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Abstract

Root causing and failure localization are critical to maintain relia-
bility in cloud network operations. When an incident is reported,
network operators must review massive volumes of monitoring
data and identify the root cause (i.e., error device) as fast as possible,
making it extremely challenging even for experienced operators.
Large language models (LLMs) have shown great potential in text
understanding and reasoning. In this paper, we present BiAn, an
LLM-based framework designed to assist operators in efficient inci-
dent investigation. BiAn processes monitoring data and generates
error device rankings with detailed explanations. To date, BiAn has
been deployed in our network infrastructure for 10 months and
it has successfully assisted operators in identifying error devices
more quickly, reducing time to root causing by 20.5% (55.2% for
high-risk incidents). Extensive performance evaluations based on
17 months of real cases further demonstrate that BiAn achieves
accurate and fast failure localization. It improves accuracy by 9.2%
compared to the baseline approach.
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1 Introduction

As one of the largest public cloud providers, Alibaba Cloud serves
millions of customers all over the world 24×7. We build and operate
a global network infrastructure consisting of a wide area network
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(WAN) and tens of interconnected data centers. Network incidents
are, nevertheless, inevitable given the scale of our operations and
can significantly impact reliability, potentially leading to revenue
loss. To ensure efficient and effective network incident manage-
ment, we have developed a comprehensive monitoring system,
benefiting from recent advances in network telemetry and moni-
toring [7, 22, 41, 62, 90]. The system initially attempts to self-heal
using predefined rules and automated solutions based on operators’
years of experience. However, not all incidents are straightforward
enough to be directly addressed—complex cases still require manual
investigation, in particular for identifying root causes and locating
failures. Mitigation actions are taken afterward. Incident investiga-
tion is the most time-consuming and cognitively demanding in the
workflow.

When an incident occurs, operators carefully review massive
logs from diverse monitoring tools, understand interdependencies
between anomalous events as well as affected devices, analyze the
root cause, and finally identify the faulty device (see Figure 3 for
a detailed case). Due to time constraints, oftentimes they need to
finish the investigation before thoroughly reviewing all available
logs. The urgency of an incident increases as time goes by. Con-
sequently, the efficiency and accuracy are often bottlenecked by
operators’ limited capacity to process large amounts of informa-
tion. In addition, as our network infrastructure evolves, it becomes
increasingly challenging for operators to perform fast and accurate
failure localization. Therefore, we aim to design a tool to assist in
the reasoning process of incident investigation.

Large language models (LLMs) have demonstrated superior ca-
pabilities in efficiently reading and reasoning over large-scale data,
particularly in handling complex tasks. Leveraging LLMs to under-
stand textual data from monitoring tools and assist operators in
failure localization presents a promising direction. LLMs surpass
traditional automated methods in logical reasoning and generaliz-
ability for unseen incidents. Previous research on applying LLMs
in network operations [5, 16, 33, 65, 81] either is limited to coarse-
grained analysis, still requiring operators to identify root causes; or
utilizes only partial information (e.g., incident summaries), which
oversimplifies failure localization (§2.3).

We present BiAn1, a practical and comprehensive system for
accurate and fast root causing and failure localization in Alibaba
Cloud’s network infrastructure. BiAn employs LLM agents powered
by carefully crafted prompts to understand network monitoring
logs, extract key information, reason through incidents, and assist
operators by providing error device rankings with explanations.
BiAn achieves its goal through the following design aspects:
1In ancient Chinese mythology, Bi An is a divine beast known for its strong sense of
justice and ability to distinguish right from wrong. We named our system BiAn to
reflect its role in intelligently analyzing root causes and identifying error devices in
complex network environments.
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Hierarchical reasoning for large data scale (§4.1). Facing the
logs generated by various monitors for different affected devices,
not only is it impractical for human operators to analyze based on
all the data, but also LLMs struggle to capture the most relevant
information at once. To tackle this, BiAn approaches the local-
ization task through three separate steps: (1) It first summarizes
monitor alerts into simplified alert reports. (2) Then, it groups these
reports by device and conducts device-level anomaly analysis fol-
lowing standard operating procedures (SOPs) compiled from years
of incident handling experience by operators. (3) Finally, BiAn com-
bines all single-device analysis results to derive failure scores for
candidate devices based on their suspicion levels.
Multi-pipeline integration to tackle complexity (§4.2). In large-
scale networks with countless devices interconnected, an incident
caused by one device can spread across a number of logically nearby
devices, all of which may present anomalous behaviors at different
times. To address the spatial and temporal complexity, we include
two additional dimensions of data, network topology and event
timeline, into the original processing pipeline. By integrating these
three pipelines, BiAn performs more comprehensive reasoning on
incidents and generates scores with more informed explanations.
Continuous updating to cope with network evolution (§4.3).

As our network components and configurations rapidly evolve,
operators need to learn from historical incident handling and keep
their operating procedures and knowledge up-to-date. The same
applies to BiAn. We propose to continuously “train” the prompts
for reasoning tasks. Specifically, we use LLMs’ capabilities of gen-
eration, reflection, and summarization to extract useful knowledge
from historical incidents. We then enrich the task prompts with
this knowledge digest to enhance BiAn’s reasoning performance.
Optimizations for practical consideration (§4.4). Tomake BiAn
practically useful in assisting operators with failure localization, it
needs to be fast (real-time) and resource-efficient. We utilize smaller
LLMs to conduct simpler tasks, such as monitor alert summary and
single-device analysis, and apply fine-tuning to incorporate domain-
specific knowledge. In this way, we can achieve both improved
localization accuracy and reduced reasoning latency. We also devise
an early stop mechanism to prevent redundant processing when
BiAn has already obtained high confidence after the initial stage of
processing. Additionally, we enable parallel execution for the same
level of agents to run simultaneously.

BiAn has been deployed in our global network infrastructure
for almost a year (10 months) and has proven its ability to assist
operators in network incident investigation. We present A/B tests,
feedback from operators, and representative real cases, to demon-
strate its effectiveness (§5). Besides, with real incident data collected
over the past 17 months, we conduct extensive offline experiments
to comprehensively evaluate the performance of BiAn across var-
ious aspects (§6). We discuss several lessons learned through the
design, deployment, and evaluation of BiAn (§7).
Ethics. This work does not raise any ethical issues.

2 Background and Motivation

Alibaba Cloud operates a global network infrastructure that sup-
ports a wide range of cloud services, including computing, storage,
andAI training/inference. By January 2025, this infrastructure spans
87 data centers across 29 geographical regions in North America,
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Figure 1: Network incident management workflow.

Europe, Asia, and Oceania. A private WAN serves as the backbone,
interconnecting all these data center networks. Our network oper-
ations center (NOC) acts as the guardian for all network traffic. As
incidents in the physical network can significantly impact overall
reliability, which is our top priority, network incident management
(IM) is a key focus for the team.

2.1 Incident Management Workflow

Figure 1 illustrates our operators’ IM workflow, consisting of sev-
eral steps: network monitoring, anomaly detection, self-healing,
incident investigation, and incident mitigation. Over the years,
we have developed a sophisticated network monitoring system
equipped with a variety of tools, including foundational diagnostic
utilities like ping and traceroute, statistical traffic analysis tech-
niques, and more advanced solutions adapted from state-of-the-art
efforts [7, 22, 41, 62, 90]. They process rawmonitoring data and gen-
erate alerts for anomalous behaviors. When anomalies are detected,
the system first mitigates them via predefined rules and automated
solutions, which is called self-healing. However, in a large-scale
network, there are always issues that are too complex to be directly
addressed by the system or that are previously unseen. The system
reports them as “incidents” and on-call operators get involved. In
a typical week, 2377 anomalies can be self-healed while 202 are
handled by our operators (i.e., incidents).

2.2 Failure Localization and Limitations

When complex incidents bypass self-healed, operators step in to
further investigate. For effective mitigation, they need to find the
root cause of the incident and locate the failure (i.e., error device).
In this case, the system is more like providing preliminary “clues”
or “recommendations”, rather than definitive localization results.
Operators continue with outputs from the upstream monitoring
and diagnosis systems.
Why failure localization is hard for the operators? The man-
ual investigation is an iterative reasoning process. Operators first
review the incident description generated by the system. Then, they
pick a few monitoring data types and retrieve the corresponding
alerts. Initial analyses rarely yield clear conclusions. Thus, they
continue to obtain and analyze additional types of data until they
have sufficient confidence in identifying the root cause and error
device. Based on our experience, this process is challenging for our
operators due to the following reasons:
1 Excessive alerts: An incident can trigger anomalies of varying
degrees across several to hundreds of devices in the network, each
potentially generating hundreds of alerts. The total size of relevant
monitor alerts for an incident can exceed 1 GB (8k log entries), with
an average of 26.4 MB, as shown in Figure 2.
2 Complex root causing: Under time pressure, it is impractical
for operators to analyze based on all available information. The
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Figure 2: Large volume of monitoring data.

root causes of many failures are complex, and there is no fixed rule
for the investigation. It often takes more than 10 minutes to identify
a root cause, exceeding our service-level agreements (SLAs). The
longest cases may take over half an hour.
3 High incident load: As mentioned, operators need to handle a
large number of incidents (e.g., 202 incidents in a week). As a result,
the efficiency and accuracy of failure localization become heavily
dependent on the expertise and experience of operators.

Taking the incident in Figure 3 as an example. The monitoring
system detected an alert of significant packet loss in a data center,
which resulted in multiple incidents being reported within 4 min-
utes, though merged later. These include flapping between core
routers 𝐵2 −𝐴1 and 𝐵3 −𝐴1 (L2, L3 in the Response Log), an un-
reachable router 𝐵2 (L6), and an ICMP-related incident (L8). Tens
of high-risk alerts appeared over time. Operators first suspected
service updates (L12), which were ruled out after checking update
histories (L14). Next, they shifted focus to traffic drops. After in-
vestigation, the root cause was identified as 𝐵2 (L17). To confirm
𝐵2 was not affected by neighboring devices like 𝐵3, active probing
was conducted (L18). 22 minutes after the first alert, they finished
the mitigation, by isolating 𝐵2 (L20). Despite immediate attention,
operators had to review alerts of affected devices, engage in ex-
tensive discussions, and go through trial and error. Faced with the
complication of massive alerts, it is challenging for them to pinpoint
the root cause methodically.

A major difficulty in this process is the conflict between the
massive amount of information generated by themonitoring system
and the limited capacity of operators to consume it. As the network
scales up, the challenges ahead only grow.

Our goal.We aim to develop a system that facilitates fast, accurate
root causing and failure localization for our large-scale network
infrastructure (including WAN and data center networks). Note
that we are not replacing any existing monitors or data analytic
algorithms. Instead, we intend this system as an assistant to our
operators during incident investigation. The IM workflow shown
in Figure 1 remains the same.

2.3 Opportunities with LLMs

Recently, large language models (LLMs) such as GPT [3], Claude [2],
Llama [64], Gemini [63], and Qwen [10], trained with large text
corpora, have demonstrated superior capabilities in text reading and
reasoning. The outputs of upstream monitors and data processing
tools are mainly textual, and are designed for human operators to
interpret. Besides, unlike humans, LLMs are not prone to mental
stress and can operate continuously and efficiently. These present
a promising direction to assist in the reasoning process.

① Flapping

④ ICMP Alert (B)

③ Can’t Ping
❗

 Incident Response Log
  L  Time Message
  1  01:08:08  [First event] Large packet loss in DC XXX.
  2  01:10:06  Incident reported: B2-A1 Flapping. On-call notified.
  3  01:11:55  Incident reported (auto merged): B3-A1 Flapping.
  4  01:11:59  [Batch] Multiple device Ping drop.
  5  01:12:14  [Log] Affected BUs notified.
  6  01:12:26  Incident reported (auto merged): No Ping from B2.
  7  01:13:38  On-call sync: flapping, ping alerts persist.
  8  01:14:01  Incident reported (auto merged): ICMP level B.
  9  01:14:44  [Log] Packet loss stable.
10  01:15:30  On-call sync: DC confirmed, multiple device alerts.
11  01:15:30  Backup OC engineers involved.
12  01:15:50  [Log] OC XXX: Suspect service update-related.
13  01:17:29  [Log] Impact scope synced with affected BUs.
14  01:18:11  [Log] OC XXX: service update OK.
15  01:19:09  [Log] OC YYY: level B traffic drop.
16  01:23:00  More OC engineers involved.
17  01:26:47  Initial root cause identified, B2.
18  01:26:50  [Log] Start tracing on B2.
19  01:28:15  Tracing data confirmed B2.
20  01:30:28  Mitigation done.

② Flapping❗❗

❗

A

B

C

D
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Figure 3: A motivating example (partial topology).

One might ask: why not rely solely on traditional automated meth-
ods (e.g., heuristic-based, statistical)? While such methods are valu-
able and already help mitigate countless anomalies, they are often
based on specific metrics or historical patterns, limiting their ability
to generalize to previously unseen cases. Extending those tools
to handle new cases is expensive, and achieving 100% coverage is
unrealistic. By contrast, similar to human operators, LLMs excel at
logical reasoning and possess greater generalization capabilities.
Thus, LLMs can serve as a bridge, complementing existing tools
by assisting operators in incidents that require a holistic analysis
of available information to identify root causes confidently. We
present a detailed comparison between LLM-based and traditional
methods later in §6.1.

We are not the first to explore the use of LLMs in network-
ing [5, 16, 33, 56, 65, 69, 72, 81, 84, 86]. However, prior works on
physical network operations are limited in several ways. Some
focus on monitoring or only provide coarse-grained root cause
analysis: MonitorAssistant [81] generates guidance-oriented anom-
aly reports. Oasis [33] assesses the impact scope of outages and
produces summaries. RCACopilot [16] outputs the root cause cat-
egory with explanations after triggering active probing. For the
incident in Figure 3, these tools can only return a summary list-
ing the range of affected devices with suspect information rather
than directly pointing out the specific culprit, 𝐵2. The operators
still have much work to do. NetAssistant [65] recognizes diagnosis
intent and follow predefined workflows to process queries, leav-
ing the investigation task to network users/operators. Ahmed et
al. [5] study GPT’s capabilities in producing root causes and mit-
igation steps from incident titles and digests. Compared to using
detailed logs, the lack of deep visibility into incidents cannot lead
to fully informed decisions. In Figure 3, this type of solution cannot
pinpoint 𝐵2 based on auto-generated, low-quality incident digests.
We thus decide to build an LLM-powered root causing and failure
localization system to meet our goal.

2.4 Challenges

Building such a system poses the following challenges:
Large volume and diversity of data. As mentioned in §2.2, an
incident can affect many network devices, and the monitoring sys-
tem generates logs of dozens of types. Hence, the system must
efficiently extract relevant information necessary for accurate lo-
calization from this sea of data.
Complex device and event relationships. Affected devices may
span different parts of the network and trigger events at different
times. The spatial (i.e., topological) and temporal interdependencies
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among devices and events complicate the process of tracing the
original error device.
Need for fast investigation. In production environments, it is
crucial to detect and fix incidents as quickly as possible. Unsuc-
cessful incident investigation, whether due to slow responses or
incorrect diagnoses, can lead to significant revenue loss and harm
the provider’s reputation. For example, major cloud service outages
can cost companies $1 million per hour as reported [1].
Rapid evolution of network infrastructures. Modern network
infrastructures are highly dynamic, with frequent updates to com-
ponents and topologies. This changing environment makes it chal-
lenging to maintain consistent performance over time and calls
for an adaptable solution that continuously learns from changes in
network configurations as well as past incident investigations to
stay effective.
Result explainability and consistency. The main purpose of
building this automated system is to “assist” operators rather than
to fully replace them. Therefore, its outputs need to come with
explanations so that operators can easily understand and trust.
Besides, the inherent randomness of LLMs should be minimized to
prevent unpredictable changes in outputs that can disrupt operators’
decision-making process.

3 Overview

We propose BiAn, a practical LLM-powered root causing and fail-
ure localization system for cloud network operations. Acting as
an assistant in incident investigation, BiAn uses LLMs to under-
stand monitor alerts, reason about root causes, and identify error
devices. This approach mirrors the thinking and handling processes
of network operators during the investigation. Figure 4 shows the
architecture of BiAn.

When an incident is reported, BiAn takes as input monitor alerts
for candidate devices and predicts the probabilities of each device
being the actual error device, utilizing its internal knowledge about
network incidents and reasoning capability. The candidates are
the most suspicious devices, selected by the upstream automated
monitoring system.2 Since the alert data may contain redundancy
and noise due to the logging formatting, we first preprocess it to
remove empty items (e.g., keys with no values) and unused fields.
Then, LLM agents that we build following the standard operating
procedures (SOPs) established by operators, analyze and reason
about the incident. The output of BiAn is a ranked list of candidate
devices with explanations for operators to review. Compared to a
single answer, this ranked list adds fault tolerance: operators can
investigate secondary devices when the top-ranked is incorrect (see
§6.1 for more discussion). We reiterate that BiAn is not designed to
replace human operators, but to significantly reduce distractions
from irrelevant information. Operators make the final decisions for
incident mitigation.

Originally, operators would have to quickly go through system-
generated incident summaries and extensive monitoring data. Al-
though the monitoring system provides key information for local-
ization, it hides in the flood of alerts. Due to limited information
processing capacity, operators usually spend considerable time
filtering out irrelevant alerts. The traditional workflow requires

2The system has a default sorting mechanism that considers the volume and severity
of alerts. The number of candidates is empirically set (e.g., 6).

operators to carefully read vast amounts of data, logically reason
step by step to identify the error device, and make the final decision.
With BiAn, the search space is greatly reduced, and the entire pro-
cess is transformed to reviewing BiAn’s output (i.e., device ranks
and explanations), validating the results by selectively checking
relevant data sources, and making more informed decisions, faster
(see Figure 8a for detailed comparisons).

4 Design

This section introduces the key components of BiAn and describes
how it addresses each challenge outlined in §2.4.

4.1 Hierarchical Reasoning

The current incident investigation (§2.2) is primarily driven by hu-
man operators. During an incident, the monitoring system generate
thousands of alerts, making it impossible for operators to review
everything in time. While LLMs are more capable of reading effi-
ciently, they too face limitations: LLMs have token limits as they
cannot absorb too much information at a time; and they can be
distracted by irrelevant information. Our approach is to process
different types of alerts for different devices separately and breaks
down the investigation process into structured steps: monitor alert
summary, single-device anomaly analysis, and joint scoring.

Monitor alert summary.We first utilize LLMs to process incident-
related alert data produced by 11 upstream monitoring tools, as
listed in Figure 5 (left). These tools are developed for various pur-
poses and have been refined over the years of operation, to compre-
hensively monitor network health and performance. When certain
thresholds for indicators such as climbs, slumps, spikes, or dips in
time series data are met, the corresponding monitor generates a
log item. For instance, the “Device Ping Log” tool tracks dropped
Ping packets between devices and records details such as device
name, dropped Ping count, timestamps, and device role.

In BiAn, each type of alert is processed by a dedicated LLM
agent which is carefully prompted to extract key information and
summarize anomalous behaviors. For each device, BiAn generates
11 highly condensed summaries and forwards them for subsequent
analysis. This approach allows us to easily extend BiAn for other
monitoring tools by adding new LLM agents. The prompt tem-
plate consists of five parts: role definition, input field description,
summary guidelines, alert example, and expected summary, and
response format. Additional details, including the prompt templates
and an input example of monitor alert summary agents, are pro-
vided in Appendices A and B.

Single-device anomaly analysis. Given the summarized alerts,
we should answer an important question: what anomaly can we
derive from the data?
Key Experience. Our operators have defined 7 scenarios of
anomalies (Figure 5 right), based on their 10-year operational
experience. These scenarios can cover all anomalies that an error
device may present. Each anomaly analysis relies on a specific
combination of alert types (left).
More importantly, operators’ experience also shows that such a

small number of scenarios can cover 100% of incidents observable
through alerts, which significantly simplifies our design. These sce-
narios represent low-level symptoms commonly found on devices
in large-scale networks and are not tied to specific architectures or
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Figure 5: Mapping of data source types and device anomaly

scenarios. An example of analysis is provided.

device vendors. Some issues such as silent packet drops may not
generate alerts and are thus out of scope.

Driven by the above insights, we employ 7 LLM agents (see
prompt template in Appendix A), each responsible for analyzing
single devices for one of the anomaly scenarios according to the
mapping in Figure 5. For example, the Flapping analysis uses “Dash-
board Alarms” and “Port Down Events” summaries to determine
whether a device has a flapping anomaly. An anomaly is not the
root cause of the incident, and one device can exhibit multiple
anomalous behaviors.
Joint scoring. In the last step, BiAn consolidates the anomaly anal-
ysis reports from all suspect devices to reason about the root cause
of the incident and locate the error device. For the joint reasoning,
operators set severity levels for different anomaly scenarios. An
LLM agent is tasked to evaluate the compiled reports and generate
failure scores for all suspect devices, reflecting the likelihood that
each device is the error device. The scores add up to 1. The highest-
scoring device is marked as the error device. This step is based on
another key insight: The error device typically exhibits more severe

and more numerous behaviors compared to others, which may also
have anomalies found, but only less severe or partial.

4.2 Three-pipeline Integration

Given the complex spatial and temporal relationships between de-
vices and anomaly events (§2.2), sometimes the system cannot confi-
dently identify the error device using the above SOP-based pipeline
(Pipeline 1), which mainly focuses on single-device anomalies and
their severity levels. Besides, the process demands accurate results.
To address such challenges, BiAn incorporates additional infor-
mation through two more pipelines, network topology and event
timeline, to create a two-stage reasoning framework.
Pipeline 2: Network topology. As network devices are intercon-
nected, anomalies can propagate: anomalies on one device may
cause anomalous behaviors on its neighbors. For example, if Device
𝐴 is a parent node of Devices 𝐵 and 𝐶 , and anomalies are detected
on all three devices,𝐴 is likely the source of the incident. To account
for this, BiAn extracts topology-related information from logs. It
identifies a smaller sub-topology that includes all suspect devices.
This approach allows BiAn to focus on the most relevant topologi-
cal information during analysis. We create an agent that processes
JSON-formatted topology data using the following algorithm:
1 Find the shortest paths between every two devices.
2 For any pair of suspect devices, for instance, A and B, remove
the shortest paths between A and B if a suspect device C exists
on their shortest path. The A-B relationship can be represented
via A-C and B-C instead.
3 Construct a topology using the shortest paths left.
4 Simplify the topology by aggregating non-suspect network
devices in the same device group into a single node.

Pipeline 3: Event timeline. Different anomalies on different de-
vices occur at different times. The underlying insight is that devices
with anomalies reported earlier have higher suspicion. BiAn takes
into account the timeline data when performing the final reasoning.



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Chenxu Wang, Xumiao Zhang et al.

Reasoning Stage 2 - Integrated Root Causing
You are an experienced network operations engineer specializing in investigating 
complex incidents in large-scale networks. Your task is to analyze reports of suspect 
devices, identify the most possible error device, and provide explanations.
Anomaly Analysis Reports:
    <Device A>: {Analysis 1}: {Analysis content}, {Analysis 2}: {Analysis content}, …
    …
Network Topology:
    [<Device A>, <Device B>], [<Device A>, <Device D>, <Device C>], …
    …
Global Timeline:
    {Timestamp 1}: {Event 1}, {Timestamp 2}: {Event 2}, {Timestamp 3}: {Event 3}, …
    …
Principles for Investigation (SOPs):
1. Anomaly analysis
2. Differences between devices
3. Alarm count comparison
4. Timeline and Topology

Figure 6: Prompt template for integrated root causing.

Specifically, the timeline is a list of events from all devices in the
order of start times.
Integrated root causing. BiAn does not execute all three pipelines
at the beginning. After running Pipeline 1 on all devices and ob-
taining initial scores, BiAn filters out devices with low suspicion
and starts the second reasoning stage on the remaining devices.
Specifically, borrowing from LLMs, we define a Top-p concept to
retain the devices whose cumulative scores, after applying softmax
and ranking in descending order, reach a threshold (𝑝). This en-
sures the remaining device data is kept relevant and focuses on the
most suspicious devices. Then, with an enhanced final reasoning
LLM agent, BiAn performs integrated root causing and generates
failure scores with data from all three pipelines: device anomaly
reports, topological relationships, and temporal event data. The
prompt for this agent, as presented in Figure 6, specifies the task
objective, combines information from three pipelines, and lists prin-
ciples for root cause analysis. By incorporating data from multiple
aspects, this approach addresses the limitations of reasoning on
a single pipeline, improving the overall localization performance.
Also, when Pipelines 2 and 3 provide stronger evidence for alternate
causes, BiAn can adjust its predictions from Pipeline 1 accordingly.

Furthermore, to tackle the randomness of LLMs (for creativity
by design), we consider averaging results from repeated executions.
Specifically, we introduce Rank of Ranks: (1) We run the integrated
reasoning step 𝑁 times; (2) For each run, we rank the devices by
failure scores; (3) We calculate the average rank of each device
across 𝑁 trials. Then, the highest-ranked device by average ranks is
considered the error device. This approach smooths out the random
results output by the LLM while mitigating inaccuracy in absolute
scoring. For example, in three trials, the failure scores for two de-
vices are {0.6, 0.3}, {0.5, 0.4}, and {0.2, 0.7}, respectively. The outlier in
the third output may result from LLM’s randomness. We can easily
tell that the first device is more suspicious. However, if we simply
average their failure scores, the worse-performing one will be the
second device, while the results of Rank of Ranks will stay with our
intuition. 𝑁 is configured empirically, and we set it to 3. We show
in §6.4 that increasing 𝑁 beyond 3 yields diminishing performance
improvements. Unless the model fundamentally misinterprets a
case, repeated reasoning converges eventually.

4.3 Continuous Prompt Updating

As our networks and investigation procedures evolve rapidly, BiAn
is designed to adapt. For alert summary and anomaly analysis, our
modular design allows for flexible addition of new monitors or

Prompt 
Augmentation

Refined Prompt

Incident Logs High Temperature T

Knowledge 
Consolidation

ReflectionExploration

Knowledge

Reasoning Trials

Compare 
Incorrect & Correct

(trial count is configurable)

Figure 7: Continuous prompt updating mechanism.

anomaly scenarios (or removal of stale ones). For the scoring step
(Step 3), a more sophisticated mechanism is needed to enable LLM
agents to update continuously. Manually reviewing and revising
task prompts is straightforward but labor-intensive, which calls for
automated training. However, challenges arise in constructing a
training dataset. Data augmentation cannot be used here as we aim
for explainable outputs; while operators can label error devices in
post-incident reviews, scoring and explanations are subjective and
require detailed reasoning. Thus, fine-tuning or retrieval augmented
generation (RAG) [39] with historical data is impractical.

To address this, we propose to train LLM’s prompts instead of
its parameters. This involves two phases: (1) extracting knowl-
edge from past incidents using LLM’s generation, reflection, and
summarization capabilities, and (2) integrating the knowledge into
prompts to enhance reasoning. The algorithm in Figure 7 runs as
an iterative loop with four parts: exploration, reflection, knowledge
consolidation, and prompt augmentation. This requires designing
and building additional LLM agents.
Exploration. Initially, the scoring agent performs 5 reasoning at-
tempts for each incident with the current task prompt. We evaluate
the accuracy and filter out cases with perfect accuracy (i.e., 100%).
For the remaining cases, reasoning is repeated with a higher tem-
perature 𝑇 to encourage diversity, thus increasing the likelihood of
obtaining both correct and incorrect results. We then prompt the
LLM using zero-shot chain-of-thought (CoT) to generate interme-
diate reasoning steps along with the final scores.
Reflection. We build an LLM agent (Agent R) to analyze those di-
verse reasoning trials and extract useful knowledge for root causing.
By contrasting correct and incorrect trials, R identifies key factors
influencing the results and proposes actionable knowledge that can
effectively triggers (or avoid) such factors leading to correct (or
incorrect) trials.
Knowledge consolidation. To ensure coherence, the knowledge
extracted from all incidents is summarized by a different LLM agent
(Agent C). C counts the frequency of similar knowledge, and ranks
them accordingly. We retain the six most frequently occurring
pieces of knowledge, as these are more likely to have broad appli-
cability across various incidents.
Prompt augmentation. Lastly, we integrate the consolidated
knowledge into the task prompt to improve reasoning performance.
A buffer array stores knowledge from previous iterations. Newly ex-
tracted knowledge is added and merged with prior knowledge, with
similar pieces combined and their frequencies updated. Another
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LLM uses the old prompt and the knowledge buffer to generate a
“refined prompt”. This ensures controlled adjustments and produces
logically consistent prompts. The new prompt resembles the origi-
nal prompt structure, appended with newly learned knowledge.

We perform prompt updates every few months, aligned with
major hardware and software upgrades, to ensure that the reasoning
strategies evolve accordingly.

4.4 System Optimizations

We introduce some optimizations for practical consideration.
Fine-tuning. Typically, smaller, more specialized models run faster.
We fine-tune smaller models with domain-specific information for
simpler tasks, including monitor alert summary and single-device
anomaly analysis in Pipeline 1, rather than relying on large, general-
purpose models. For the alert summary step, we randomly generate
alerts based on the value (numerical or categorical) distributions
of our real-world data.3 Since manually labeling synthetic data
is prohibitively labor-intensive, we use GPT-4 to produce ground
truth, as it was the most powerful general-purpose model available
at the time. For the anomaly analysis step, we randomly combine
synthetic alert summaries as inputs, and again, obtain outputs with
GPT-4. We develop rule-based algorithms to verify the correctness
of the ground truth. A subset of data is further verified through
small-scale fidelity tests with operators. Then, the validated data are
used to train smaller models for each reasoning task. We provide
more fine-tuning insights in Appendix C.
Early stop. There are cases where the error device is relatively
obvious, so BiAn only proceeds with further reasoning when it has
insufficient confidence. We calculate entropy of the failure scores
from the first stage to determine the confidence. If the entropy is
below a threshold, BiAn stops earlier and directly outputs the de-
vice rank. Otherwise, higher entropy indicates greater uncertainty,
which triggers the second stage involving more information. This
strategy not only saves compute resources for easy cases, but also
reduces average response time.
Parallel execution. BiAn executes all agents within the same step
concurrently to maximize efficiency, as there are no interdepen-
dencies among them. For instance, the alert summary agents and
anomaly analysis agents in Pipeline 1 run in parallel. In the second
stage, the multiple runs required for calculating Rank of Ranks are
also performed simultaneously once data from all three pipelines
are ready.

5 Real-World Deployment

BiAn has been deployed in Alibaba Cloud’s global network infras-
tructure for ten months. It has successfully helped operators find
root causes and corresponding error devices more efficiently. This
section evaluates BiAn’s effectiveness through A/B testing and
explainability analysis (§5.1), presents three real cases to show in
detail how BiAn assists our on-call operators in identifying error
devices (§5.2), and shares broader operational insights gained from
deploying BiAn (§5.3).

Our NOC team consists of tens of engineers with varying levels
of expertise. They become on-call operators at a rolling basis and
hold regular post-incident review meetings to share experiences
3Unlike §4.3, data augmentation is feasible here because these tasks are simpler, cap-
turing key information for logs and determining the existence of anomalies, rather
than providing detailed explanations for device faults.
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Figure 8: Comparison of time and satisfaction scores.

and align incident practices. In addition to day-to-day incident
response, the team is also actively involved in designing, developing,
and continuously improving the incident management workflow.

5.1 Tests during Deployment

We continuously examine the effectiveness of BiAn and collect
feedback from our operators during deployment.
A/B tests. To demonstrate the operational value provided by BiAn,
we compare incident investigations performed by operators with
BiAn versus those done fully manually. We also add a comparison
with a variant of RCACopilot [16] which only outputs coarser-
grained root cause categories of incidents (see discussion in §2.3).
Over the past ten months, while there are on-call operators ready
for any escalated incidents, we have specially asked them to set
up two shadow operator roles to perform the root causing and
failure localization tasks with BiAn and RCACopilot, respectively.
Since it is impractical for a single operator to perform the task with
and without assistance simultaneously on the same incident, we
assigned operators of comparable expertise to each approach at best
effort to ensure fairness.4 We record the time-to-root-causing (TTR),
defined by our operators as the duration between investigation
initiation and the identification of the root cause and error device.
TTR complements the renowned metric, time-to-mitigation (TTM),
by isolating the investigation phase. Typically, once the root cause
is pinpointed, it takes them a relatively fixed duration (around
2 minutes) to proceed to mitigation tools and act. We categorize
the incidents into high-, medium-, and low-risk, based on factors
such as incident scale (i.e., number of devices affected), recovery
difficulty, and impact on SLAs. Figure 8a plots the TTR results across
risk levels. BiAn reduces TTR by 20.5% on average, with a notable
55.2% reduction for high-risk incidents since LLM inference time
does not inflate with the risk level. While RCACopilot provides
root cause categories, the operators still need to revisit monitoring
data to validate predictions and pinpoint error devices as the output
does not explain the reasoning (e.g., which device is the root cause,
how it becomes the root cause). This process becomes increasingly
challenging with greater incident complexity, resulting in larger
TTR differences at higher risk levels.
Explainability. As an assistant to operators, BiAn must provide
clear and useful explanations for its outputs to gain their trust and
provide insights into its reasoning.We asked the operators to review
the explanations provided for the incidents during post-incident
reviews. We set a scoring scale of 0 (not helpful), 1 (somewhat

4All operators are qualified for on-call duty and take turns working with both systems.
However, we acknowledge that absolute fairness is hard to achieve and individual
variability may still introduce minor noise.
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helpful), and 2 (very helpful). To minimize bias, we have requested
them to provide feedback strictly and independently, and assured
that negative ratings were equally valuable. The average scores
for high-risk incidents, calculated every 15 days, are shown in
Figure 8b. Encouragingly, the feedback predominantly rated the
explanations as 1 or 2, with only a few as 0. While it may seem
surprising that unhelpful explanations are rare, this reflects the goal
of BiAn: to assist human-led investigations. Even in cases where
the top-1 device is incorrect, the explanations often highlight useful
context or intermediate reasoning, which supports the operator’s
thinking process. As a result, operators may benefit from BiAn’s
output more or less and tend not to rate it as completely unhelpful.
The fluctuation of scores can be attributed to operators raising their
expectations as we iteratively improve BiAn over time.

5.2 Case Study

We discuss three representative incidents to showcase how our
approach effectively addresses difficult incidents in practice, partic-
ularly how topology and timeline information helps. For confiden-
tiality, we use letters 𝐴−𝐶 to represent network devices at different
levels, with 𝐴 being the upper stream. Devices 𝐴1 and 𝐴2 are on
the same level.
Incident 1. We revisit the example introduced in §2.2. It occurred
before the deployment of BiAn, so we replay the incident and
walk through how BiAn resolves it. Initially, five different alerts
were triggered on 𝐵2 and four on its peer 𝐵3. Other neighbors
(e.g., 𝐴𝑖 and 𝐶𝑖) were affected at varying degrees. Upon feeding the
alerts, BiAn outputs 𝐵2 as the most suspicious device with four
anomalies found, and 𝐵3 as the second, having three anomalies.
BiAn successfully detects all anomalies and locates the error device
in 28 seconds. In contrast, operators—despite having access to the
same data—struggled to pinpoint the exact alerts all at once and
locate the root cause immediately. After considerable analysis, they
eventually suspected 𝐵2 or 𝐵3 might have failed. They confirmed
𝐵2 as the error device and completed the isolation in 22 minutes.
BiAn could have significantly reduced the TTR.
Incident 2. This case aims to highlight how the integration of
topology helps. In a sub-network of ourWAN, 𝐵1 is connected to𝐴1
and 𝐴2, with 𝐴2 also connected to 𝐵2. After Stage 1, BiAn assigned
equal failure scores to 𝐴1 and 𝐴2 due to comparable anomalies,
both having traffic drop and flapping; other devices have far fewer
anomalies. However, in Stage 2, the topology pipeline revealed that
𝐴2 is directly connected to 𝐵1 as a parent node. As a result, BiAn
flagged 𝐴2 as the error device with a much higher score. The root
cause was a line card failure in𝐴2. When this incident occurred, on-
call operators were notified. With BiAn, they conducted additional
measurements for 𝐴2 and confirmed it was indeed faulty. Thanks
to BiAn, the TTR was only 3 minutes.
Incident 3. Accurate localization can sometimes be particularly
challengingwithout timeline data. In an incident, three devices were
diagnosed with one or more anomalies: 𝐴1 experienced disconnec-
tion and network changes; 𝐴2 and 𝐵1 showed traffic drop. Both
disconnection and traffic drop are classified as priority-1 anomalies,
so BiAn initially assigned similar scores to all of them, making
localization difficult. However, the timeline provides important con-
text: multiple alerts were reported for 𝐴1 and 𝐴2, while 𝐴1’s alerts
occurred earlier. This greatly increased 𝐴1’s suspicion. BiAn thus

determined 𝐴1 as the error device, due to disconnection. Upon re-
viewing BiAn’s output and checking monitoring data, the operators
ruled out the other devices. The TTR was 1.5 minutes.

5.3 Operational Experience

Selection of candidate devices. In our design (§3), a fixed number
of six candidate devices are selected by the upstream monitoring
system based on the number of associated alerts, which are then
fed into BiAn. We have experimented with different numbers and
the choice of “6” strikes an effective balance between processing
overhead and coverage. It already makes sure the error device is
included over 98% of the time, but not always.We have been actively
refining our pre-selection technique: We are developing a dynamic
selection mechanism that considers the top suspicious device(s) in
various monitoring tools and narrows down the selection to around
six devices. Since different individual tools often focus on specific
aspects of network behavior, their top outputs—though not always
directly relevant—can offer valuable complementary perspectives.
We have since seen measurable improvements in coverage (to 99%!).
Iterative design process. BiAn did not take its current form
overnight. It has gone through many rounds of iteration and opti-
mization, driven by continuous testing and feedback from operators,
before and during deployment. This process, however, comes with
challenges. For example, our company imposes retention periods
for operational data unless explicitly extracted. The three-pipeline
design (§4.2) was not featured in early versions of BiAn. When we
came up with the integration of topology and timeline information,
we realized that it was not retained in earlier logs, forcing us to
delay the improvement until sufficient new data had accumulated.
Besides, some data required extra preprocessing to meet the design
requirements. In general, we find that adapting datasets to support
new features is often a bottleneck in evolving the design, as it incurs
non-trivial overhead due to format mismatches or missing context.
As a result, the full design and development cycle of BiAn extended
well beyond the 10-month deployment duration that we claimed.
Onboarding operators to BiAn. Although we collaborate closely
with operators in building BiAn, it is a different yet important job to
teach them to use it efficiently. To facilitate a seamless transition, we
integrated BiAn into the NOC’s on-call platform. The user interface
and output format (ranked devices and explanations) align with
the system that they are familiar with. Newly onboarded operators
have reported a comfortable experience with BiAn, with most
requiring minimal training to get started. We share more details on
our interaction with operators in Appendix D.

6 Performance Evaluation

We conduct a series of experiments to understand the performance
of BiAn, corresponding to the technical challenges mentioned in
§2.4. We first demonstrate that BiAn can accurately locate error de-
vices in various scenarios (§6.1). Next, we measure system latency
to show that BiAn enables fast investigation (§6.2). We conduct
ablation studies to evaluate how each component contributes to the
overall performance (§6.3) and show the benefit of the Rank of Ranks
in reducing output randomness (§6.4). We run microbenchmarks to
examine the impact of fine-tuning on monitor alert summary and
single-device anomaly analysis in Pipeline 1, as well as the effective-
ness of continuous prompt updating (§6.5). Then, we discuss the
affordability of deploying BiAn in terms of training and inference
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Figure 9: Localization accuracy under different incident categorizations (risk level, difficulty, incident type).

costs (§6.6). Finally, we replace the default model, Qwen [10], with
other top-performing LLMs and evaluate (§6.7).
Experiment setup. We install BiAn on a server equipped with
an Intel Xeon Platinum 8269CY CPU clocked at 2.50 GHz, 32 GB
RAM, and 1 TB SSD for both online deployment and performance
evaluation purposes. We select 357 non-trivial cases from real inci-
dents that occurred in our network infrastructure over the past 17
months5 for evaluation.
Models. For performance evaluation, we use Qwen2.5 in BiAn,
with the fine-tuned Qwen2.5-7B-Instruct handling the first two
steps of Pipeline 1 and Qwen2.5-72B-Instruct for all other tasks.
For real-world deployment (§5), BiAn always leverages the latest
Qwen models available at the time.

6.1 Accuracy

Accuracy is defined as whether the system picks the actual error
device as top-1 (see more details in Appendix E). We compare
BiAn with our baseline, Hot Device, one of our in-use automated
failure localization tools. A hot device is the device having the most
associated alerts. Similar to 007 [7] which focuses on pinpointing
problems in TCP flows, this is a “democratic” approach that assumes
the error device, being the source of the incident, exhibits various
anomalies while its neighboring devices only show partial or less
severe symptoms. Over 357 cases, BiAn achieves 95.5% accuracy
averaged over 10 runs, outperforming the baseline’s 86.3%. When
Hot Device cannot tell the differences between several top devices
and produces tied top-1s, its accuracy drops to 70.5%, whereas
BiAn still maintains high accuracy at 97.1%, highlighting BiAn’s
advantage of comprehensively analyzing diverse alerts.

We also consider top-2 and top-3 accuracies, where the error
device falls into the top 2 or 3 most suspicious devices. The results
are 98.6% and 99.3%, respectively (Hot Device yields 88.9% and 93.0%).
These results are encouraging and already satisfy our operators
(§5.1), as (1) explanations from BiAn can significantly accelerate the
investigation even if the top-1 device is incorrect, and (2) operators
often still review several top-ranked devices for validation before
making final decisions.

We further group the incidents in different ways and present
the results of BiAn and Hot Device in Figure 9. BiAn always wins.
Firstly, on the left, we categorize the incidents into three risk levels
(see §5.1).We can find that the accuracy remains similar between the
first two groups, indicating that BiAn is relatively equally helpful
to incidents at low and medium risk levels. For high-risk incidents,
accuracy drops below 90%. This decline is due to the high number
of concurrent incidents, which increases noise and complicates the
5We have made every effort to gather more incidents while ensuring data quality. Each
of the selected cases has a ground truth error device, which has been discussed and
confirmed by operators during post-incident reviews.

extraction of key information. The accuracy of Hot Device drops
more sharply. In the middle, the incidents are categorized by resolu-
tion time (i.e., time-to-root-causing) calculated during post-incident
reviews. Shorter times indicate that the cases are easier to address.
As shown, easy cases (𝑡 ≤ 1𝑚𝑖𝑛) have the highest accuracy of 95.7%
and medium cases (1< 𝑡 ≤ 5𝑚𝑖𝑛) approach 92.9%. For harder cases
(𝑡 > 5 𝑚𝑖𝑛), accuracy goes down, likely due to their complexity,
which also makes them considerably time-consuming for human
operators. Despite this, BiAn’s fast resolution capability (discussed
next in §6.2) ensures that even if top-1 is not the actual error device,
the trial-and-error phase (note, in most cases, mitigation solutions
applied to wrong targets are still tolerable) is still shorter compared
to manually inspecting extensive logs and aimlessly looking for
the error device. Hot Device fails to report the actual error devices
in all hard cases. On the right, we categorize failures based on
their physical root cause types: port, line card, device, and network
disconnection. BiAn performs best in resolving line card-related
failures. This is because such failures typically affect only the host-
ing device, which means its neighboring devices are less affected
and thus may have fewer anomalies. Other error types receive
comparable results.

While we have compared BiAnwith Hot Device which is adapted
from 007 [7], we emphasize that BiAn serves a role different from
that of existing failure localization tools in the IM workflow (§2.1).
It is not intended to replace them, but rather to complement by
assisting operators when self-healing fails.

6.2 Latency

BiAn delivers real-time assistance in root causing and failure local-
ization, which can greatly reduce the total time required for inves-
tigation and mitigation. We break down the latency of each system
component in Figure 10, together with the end-to-end latency. Over-
all, the entire reasoning process completes within 30 seconds. When
an incident occurs, the automated system notifies on-call opera-
tors to start investigation and loads relevant information, which
typically takes a minute. This means that BiAn’s output is ready
by the time operators get online. Looking at the breakdown, the
reasoning task of Stage 2 takes relatively longer than other com-
ponents because it needs to incorporate the analysis results from
all devices for generating the final output. Ideally, the end-to-end
latency matches the sum of individual component latencies as the
workflow is designed for concurrent execution of agents within the
same step. However, factors such as compute resources for LLM
inference can affect the latency. With our evaluation setup, the
end-to-end latency is only 15% greater than the sum, thanks to our
high degree of parallelism.

Figure 11 shows the latency reduction for alert summary and
anomaly analysis achieved by applying fine-tuned smaller models.
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We can observe significant savings. Together with the results in
§6.5, we aim to demonstrate that fine-tuning smaller models on less
complex tasks with domain-specific knowledge can reduce resource
usage without compromising performance—in fact, improving ac-
curacy in our case.

6.3 Ablation Study

We next evaluate the contributions of different components.

Progressive design.We progressively add various reasoning steps
to the original SOP-based pipeline (Pipeline 1). Figure 12 presents
the results for different design phases. Running only Pipeline 1
achieves an accuracy of 87.2%, which already surpasses the perfor-
mance ofHot Device. With the Top-p filter, a second run of Pipeline 1
on the top candidates increases accuracy by 5.9%. Further incorpo-
rating the topology or the timeline pipelines brings the accuracy
to higher (4th and 5th bars). Finally, the accuracy reaches 95.5%
with all components enabled (also see §6.1). Note, running the three
pipelines without the Top-p filter (3rd bar) results in lower accuracy
compared to the final version, because including data of all devices
for all pipelines significantly inflates the input token count, which
dilute the model’s attention.

Early stop. After the first reasoning stage, BiAn uses the entropy
of failure scores to determine whether to proceed to Stage 2 (§4.4).
The entropy threshold affects the accuracy-latency trade-off. As
depicted in Figure 13, when the threshold is higher, more cases stop
early, leading to lower latency but less satisfactory accuracy. At
zero threshold, BiAn consider all cases uncertain and send them
to Stage 2, achieving the highest accuracy at the cost of increased
latency. Notably, these curves illustrate a convex relationship: early
adjustments yield substantial accuracy gains with minimal time
investment (dashed line 𝐴𝐶 represents the accuracy gain per unit
time). With an appropriate threshold, we can intercept simpler
cases at Stage 1 to save time, while reserving Stage 2 for more
challenging cases to achieve accurate localization. We consider
point 𝐵 as an optimal trade-off and use this threshold (0.75) in
deployment. This reduces the overall processing time to 70.0% with
only a 0.5% accuracy loss compared to always running Stage 2.

6.4 Result Stability

We introduced Rank of Ranks (§4.2) to mitigate randomness in the
LLM’s output. We compare results from single-run final scoring
(Stage 2) versus running it three and five times, then calculating the
average ranks to determine the error device. As shown in Figure 14,
while average accuracy remains comparable across all settings,
the Rank of Ranks approach noticeably reduces the variance in
accuracy. Increasing the number of rounds from 3 to 5 does not bring
significant difference. Note that this design was inspired by the self-
consistency technique [67] which proves to be simple yet effective
in deductive reasoning where conclusions can be deterministically
derived from observations. In our inductive failure localization task,
however, results depend on analyzing noisy data, making accuracy
improvements less pronounced.

6.5 Microbenchmarks

We conduct additional experiments on specific components.
Monitor alert summary. An alert summary, if not empty, consists
of key elements such as type, start/end timestamps, alert digest,
and type-specific details. We manually check if the summaries
capture critical information in the digest. Results aggregated from
four representative alert types are plotted in Figure 15. Across all
summaries regardless of whether the device is the error device, fine-
tuned models achieve an average accuracy of 98.7%, significantly
outperforming the default model. Such tasks, though simpler, may
need domain expertise for effective and accurate summarization.
Single-device anomaly analysis. The next step involves deter-
mining if a device exhibits a specific anomaly. Figure 15 (right)
shows that our fine-tuned models achieve 98.6% accuracy, beating
the default model by over 6%.
Prompt updating. We evaluate the prompt updating algorithm
using five-fold cross-validation, splitting our incident dataset into
80% training and 20% testing. We conduct multiple iterations of
the algorithm and measure accuracy after each iteration, averaging
the results over five runs. After three iterations, training accuracy
increases from 88.7% to 90.0%, and test accuracy rises from 81.7%
to 85.9%. The marginal gain is largely due to the high baseline
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Table 1: Performance of different models.

Model Name Size Top 1 Top 2 Top 3

Qwen2.5 72B 95.5 98.6 99.3
Llama-3.1 405B 95.7 98.7 99.3
GPT-4o - 95.2 98.1 99.3
Claude-3.5-Sonnet - 93.9 97.4 98.5
Gemini-1.5-Pro - 93.2 97.9 98.7

performance, as over 90% of incidents already achieve 100% accu-
racy. We exclude them and repeat the experiment whose results are
presented in Figure 16. After three iterations, accuracy improves
from 54.0% to 62.0% for the training set, and from 36.7% to 50.0% for
testing. Beyond that, excessive prompt length hinders LLM’s com-
prehension, causing performance degradation as the LLM begins
to ignore most of the augmented instructions.

6.6 Training and Inference Costs

The primary costs of deploying BiAn in our network infrastructure
come from LLM usage: (1) fine-tuning specialized LLMs for alert
summary and device anomaly analysis, and (2) online inference
for all LLM agents in BiAn during live investigations. For fine-
tuning, we record the actual costs incurred by our training jobs,
which is $121.63 on average. For inference, we calculate the cost
for each incident based on Qwen’s input/output token pricing.
Input tokens include both prompts and upstream data from the
monitors or the previous step in BiAn. Figure 17 shows the CDF
of per-incident costs for two settings: running only the SOP-based
Pipeline 1 and running the full BiAn. The average cost is only $0.17
and $0.18, respectively, demonstrating BiAn’s cost efficiency at
scale. We note that, Pipeline 1 alone already beats Hot Device in
accuracy, and an additional $0.01 per incident brings further gains
(see §6.1). Such improvements are meaningful in large-scale cloud
environments, where better incident management translates into
significant savings in terms of service availability and quality.

6.7 Running with Other LLMs

Since BiAn was originally designed for internal use, we initially
deployed it with Qwen [10], our open-source language model series.
To validate the generalizability of our approach, we extend our
experiments to include several state-of-the-art LLMs. For fairness,
we did not specially optimize prompts for different models. As
summarized in Table 1,BiAn consistently achieves high top-1 to top-
3 accuracies on all models. The results suggest that our design is not
only effective with Qwen but also works well across other leading
models. This cross-model evaluation highlights the robustness of
our proposed framework.

7 Lessons and Discussion

We share our lessons learned in designing and deploying BiAn, and
discuss some open questions.

API latencyfluctuation.BiAn relies onQwen’s online services for
inference. It issues an API call for each reasoning task. As incidents
can happen at any time, BiAn is triggered at different times. We
have noticed variations in end-to-end latency. We run the inference
tasks at different times over 24 hours (details in Appendix F) and find
that, average latency remains stable throughout the day (around
5 seconds) but individual calls can experience significant fluctua-
tions (up to 16 seconds). This can impact the latency-sensitive tasks.
Similar issues are also observed in other LLM services.

Explainability and trust. BiAn provides detailed explanations
along with failure scores, for two main reasons: (1) they build op-
erators’ trust, especially during early deployment; and (2) they
facilitate feedback that helps refine prompts, and even framework
design. Experiments show that accuracy is not affected by whether
we ask the LLM agent to provide explanations, but including ex-
planations reduces score entropy (e.g., {0.5, 0.3, 0.2}→{0.7, 0.2, 0.1}),
indicating greater confidence. Moreover, it is hard to know in ad-
vance whether correct rankings come with wrong explanations,
or whether useful explanations are hidden by incorrect rankings.
Future work can explore how to validate the consistency between
scores and explanations.

Prompt engineering. We have spent considerable effort on im-
proving the LLM prompts in BiAn and gained some insights. First,
managing prompt length is crucial. We have observed a decline
in performance as prompt length increases, calling for precise in-
structions to minimize distractions from less important information.
Similar challenges arise in prompt updating (§4.3), where prompt
length increases with iterations. The performance decline due to
growing prompts will eventually outweigh the benefits brought by
augmented knowledge. This indicates a limitation of “training” LLM
prompts versus LLM parameters. Second, prompt obedience can be
inconsistent. LLM agents sometimes fail to follow our instructions,
such as skipping analysis steps or producing overly verbose content.
We need to carefully tune the prompts to clarify roles and align
agent behavior with the intended tasks. On the other hand, we want
agents to explore different reasoning paths on complex cases (e.g.,
devices with similar symptoms, multiple root causes). It has been
non-trivial to make the trade-off between control and flexibility.
We have applied various techniques, including few-shot prompting
(in-context learning) [12, 71], chain-of-thought prompting [70], and
self-consistency [67].
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Multi-agent systems. Multi-agent orchestration [15, 29, 40, 73] is
another direction that deserves further study. In the early design
stage, we explored enabling LLM agents to freely plan analysis tasks,
including alert processing and device scoring. However, this setup
quickly ran into practical challenges: without clear task bound-
aries and guidelines, the agents often entered loops of repeated
actions, failed to terminate properly, or accumulated excessive con-
text, leading to performance degradation. Later, we transitioned to a
structured, hierarchical framework with predefined roles, informed
by the thinking and handling processes of human operators. The
roles are scoped and incorporate data from different dimensions
(e.g., alerts, topologies, timelines). Despite the improvements in con-
trollability, this static workflow has limited flexibility—except that
we can define more roles (e.g., for new alert types) under the frame-
work. In the future, to handle increasingly complex incidents as
network infrastructure evolves, the agents need to have more adap-
tive behaviors, such as retrying failed analysis, skipping irrelevant
steps, or dynamically invoking other agents. Designing multi-agent
systems [13] raises new challenges in prompt engineering, agent
coordination, and model tuning.
Limitations. While BiAn has greatly improved incident investiga-
tion, certain limitations remain: (1) BiAn falls short in multi-device
failures. It assumes a single error device per incident. Although
rare, there are cases where multiple devices contribute equally. For
instance, network updates involving configuration changes on two
devices may result in errors on both. Nevertheless, the accompany-
ing scores and explanations often reveal that the top two are closely
ranked, enabling operators to identify both as faulty, quickly. (2)
BiAn relies on the effectiveness of upstream monitors. If monitors
generate invalid or ambiguous data that can hardly differentiate
responsibilities among devices, it may struggle to provide accurate
results. Notably, this also challenges human operators, who often
report uncertainty or need more time. BiAn shines at efficiently
understanding and reasoning through large amounts of data. (3)
BiAn does not yet support link-based incidents. It currently focuses
on device-based incidents which accounts for the majority of cases.
Link-based incidents follow different investigation processes and
SOPs. We are extending BiAn to handle both device- and link-based
incidents effectively.

8 Related Work

Network telemetry and measurements. Operators rely on mea-
surements to assess network health. Numerous studies aim to
indicate fault-related information through flow-level or packet-
level data [24, 25, 35, 36, 51, 58, 59, 79, 82, 88, 90]. Some utilize
such measurements for preliminary identification and routing of
faults [8, 18, 19, 44, 45, 49].While helpful in narrowing down a range
of devices, they cannot pinpoint error devices. Other works opti-
mize telemetry systems themselves in terms of overhead, reliability,
and availability [4, 20, 21, 23, 30–32, 41, 46, 47, 54, 61, 77, 80, 87, 89],
without directly addressing failure localization. NetPilot [74], Cor-
rOpt [91], and SWARM [52] optimize incident mitigation strategies
after failures are located.
Network failure localization. Various works target diagnosis
and failure localization. Some use statistical techniques to locate
link failures [28, 37], while others analyze packet drops [7, 53, 62].
Several studies propose rule-based troubleshooting systems for

IPTV/IP networks used by ISPs [6, 48, 76]. NetSonar [83] builds a
gray box tester for network tomography. NetPoirot [8] tells if bot-
tlenecks reside in the network. NetNORAD [38] and Pingmesh [22]
locate failures at a network level (e.g., spine, ToR switch). They can
serve as monitoring data sources for operators and BiAn, for ex-
ample, by generating alerts or recommending orders of fixes. Some
works target data center network failures and need hardware sup-
port [26, 42, 66]. INT [11] and provenance-based solutions [14, 75]
are resource-intensive. Packet marking is intrusive and fields may
not be available [55]. These are hard to be deployed in heteroge-
neous infrastructures like ours.
Troubleshooting at upper layers. Efforts are also made in de-
tecting software and service issues in cloud environments. Some
approaches identify root causes leveraging dependencies between
entities [9, 17, 27, 34]. For example, Murphy [27] uses a Markov
Random Field to model dependencies for performance diagnosis.
These works primarily conduct analysis on performance metrics,
whereas BiAn operates on textual alerts generated by monitor-
ing and diagnosis systems. Others address purely application-layer
bugs unrelated to physical devices [43, 50, 57, 60, 68, 85], and thus
cannot assist physical network teams in locating device faults.
Utilizing LLMs in the network domain. Besides the works men-
tioned earlier in §2.3, there are other attempts that apply LLMs
in systems and networking. In cloud software incident manage-
ment, Roy et al. [56] evaluate the ReAct framework [78] in incident
analysis. Zhang et al. [86] use in-context learning to address chal-
lenges in fine-tuning general-purpose LLMs. RCAgent [69] is an
agent capable of tool use for analyzing cloud job anomalies. LM-
PACE [84] estimates output confidence for black-box root causing
from incident summaries. NetLLM [72] modifies LLM architectures
for network-specific applications. They have provided valuable
insights for us in building BiAn.

9 Conclusion

We present BiAn, a practical framework that leverages LLMs to
improve root cause analysis and failure localization in network in-
cident management. By decoupling the complex reasoning process
across vast volumes of monitoring data, BiAn—through its hier-
archical, multi-pipeline design and other system enhancements—
significantly boosts the efficiency of localization while maintaining
explainability. Its successful deployment in Alibaba Cloud’s pro-
duction network demonstrates both the feasibility and impact of
applying LLM-based approaches in network operations at scale. We
are actively working to further advance BiAn, and we hope our
experience can spur more research in AI for networking.
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APPENDIX

Appendices are supporting material that has not been peer-
reviewed. As supplementary materials, we provide additional de-
tails, including prompt templates, monitoring data examples, details
regarding fine-tuning, our interaction with operators, clarifications
on the accuracy metric, explanations on some terms, and an experi-
ment on inference API calls. While the core paper is self-contained,
these materials offer more information for interested readers.

A Prompt Templates

Reasoning Stage 1 - Monitor Alert Summary
You are an experienced network operations engineer specializing in investigating 
complex incidents in large-scale networks. Your task is to analyze monitoring alerts, 
extract key information, and generate a data summary.
Field Description:
    Device Name: <Device A>
    Event Details: …
    …
Summary Guidelines:
1. Ensure the summary is concise and clear.
2. Include key information such as XXX, XXX, …
3. Extract the relevant details without omission.

Example #1: 
    Input: <Monitoring log>
    Summary: …

Response Format: 
    Device Name: <Device A>
    Digest: …

Figure 18: Prompt template for monitor alert summary.

We apply various prompt engineering techniques when designing
prompts for the LLM agents in BiAn. Figure 18 shows the prompt
template for monitor alert summary, Step 1 in Pipeline 1. The tem-
plate contains five parts: (1) Role definition: specifying the agent’s
role; (2) Field description: describing the fields in the log to be

Reasoning Stage 1 - Single-device Anomaly Analysis
You are an experienced network operations engineer specializing in investigating 
complex incidents in large-scale networks. Your task is to perform a comprehensive 
analysis of all relevant monitoring data summaries, and determine whether there is 
an anomaly of XXX in the current device, step by step.
Data Summaries:
    <Summary 1>: {Summary content}, {Summary 2}: {Summary content}, …
    …
Analysis SOPs:
    Step 1: <Description>
    Step 2: <Description>
    …
Example #1:
    Input: <Data summaries>
    Summary: <Step-by-step analysis>

Response Format:
    Step 1: <Analysis>, Step 2: <Analysis>, …
    Conclusion: …

Figure 19: Prompt template for device anomaly analysis.

analyzed; (3) Summary guidelines: providing guidelines on how
to summarize; (4) One-shot example: providing an example of the
data along with the expected summary; (5) Response format: high-
lighting the format of the response (i.e., alert summary). We also
share the template for single-device anomaly analysis (Pipeline 1
Step 2) in Figure 19. Similarly, we first define the role of the agent
and describe the expected input (e.g., alert summary format). Then,
we specify how to perform an analysis. One-shot example helps
the agent understand its role with in-context learning. At the end,
response format is provided.

B Input Examples

The following example is an alert produced by the monitoring sys-
tem. As shown, the events have undergone aggregation, resulting in
a semi-structured format that contains mostly human-readable tex-
tual fields. This format incorporates preliminary classifications and
statistics, eliminating the need for operators and BiAn to directly
process raw time series data, numerical values, or charts.

1 {
2 "brief": "inter-pod circuit|CITY61-R1-VM-##-G1_CITY61-VM-GATE-

G2_GATE EGRESS|2/32 ANOMALY: BGP-down-Alert",
3 "circuitGroupName": "CITY61-R1-VM-##-G1_CITY61-VM-GATE-G2_GATE

EGRESS",
4 "clusterNameA": "CITY61-R1-VM-##-G1",
5 "clusterNameB": "CITY61-VM-GATE-G2",
6 "deviceNameA": "R1-VM-##-G1-1.CITY61",
7 "deviceNameB": "GATE-VM-4.CITY61",
8 "eventSource": "SYSLOG EVENT",
9 "faultScenario": "LINK FLAPPING",
10 "gmtCreate": "2024-09-20 16:03:11",
11 "gmtModified": "2024-09-20 16:03:12",
12 "level": "2",
13 "scanObjs": "R1-VM-##-G1-1.CITY61#100GE1/0/5,R1-VM-##-G1-2.CITY61

#100GE1/0/5,GATE-VM-4.CITY61#HU1/12",
14 "type": "LINK_GROUP",
15 "typeName": "[V2|P2][low freq] backbone link flapping"
16 },
17 {
18 ...
19 },
20 ...

C Fine-tuning

Training strategy. In practice, we find that combining data gener-
ated for multiple different tasks into a single training set does not
diminish the accuracy of the fine-tuned model across individual
tasks. In fact, this approach often leads to modest improvements in
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performance. This finding is significant as it reduces the resource
consumption for training and deploying models. In our current de-
ployment, we maintain only one fine-tuned model each for Step 1
and Step 2.
Hyper knobs.We have conducted a thorough exploration of the
fine-tuning hyperparameters. We observe that richer training data
generally yields better performance of fine-tuned models while
larger batch sizes accelerate the training process. For most tasks,
a dataset of 2,000 examples per task is sufficient to achieve near-
optimal performance, comparable to models trained on 5,000 ex-
amples. Interestingly, we also find that reducing the batch size
enhances accuracy, with the best results achieved using a batch size
of 1.

D Interaction with Operators

Questionnaire. To evaluate operators’ satisfaction with BiAn,
we collected feedback focused on the clarity and usefulness of
the explanations provided by BiAn. For medium- and high-risk
incidents, they also assessed if critical information was included.
As mentioned in §5.1, we used a 3-point scale: 0 (not helpful), 1
(somewhat helpful), and 2 (very helpful). Experienced operators
participated in reviewing the outputs of BiAn. To gainmore insights
into the system’s performance in real-world operations, we also
include the following questions in the questionnaire:
1 Which types of incidents are handled inadequately?
2 What problems should we prioritize to address next?
3 Was this case trivial to resolve?
4 Whether trivial or not, was the explanation helpful?
5 If BiAn fails in this case, was the explanation for the top-1
(incorrect) device reasonable? Any logical fallacies?

Result display. Operators provide feedback on how to improve
output formatting based on their typical reading patterns. Their sug-
gestions include adding bold titles at the top of push notifications,
using collapsible views for detailed explanations, and embedding
original monitor alerts. We have incorporated these recommenda-
tions iteratively into BiAn to enhance result readability. In addition
to LLM-based reasoning, BiAn also integrates relevant references
to better support operators in the decision-making process, includ-
ing links to tools for deeper analysis and data visualization (e.g.,
traffic statistics, packet loss rates). The resources enable operators
to make more informed decisions.
Learning curve. A common barrier for our operators to adopting
new tools is a steep learning curve or deviation from their existing
practices. To minimize this, BiAn’s core design aligns with internal
operational guidelines, ensuring acceptance by both experienced
and newly onboarded operators. As wemaintain close collaboration
with the NOC team throughput the development process, most
operators become proficient with BiAn after just a few real-world
cases.

E Accuracy

Table 2: Confusion matrix for error device localizaion.

Root Cause (Positive) Non-Root Cause (Negative)
True 𝑌 (𝐷 − 1)𝑌
False 𝑋 − 𝑌 (𝐷 − 1) (𝑋 − 𝑌 )

In the context of error device localization, we frame the problem
as a special case of classification, where each sample (i.e., incident)
contains exactly one positive instance, the true error device. We
illustrate this with Table 2. Assume we have 𝑋 incidents and BiAn
successfully identifies the error device in 𝑌 of them. Without loss
of generality, let the initial number of candidate devices be 𝐷 , de-
termined by upstream monitoring and filtering tools. The accuracy
is calculated as:

𝑇𝑃 +𝑇𝑁
𝐷 × 𝑋

=
𝑌 + (𝐷 − 1)𝑌

𝐷𝑋
=

𝑌

𝑋
, (1)

which reduces to the fraction of cases in which the system correctly
identifies the error device. This also allows us to derive othermetrics.
For example, the false positive rate is:

𝐹𝑃

𝐷 × 𝑋
=
𝑋 − 𝑌

𝐷𝑋
=

1
𝐷
(𝑋 − 𝑌

𝑋
) = 1

𝐷
(1 − 𝑌

𝑋
) = 1

𝐷
(1 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦).

(2)
Similarly, we can get the true positive rate, true negative rate, and
false negative rate if needed.

F Inference API Calls
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(a) Step 1: Alert summary.
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(b) Step 2: Anomaly Analysis.

Figure 20: Inference API call latency.

In §7, we observed fluctuating latency when invoking Qwen’s in-
ference APIs. This perceived latency consists of network latency,
task scheduling latency, and inference latency. The former two
may be related to the current background load on the Qwen plat-
form. Inference latency itself can be influenced by factors such as
inference framework, acceleration methods, available resources for
inference, batching states of the inference task, hardware stragglers,
and dynamic scaling of underlying infrastructure components. To
further investigate the fluctuating latency, we run an experiment:
we repeatedly run inference tasks for the alert summary and device
anomaly analysis steps over a 24-hour period, 100 times per hour.
As shown in Figure 20, while the Qwen API can provide a stable
overall latency on average, the fluctuation in latency for individual
calls remains substantial, potentially impacting latency-sensitive
inference tasks. For stable latency, we can consider adopting a
locally deployed, dedicated resource approach (see Figure 11 for
a comparison between local fine-tuned inference and Qwen API
invocation).
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