the scenarios with no more than 𝑘 failures, which is significantly

less (i.e., 𝑂 (𝑛𝑘 ) instead of 𝑂 (2𝑛)), especially for practical cases

where 𝑘 is usually small. Thus, we need to reduce and simplify the

MTBDDs along the symbolic traffic execution process by consid-

ering the 𝑘-failure specificity (i.e., no more than 𝑘 failures), while

still yielding correct TLP verification results. As an example, sup-

pose the STL of a link computed by symbolic traffic execution is

60∗𝑥1+25∗ (𝑥1𝑥2+𝑥1𝑥2𝑥3). We can see that verifying any 2-failure

TLPs for this link is equivalent to that of 60 ∗ 𝑥1 + 25 ∗ 𝑥1𝑥2, since
failure of 3 links (i.e., 𝑥1𝑥2𝑥3) is out of the verification requirement.

While it may seem obvious for the above example to reduce

the symbolic representation of the STL by simply dropping 𝑥1𝑥2𝑥3
from the formula, it is not easy to reduce a MTBDD in the general

case. For example, a naive approach may expand a MTBDD to a

decision tree, prune all paths beyond the 𝑘-failure requirement (i.e.,
representing more than 𝑘 failures), and finally reduce it back. Such
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an approach may successfully reduce the size while maintaining

the correctness of verification, however, it induces exponentially

high overhead, losing the benefit of employing MTBDD.

In the following, we discuss our approach to reduce MTBDD for

𝑘-failure TLP verification.

Definition 5.1 (𝑘-failure eqivalent MTBDDs). Given two
MTBDDs F and G, each of them denotes a pseudo-boolean function
({0, 1}𝑛 → R) that maps a link failure scenario to a real number. We
define them to be 𝑘-failure equivalent iff they always map to identical
results when the number of simultaneous failures do not exceed k. We
denote F ≈𝑘 G iff

∀𝑥 ∈ {0, 1}𝑛,
∑︁
𝑖

𝑥𝑖 ≤ 𝑘 =⇒ F (𝑥) = G(𝑥).

𝑘-failure equivalentMTBDD REDUCE. Based on the above insight,
we customize the implementation of MTBDD operations to yield 𝑘-

failure equivalent results. Here, we focus on the REDUCE operation.

Given an arbitrary MTBDD, REDUCE identifies and merges identical

sub-structures in the graph to yield a compact representation for

it [12, 22], lowering the overhead of using MTBDDs.

We follow this standard approach and extend it with the above

insights (Definition 5.1) to define a 𝑘-failure equivalent KREDUCE
(F , 𝑘) operation. We use 𝛽𝑘 (F ) as a shorthand.

Definition 5.2 (Principles of KREDUCE). Assume MTBDD F ’s
source node represents variable 𝑥𝑖 . We define 𝛽𝑘 (F ) as

𝛽0 (F ) ≜ F (𝑥1 = 1, 𝑥2 = 1, ..., 𝑥𝑛 = 1), (1)

𝛽𝑘 (𝑐) ≜ 𝑐 , where 𝑐 is a terminal node, (2)

and that

𝛽𝑘 (F ) ≜
{
𝛽𝑘 (F |𝑥𝑖=1), if 𝛽𝑘−1 (F |𝑥𝑖=1) = 𝛽𝑘−1 (F |𝑥𝑖=0) (3)

𝑥𝑖 ∗ 𝛽𝑘 (F |𝑥𝑖=1) + 𝑥𝑖 ∗ 𝛽𝑘−1 (F |𝑥𝑖=0), otherwise. (4)

There are two main extensions on top of the standard REDUCE
operation. First, as highlighted in (1), a MTBDD is reduced to a

terminal node if there is no more failure allowed (𝑘 = 0). Second, as

highlighted in (3), two (𝑘 − 1)-failure equivalent sub-graphs can be

merged even when they are not isomorphic (more detailed discus-

sions are in Appendix A). Based on the principle, we implemented

the KREDUCE operation using dynamic programming techniques,

with the complexity proportional to the size of F and 𝑘 .

Example. Figure 8(b) illustrates the KREDUCE operation with 𝑘 = 1.

The original MTBDD, F , represents the function 1 ∗ 𝑥1𝑥2. Since
𝛽0 (F |𝑥1=0) = 0 and 𝛽0 (F |𝑥1=1) = F |𝑥1=1,𝑥2=1 = 0, KREDUCE (F ,
1) merges two equivalent sub-graphs and yields the result 1 ∗ 𝑥2,
which is 1-failure equivalent to F .
Correctness of 𝑘-failure equivalent verification. Employing

𝑘-failure equivalent MTBDD operations yields correct verification

results due to the following properties. For any MTBDD F ,
Lemma 1 (KREDUCE yields a 𝑘-eqivalent MTBDD).

KREDUCE(F , 𝑘) ≈𝑘 F .
Lemma 2 (Any path in KREDUCE (F , 𝑘) contains no more than

𝑘 failures). Assume an arbitrary path 𝑝 in KREDUCE (F , 𝑘) encodes
variable assignments for 𝑥𝑝1 , 𝑥𝑝2 , ..., 𝑥𝑝𝑚 , then∑︁

𝑖

𝑥𝑝𝑖 ≤ 𝑘.

Detailed proofs are in Appendix A.

Theorem 5.1 (Adopting 𝑘-failure reduced operations yield

correct TLP verification results). Using 𝑘-failure reduced op-
erations, we conduct symbolic traffic execution (§4.2) to obtain the
symbolic fraction matrixM∗

𝑓
for each flow 𝑓 , then compute the sym-

bolic traffic load 𝜏∗
𝑙
=

∑
𝑓 ,S 𝑉𝑓 ∗M∗𝑓 [𝑙,S] for a link 𝑙 . To verify that

𝑙 ’s traffic load is in a range [𝑣1, 𝑣2], it suffices to check the existence
of a counter-example 𝑦 ∈ {0, 1}𝑛 such that

𝜏∗
𝑙
(𝑦) > 𝑣2 ∨ 𝜏∗𝑙 (𝑦) < 𝑣1 . (5)

The intuition is that, symbolic traffic execution preserves the

𝑘-failure equivalence betweenM∗
𝑓
andM𝑓 during each iteration,

and further, between 𝜏∗
𝑙
and 𝜏𝑙 . Since 𝜏

∗
𝑙
encodes all valid failure

scenarios in 𝜏𝑙 (Lemma 1) and no more other mappings (Lemma 2),

the above checking suffices. See Appendix B for a formal proof.

Efficient TLP verification. Given Theorem 5.1, checking a TLP

can be performed by simply checking the values of all terminal

nodes of the MTBDD of 𝜏∗
𝑙
, which is significantly more efficient

compared to naive algorithms such as SMT solving.

5.3 Link-local Flow-Equivalence Reduction
As shown above, verifying a TLP on a link requires to aggregate

the symbolic traffic load (represented as MTBDDs) for all flows on

the link. A naive approach may apply𝑚 MTBDD addition oper-

ations, where𝑚 is the total number of flows on that link, which

is prohibitively inefficient because MTBDD addition across flows

can cause MTBDD sizes to explode (see an example in Figure 18 in

Appendix), and there can be billions of flows in production WANs.

To mitigate such overhead, we leverage the link-local equiva-

lence of different flows. Despite the differences in global forwarding

behavior, two flows may distribute the same fraction of traffic on

a link in every failure scenario. For example, 𝑓1 and 𝑓2 (Figure 1)

behave differently in general, but their distribution along the link

E-F are always identical. This allows us to combine them as a single

flow when computing 𝜏𝐸−𝐹 , instead of spreading them arbitrarily

into a series of heavy additions.

Moreover, the MTBDD representation allows highly efficient

grouping of flows based on the link-local equivalence. For any two

flows 𝑓1 and 𝑓2, they are link-local equivalent on a link 𝑙 if their

MTBDDs of corresponding symbolic traffic fractions are equivalent,

i.e., 𝜔 𝑓1
𝑙

= 𝜔
𝑓2
𝑙
.

Assume that there are 𝑝 link-local equivalent classes of flows

on a link 𝑙 and let 𝐺𝑖 be the set of all flows in the 𝑖-th class, 𝑓 ∗
𝑖
be

any flow in 𝐺𝑖 . The total symbolic traffic load can be efficiently

computed with 𝑝 MTBDD additions as

𝜏𝑙 =

𝑝∑︁
𝑖=1

©­«𝜔 𝑓 ∗𝑖
𝑙
∗

∑︁
𝑓 :𝑓 ∈𝐺𝑖

𝑉𝑓
ª®¬ .

6 DEPLOYMENT AND USE CASES
We built YU based on the approaches in §4 and §5 with additional

optimization heuristics such as global flow equivalence [39] and

pruning-based early termination for property violations.
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anycast IP:
1.1.1.1
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A1’s SR config:
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  path 1.1.1.1, 2.2.2.2

2.2.2.2

DC1

Figure 9: Link overload due to vulnerable SR configuration.

YU has been deployed in our production WAN (with > 1000

routers) for months and used regularly to check the failure toler-

ance of the WAN against multiple traffic load properties, including

link overloading and significant traffic dropping/increasing. YU

has successfully identified many failure scenarios that may lead to

severe network reliability issues. Below, we share two representa-

tive, real cases, covering potential outages including service quality

downgrade and service unavailability.

Overloading due to vulnerable SR features. Given the complex-

ity of our WAN in both the scale and network protocols, it used to

be hard for our operators to analyze if any link would be overloaded

when some link failed due to unexpected maintenance or break-

down. Fortunately, with YU, our operators can now automatically

analyze the overloading of all links under arbitrary link failures,

and identify potential vulnerabilities before they trigger network

outages. Figure 9 shows one such vulnerability case YU identified.

In this case, a large amount of service traffic is forwarded from DC1

in one region to DC2 in another remote region. To fully utilize the

bandwidth of paths between the two regions, our operator config-

ured a SR policy that steers the traffic from DC1 to DC2 via two

backbone routers (i.e., B1 and B2) in the middle. To make the con-

figuration easy to maintain, the operator configured an anycast IP

address on B1 and B2 (i.e., 1.1.1.1 in the example) and specifies one

SR path based on that IP. The intention of this configuration was

to establish two SR tunnels, namely A1-A2-B1-C3-C1 (annotated

with green arrows in Figure 9) and A1-A3-B2-C2-C1, to forward

the traffic. When one tunnel breaks due to link failures, another

tunnel still has enough capacity to carry the entire traffic. However,

YU found a violation. When link B2-C2 failed, a new tunnel A1-A3-

B2-B1-C3-C1 (annotated with blue arrows in Figure 9) would be

established in order to satisfy the required segment A1-B2 as speci-

fied in the SR configuration. As a result, a large amount of traffic

would be forwarded in the new tunnel including a low-capacity

link B1-B2, causing that link to be overloaded. We report this issue

to the operation team and get confirmed that this issue is caused

by the vulnerable SR configuration, which is hard to be detected

without the help of YU.

Service traffic dropping due to misconfiguration. Our WAN

is designed with enough redundancy to tolerate any single-point

failures. However, due tomisconfiguration on routers, service traffic

may still be unexpectedly dropped when a failure happens, causing

severe service outages. Figure 10 shows such a potential outage

…DC2

M1 M2

D1 D2

D1’s RIB:
  (Static) 10.0.0.0/8

nexthop null0
(BGP) 10.1.0.0/26

nexthop WAN

WAN

10.1.0.0/26

AS1

DC1

Figure 10: Service traffic dropping due to misconfiguration.

YU identified. In this case, DC1 sends a large volume of traffic to

a service in DC2 with the prefix 10.1.0.0/26. Without any failures,

the traffic can be forwarded along two paths, annotated with green

and blue arrows in Figure 10. However, YU identified a significant

traffic drop of DC2 when the router D1’s link to the WAN failed,

despite that there are many redundant paths left. The root cause of

this potential outage is due to BGP misconfiguration on router D1.

Particularly, D1 configured a default static route that intentionally

drops traffic matching 10/8. D1 redistributed that route into BGP

and advertised it to router M1 without advertising other more

specific routes. In the normal scenario, traffic would match the 10/8

route on M1 and be forwarded to D1, which forwards the traffic

to WAN using the 10.1/26 route. However, when the D1-WAN link

failed, the 10.1/26 route would not present on D1, so traffic sent

from M1 to D1 would match the 10/8 route and get dropped (D2 has

similar configurations, so traffic would not be forwarded from M1

to M2). Again, without YU this issue is hard to detect given the large

network size and high complexity of configurations. Fortunately,

YU detected this issue and prevented a severe service outage.

7 EVALUATION
In this section, we evaluate YU’s performance on three main ques-

tions: (Q1)How efficient is YU in handling large-scale networks and

flows? (Q2) How does the performance of YU compare to state-of-

the-art works? (Q3) How do the design choices and optimizations

in YU contribute to its efficiency?

7.1 Production WAN Benchmarking
First, we evaluate the performance of YU in our production net-

works. We selected four networks for analysis: the entire WAN and

three sub-networks named N0, N1, and N2. These sub-networks

represent small, medium, and large scales, respectively. Key char-

acteristics of these networks are summarized in Table 3. All four

networks are configured with BGP, IS-IS, and SR. We conducted

the experiments on a server with a 96-core 2.40GHz processor and

791 GB RAM.

Scalability to the network size (Q1).We evaluate YU’s perfor-

mance on the four networks for both router and link failures with

𝑘 ∈ [1, 4], excluding the combinations where the 𝑘-failure route

simulation cannot terminate within 12 hours. We provide YU with

flows entering the network within a one-hour time window and

3
All numbers are approximate for confidentiality reasons.
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Figure 11: Verification time for 𝑘-link
failures. Jingubang takes 95.7 min for N0
with 𝑘 = 2, which is 448× slower than that
of YU.
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Figure 12: Verification time for the WAN.
With a 6× increase in the flow number,
verification time only increases by 31.5%

for 2-link failures.
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Figure 13: Link-local equivalence reduces
the 90th percentile time of TLP verifica-
tion on all links from 12.51 s to 0.79 s (16×)
for 1-link failures.
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Figure 14: Equivalence lowers flow num-
bers on all links by 33× in 90th percentile
for 1-link failures.
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Figure 15: QARC costs 4.9 min for 2-link
failures with 21 input flows, which is
2042× slower than YU.

5 10 15 20
Flow number

0

3

6

9

# 
of

 M
TB

DD
 n

od
es ×106

YU w/ MTBDD reduction
YU w/o MTBDD reduction

Figure 16: KREDUCE cuts MTBDD node
numbers down by 627× for 2-link failures
with 21 input flows.

Table 3: Network characteristics.3

# Routers # Links # Prefixes # Flows (1 hour)

N0 100 200 3 × 10
3

5 × 10
7

N1 200 500 2 × 10
6

2 × 10
8

N2 500 2500 2 × 10
6

2 × 10
9

WAN 1000 4000 2 × 10
6

2 × 10
9

employ it to verify if any links will become overloaded in any fail-

ure scenario. Figure 11 depicts the verification time for link failures

(the results for router failures are similar, as shown in Figure 17 in

Appendix). We observe for the small (N0) and medium (N1) net-

works (with hundreds of links), YU can complete verification within

minutes for 𝑘 = 4 and 𝑘 = 3, respectively. Notably, even for the

entire WAN with thousands of links, YU can finish verification

within only 28.6 min for 𝑘 = 2, which is far beyond the requirement

for practical deployment.

Comparison with Jingubang (Q2). We compare YU’s perfor-

mance with that of Jingubang based on the same setting above. To

use Jingubang, we must exhaustively examine all concrete failure

scenarios so that we can utilize its incremental simulation to verify if

any link becomes overloaded. However, this method takes > 1 hour

(and > 1 day) for incremental traffic simulation (and incremental

route simulation) in N1 with 𝑘 = 2. As a result, larger networks are

not feasible for comparing the performance of Jingubang with YU

under different 𝑘 values. Consequently, we restrict our analysis to

the small network, N0. As shown in Figure 11, Jingubang requires

95.7 min for incremental traffic simulation in enumerated failure

cases for 𝑘 = 2, which is 448× slower than YU’s verification time.

Scalability to the number of flows (Q1). We next assess the

scalability of YU by varying the scale of input flows on the entire

WAN. By adjusting the time window from 7 min to 60 min, the

number of flows entering our WAN during this period increases

from ∼ 4× 108 to ∼ 2× 109. The verification time of YU under these

flow inputs and different failure scenarios are presented in Figure 12.

Despite a 6× increase in the number of flows, the verification time

for 2-link (2-router) failures only increase from 21.8 min (16.3 min)

to 28.7 min (22.7 min), marking a mere 31.5% (39.0%) increment. We

delve deeper into this phenomenon and attribute it to YU’s capacity

to identify flow equivalence, both globally and locally, significantly

enhancing its scalability.

Effects of equivalence (Q3). We now show the effectiveness of

link-local equivalence reduction on the entire WAN. Figure 13 dis-

plays the TLP verification time CDF of randomly selected 100 links

with and without the equivalence reduction for 1-link failures. As

depicted in the figure, the 90th percentile time is substantially re-

duced from 12.51 s to 0.79 s by applying link-local equivalence. For

𝑘 = 2, YU could take hours to verify TLPs for a single link without

link-local equivalence reduction, making it impractical to verify

thousands of links in production. Additionally, we present the flow

numbers on each link before and after the equivalence reduction in

Figure 14, where the 90th percentile flow number decreases from

∼ 1.7 × 104 to ∼ 500, aligning with the previous results.

7.2 Synthetic Dataset Benchmarking
We then evaluate YU in a series of networks called FT-𝑚. FT-𝑚
employs the FatTree topology [5] with𝑚 pods, consisting of𝑂 (𝑚2)
routers operating under the eBGP protocol and 𝑂 (𝑚3) links. The
links between the aggregation routers and the core (edge) routers

have bandwidths of 100 Gbps (40 Gbps). We introduce pairwise

flows between edge routers with volumes of 5 Gbps, using YU

to verify the absence of overloaded links during arbitrary 2-link



ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Ruihan Li et al.

Table 4: Verification time (in seconds). We inject 4%, 8%, 12%, and 16% of the pairwise flows between the edge routers to FT-4, FT-8,
and FT-12, and use YU, QARC, and Jingubang to verify whether any links will be overloaded under arbitrary 2-link failures.

Network FT-4 FT-8 FT-12

Flow number 2 (4%) 5 (8%) 7 (12%) 9 (16%) 40 (4%) 79 (8%) 119 (12%) 159 (16%) 204 (4%) 409 (8%) 613 (12%) 818 (16%)

YU 0.057 0.103 0.143 0.123 0.709 1.197 1.631 1.759 22.28 51.948 116.059 230.484
QARC [52] 0.142 0.145 0.196 0.839 2.848 3.404 6.074 74.427 556.866 460.410 > 3600 3559.669

Jingubang [39] 0.392 0.478 0.464 0.472 38.201 41.327 43.894 45.466 1655.358 1854.675 2054.381 2252.567

failures. The experiments were conducted on a machine equipped

with a 16-core 4.70GHz processor and 32 GB of memory.
4

Comparison with QARC (Q2). QARC lacks support for, and can-

not be readily extended to, iBGP and SR protocols, which are es-

sential for our production WAN. Consequently, we are unable to

evaluate QARC in our WAN. Instead, we conducted experiments

in FT-4 to compare the performance between QARC and YU with

respect to the number of flows. As shown in Figure 15, QARC’s

verification time increases exponentially with the number of flows.

Even for just 21 input flows, QARC requires 4.9 min to complete

verification, making it 2042× slower than YU. We also evaluated

YU’s performance under different network sizes. Table 4 shows that

YU is 42.3× (15.4×) faster than QARC in FT-8 (FT-12) with 16% of

all pairwise flows between edge routers. For reference, we also list

Jingubang’s verification time for the same network in the table.

Effects of KREDUCE (Q3).Without KREDUCE, YU is unable to com-

plete verification for any of our production networks within an hour,

even with just a single input flow. Therefore, we investigated how

KREDUCE contributes to YU’s efficiency in FT-4. As shown in Fig-

ure 15, the verification time for YU escalates rapidly when 𝑘-failure

MTBDD reduction is disabled, even for a small set of input flows.

For instance, with 21 input flows, YU without KREDUCE takes 49 s
to complete verification, whereas YU with KREDUCE only requires

0.14 s. We then present the number of MTBDD nodes generated

during verification in Figure 16. In the aforementioned example,

KREDUCE lowers the number of MTBDD nodes from > 4 × 106 to
< 2 × 104, aligning with the verification time.

8 RELATEDWORK
Network verification in general. There is rich literature in check-
ing the correctness of networks. On the device level, formal ver-

ification [16, 42, 53] and test generation techniques [44, 48, 63]

have been developed to check the correctness of individual devices’

forwarding behaviors. On the network scale, various verification

techniques have been proposed to check the control plane [4, 8, 17,

20, 23, 24, 33, 46, 47, 50, 55–57, 59] and the data plane [9, 29, 31, 32,

34, 35, 43, 45, 51, 54, 58], mostly regarding reachability properties

(e.g., routes/packets reachability) across the network.

Quantitative property analysis. Jingubang [39] and QARC [52]

are the closest to YU, which we have discussed in detail in §2.1.

YU’s focus on traffic properties is also different from the work on

probabilistic analysis of the network control plane [26, 50, 61] and

data plane [21, 49]. YU verifies traffic at the network implementation

4
We use a separate evaluation setup due to restrictions of YU’s deployment environ-

ment.

level, different from the work [13, 14, 62] validating networks at

the design level.

Applications of BDD in network analysis. BDD has been recog-

nized as a useful data structure in network analysis. Existing work

utilize BDD to encode various networking components, such as

packet fields [7, 11, 60] or route announcements [17, 25, 26], which

differs from YU’s use of MTBDD. Similar to YU, SRE [61] uses

BDD to encode up to 𝑘 failures. However, SRE cannot represent

quantitative properties nor can it verify TLPs.

Traffic engineering (TE).Most TE work [18, 28, 30, 38] optimizes

traffic allocation from a global view of the network, which is not

applicable under our current WAN settings. However, for TE im-

plemented by reconfiguring routers or injecting routes [10, 37, 40],

YU can serve as a complementary tool by verifying that no TLPs

will be violated when applying TE decisions.

Network emulation. Current emulator systems, e.g., Crystal-
Net [41], mainly focus onmimicking the network behaviors. Similar

to Jingubang, they are not practical to check k-failure traffic prop-

erty within one-run. Another issue of emulators is the cost. Ye

et al. [57] have discussed the expensive cost of emulator systems

prevents them from being used for global WAN checking.

9 CONCLUSION
This paper presented YU, the first traffic load property verification

system for arbitrary 𝑘-failure scenarios applied to a global pro-

duction WAN. YU proposed a general symbolic traffic execution

framework that can support a wide range of network features (e.g.,
BGP, IS-IS, SR) and novel optimizations (i.e., MTBDD size reduction

and link-local flow equivalence) to improve the efficiency. YU has

been deployed in production and successfully identified several

failure-tolerance issues. YU’s verification is efficient and can scale

to production WANs.
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APPENDIX
Appendices are supporting material that has not been peer-

reviewed.

A PROPERTIES OF KREDUCE OPERATION
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Figure 17: Verification time for 𝑘-router failures. YU requires
only 22.3 min on average for the entire WAN with 𝑘 = 2.

Proof. We follow Observation 5.2 to reason about KREDUCE’s
behavior.

The above property holds for the base case, when 𝑘 = 0 or when

F represents a terminal node 𝑐 .

For the recursive case, assume that the above property is satisfied

by smaller inputs, i.e.,

𝛽𝑘 (F |𝑥𝑖=1) ≈𝑘 F |𝑥𝑖=1,

𝛽𝑘−1 (F |𝑥𝑖=0) ≈𝑘−1 F |𝑥𝑖=0,

𝛽𝑘−1 (F |𝑥𝑖=1) ≈𝑘−1 F |𝑥𝑖=1 .
For each 𝑥 such that

∑
𝑖 𝑥𝑖 ≤ 𝑘 , the evaluation of F (𝑥) breaks

down depending on the assignment of 𝑥𝑖 . We also denote 𝑦 =

𝑥1 ...𝑥𝑖−1𝑥𝑖+1 ...𝑥𝑛 . Thus,

F (𝑥) = 𝑥𝑖 ∗ F |𝑥𝑖=1 (𝑥) + 𝑥𝑖 ∗ F |𝑥𝑖=0 (𝑥)

= 𝑥𝑖 ∗ F |𝑥𝑖=1 (𝑦) + 𝑥𝑖 ∗ F |𝑥𝑖=0 (𝑦).
We consider the following two cases.

(1) When 𝛽𝑘−1 (F |𝑥𝑖=1) = 𝛽𝑘−1 (F |𝑥𝑖=0), KREDUCE (F , 𝑘) re-
turns 𝛽𝑘 (F |𝑥𝑖=1).
If 𝑥𝑖 = 1,

𝛽𝑘 (F )(𝑥) = 𝛽𝑘 (F |𝑥𝑖=1) (𝑥)

= F |𝑥𝑖=1 (𝑥) by 𝑘-equivalence

= F (𝑥).
If 𝑥𝑖 = 0,

𝛽𝑘 (F )(𝑥) = 𝛽𝑘 (F |𝑥𝑖=1) (𝑥)

= 𝛽𝑘 (F |𝑥𝑖=1) (𝑦) 𝑥𝑖 is irrelevant

= F |𝑥𝑖=1 (𝑦) 𝑘-equivalence

= 𝛽𝑘−1 (F |𝑥𝑖=1) (𝑦) (𝑘 − 1)-equivalence

= 𝛽𝑘−1 (F |𝑥𝑖=0) (𝑦)

= F |𝑥𝑖=0 (𝑦) (𝑘 − 1)-equivalence

= F (𝑥).
(2) Otherwise, KREDUCE (F , 𝑘) reduces its two successor sub-

graphs, and the property holds.

□

Lemma 2: KREDUCE bounds the number of failures in each path
Let P(KREDUCE(F , 𝑘)) denote the set of all paths from the source

node to a terminal node in the MTBDD KREDUCE(F , 𝑘). Assume

an arbitrary path 𝑝 ∈ P(KREDUCE(F , 𝑘)) encodes variable assign-
ments for 𝑥𝑝1 , 𝑥𝑝2 , ..., 𝑥𝑝𝑚 , and we use ∥𝑝 ∥ to denote the number of

zeros within these variable assignments (

∑
𝑖 𝑥𝑝𝑖 ), then

∥𝑝 ∥ ≤ 𝑘.

Proof. When 𝑘 = 0, the result of KREDUCE(F , 𝑘) is a terminal

node and does not contain any variable assignment. The above

property holds.

For the recursive case, assume that the property holds for smaller

inputs, i.e.,

∀𝑝 ∈ P(𝛽𝑘 (F |𝑥𝑖=1)), ∥𝑝 ∥ ≤ 𝑘, (6)

∀𝑝 ∈ P(𝛽𝑘−1 (F |𝑥𝑖=0)), ∥𝑝 ∥ ≤ 𝑘 − 1. (7)

We consider the following cases.

(1) When 𝛽𝑘−1 (F |𝑥𝑖=1) = 𝛽𝑘−1 (F |𝑥𝑖=0), KREDUCE (F , 𝑘) re-
turns 𝛽𝑘 (F |𝑥𝑖=1).
According to inductionHypothesis (6), any path 𝑝 in 𝛽𝑘 (F |𝑥𝑖=1)
satisfies ∥𝑝 ∥ ≤ 𝑘 .

(2) Otherwise, KREDUCE (F , 𝑘) reduces its two successor sub-

graphs and returns 𝑥𝑖 ∗ 𝛽𝑘 (F |𝑥𝑖=1) + 𝑥𝑖 ∗ 𝛽𝑘−1 (F |𝑥𝑖=0). For
any path 𝑝 ∈ P(KREDUCE(F , 𝑘)), we denote 𝑝 as 𝑥𝑖 :: 𝑝𝑡𝑎𝑖𝑙 ,

since the source node corresponds to 𝑥𝑖 .

If 𝑥𝑖 = 1,

∥𝑝 ∥ = 0 + ∥𝑝𝑡𝑎𝑖𝑙 ∥ 𝑝𝑡𝑎𝑖𝑙 ∈ P(𝛽𝑘 (F |𝑥𝑖=1))

≤ k. Hypothesis (6)

If 𝑥𝑖 = 0,

∥𝑝 ∥ = 1 + ∥𝑝𝑡𝑎𝑖𝑙 ∥ 𝑝𝑡𝑎𝑖𝑙 ∈ P(𝛽𝑘−1 (F |𝑥𝑖=0))

≤ 1 + k - 1 Hypothesis (7)

≤ k.

Thus, the property holds. □

B CORRECTNESS OF 𝑘-FAILURE REDUCED
VERIFICATION

This section proves that employing k-failure equivalent MTBDD

operations (e.g., KREDUCE) throughout the verification yields correct

results.

Lemma 3 (Symbolic traffic execution yields𝑘-failure eqiv-

alent symbolic fractions). Given an arbitrary flow 𝑓 , symbolic
traffic execution (§4.3) computes the symbolic fractionM𝑓 [𝑙,S] for
each link 𝑙 . By employing 𝑘-failure equivalent MTBDD operations, it
computesM∗

𝑓
[𝑙,S] instead.

Then,

M𝑓 [𝑙,S] ≈𝑘 M∗𝑓 [𝑙,S] .
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Proof. The symbolic traffic execution is carried out by iterations.

Starting from a sameM0 [𝑙,S], every step is composed of 𝑘-failure

equivalent MTBDD operations, which preserve the 𝑘-failure equiv-

alence of inputs and outputs.

Assume that after the completion of the (𝑖 − 1)-th iteration, the

induction hypothesis holds, i.e.,

∀𝑙,S,M𝑖−1 [𝑙,S] ≈𝑘 M∗𝑖−1 [𝑙,S] .

Now we consider the computation ofM𝑖
𝑖
. For example, on line 8

in Algorithm 1, we have

𝜔
𝑓

𝑅
≈𝑘 𝜔

∗𝑓
𝑅
.

Similarly, all other computations yield 𝑘-failure equivalent re-

sults such that

∀𝑙,S,M𝑖 [𝑙,S] ≈𝑘 M∗𝑖 [𝑙,S] .

By induction, this lemma holds. □

Lemma 4 (𝑘-failure eqivalent symbolic fraction leads to

𝑘-failure eqivalent symbolic traffic loads).

Proof. Given 𝑘-failure equivalent symbolic fractionsM∗
𝑓
, the

total symbolic traffic load on a link 𝑙 is computed as

𝜏∗
𝑙
=

∑︁
𝑓 ,S

𝑉𝑓 ∗M∗𝑓 [𝑙,S] .

Since 𝑘-failure equivalent MTBDD operations (e.g., multiply,

summation) preserve the results’ 𝑘-failure equivalence, we have

𝜏∗
𝑙
≈𝑘 𝜏𝑙 .

□

Theorem 5.1: adopting 𝑘-failure reduced operations yields
correct TLP verification results Using 𝑘-failure reduced oper-

ations, we conduct symbolic traffic execution (§4.2) to obtain the

symbolic fraction matrix M∗
𝑓
for each flow 𝑓 , then compute the

symbolic traffic load 𝜏∗
𝑙
=

∑
𝑓 ,S 𝑉𝑓 ∗M∗𝑓 [𝑙,S] for a link 𝑙 . To verify

that 𝑙 ’s traffic load is in a range [𝑣1, 𝑣2], it suffices to check the

existence of a counter-example such that(
𝑦 ∈ {0, 1}𝑛

)
∧

(
𝜏∗
𝑙
(𝑦) > 𝑣2 ∨ 𝜏∗𝑙 (𝑦) < 𝑣1

)
.

Proof. By the above lemmas, we have

∀𝑙, 𝜏𝑙 ≈𝑘 𝜏∗
𝑙
,

where 𝜏𝑙 is computed following §4.5.

(1) If there is indeed a failure scenario 𝑥𝑎 ∈ {0, 1}𝑛 that leads to

TLP violation on link 𝑙 , i.e.,(∑︁
𝑖

𝑥𝑎
𝑖
≤ 𝑘

)
∧

(
𝜏𝑙 (𝑥𝑎) > 𝑣2 ∨ 𝜏𝑙 (𝑥𝑎) < 𝑣1

)
.

Let 𝑦𝑎 = 𝑥𝑎 . By Definition 5.1, 𝜏𝑙 (𝑦𝑎) = 𝜏∗
𝑙
(𝑦𝑎) must hold. Thus,(

𝑦𝑎 ∈ {0, 1}𝑛
)
∧

(
𝜏∗
𝑙
(𝑦𝑎) > 𝑣2 ∨ 𝜏∗𝑙 (𝑦

𝑎) < 𝑣1

)
.

Such a 𝑦𝑎 is easily detectable by traversing the terminal nodes

of 𝜏∗
𝑙
. Thus, the theorem holds.

(2) If the TLP always holds, i.e.,

∀𝑥 ∈ {0, 1}𝑛,
(∑︁

𝑖

𝑥𝑎
𝑖
≤ 𝑘 =⇒ 𝑣1 ≤ 𝜏𝑙 (𝑥𝑎) ≤ 𝑣2

)
.

For any path 𝑝 in 𝜏∗
𝑙
, it encodes an assignment 𝑦. By Lemma 2,∑

𝑖 𝑦𝑖 ≤ 𝑘 must hold. This entails 𝜏∗
𝑙
(𝑦) = 𝜏𝑙 (𝑦). Thus,

𝑣1 ≤ 𝜏∗
𝑙
(𝑦) ≤ 𝑣2 .

Since any terminal node in 𝜏∗
𝑙
is within the range [𝑣1, 𝑣2], the

theorem holds. □

C LINK-LOCAL FLOW EQUIVALENCE
REDUCTION

Figure 18 shows that adding two small MTBDDs leads to a large

MTBDD, resulting in MTBDD size explosion.
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Figure 18: Summation of two MTBDDs can lead to signif-
icantly larger size. In a MTBDD, dashed lines denote link
failures and solid lines denote normal links.
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