
New Evolution of Hoyan: Enhancing Scalability, Usability, and
Accuracy for Alibaba’s Global WAN Verification

Yifei Yuan, Fangdan Ye, Yifan Li, Jingkai Zhang, Mengqi Liu, Yuyang Sang, Ruizhen Yang,

Duncheng She, Zhiqing Ye, Tianchen Guo, Xiaobo Zhu, Xinji Tang, Li Jia, Zhongyu Guan,

Lingpeng Su, Ci Wang, Ruiyang Feng, Shuo Wu, Zhonghui Xie, Cheng Jin,

Peng Zhang, Qing Ma, Xianlong Zeng, Dennis Cai, Ennan Zhai

Alibaba Cloud

Abstract
The network verification system Hoyan has been deployed for Al-

ibaba Cloud’s wide-area network (WAN) for years and achieved

considerable success in preventing misconfiguration-caused net-

work incidents. However, recent years have seen the emergence of

new challenges in scalability, usability, and accuracy for Hoyan. This
paper presents the new evolution of Hoyan to address these chal-

lenges. First, to support the large increase in the number of routers

and prefixes on our WAN, Hoyan’s simulation has evolved from a

centralized fashion to a distributed framework, which improves the

efficiency by 5 times and can scale to 𝑂 (104) routers, millions of

prefixes, and billions of flows. Second, to improve Hoyan’s usabil-

ity in checking route change intents, we developed a specification

language RCL, which supports the easy specification and automatic

verification of route change intents. Third, to ensure high accuracy,

we enhanced Hoyan’s accuracy diagnosis framework, which helped

us identify and fix dozens of implementation and modeling issues.

Hoyan is used on a daily basis for our WAN. It supports 𝑂 (100)
verification requests each week, prevents 𝑂 (10) incidents each
year, and helps reduce the percentage of misconfiguration-caused

network incidents from 56% to 5%.

CCS Concepts
• Networks→ Network reliability; Network manageability.

Keywords
Network Verification; Distributed Simulation; Intent-Based Check-

ing

ACM Reference Format:
Yifei Yuan, Fangdan Ye, Yifan Li, Jingkai Zhang, Mengqi Liu, Yuyang Sang,

Ruizhen Yang, Duncheng She, Zhiqing Ye, Tianchen Guo, Xiaobo Zhu, Xinji

Tang, Li Jia, Zhongyu Guan, Lingpeng Su, Ci Wang, Ruiyang Feng, ShuoWu,

Zhonghui Xie, Cheng Jin, Peng Zhang, Qing Ma, Xianlong Zeng, Dennis Cai,

Ennan Zhai. 2025. New Evolution of Hoyan: Enhancing Scalability, Usability,

and Accuracy for Alibaba’s Global WAN Verification. In ACM SIGCOMM
2025 Conference (SIGCOMM ’25), September 8–11, 2025, Coimbra, Portugal.
ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3718958.3754343

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1524-2/25/09

https://doi.org/10.1145/3718958.3754343

1 Introduction
Alibaba Cloud maintains a global wide area network (WAN) inter-

connecting its tens of datacenters and also connecting with ISP

peers. The WAN supports core services such as e-commerce and

cloud computing, serving billions of customers worldwide. Thus, it

is extremely important to ensure the availability and reliability of

this network.

In the daily operation of the network, one of the biggest chal-

lenges is to correctly configure the network with respect to the

network operators’ high-level intents, especially when making

changes to the network, such as changing route policies and replac-

ing routers for maintenance. Indeed, misconfiguration was once

the primary root cause of our network incidents, accounting for

56% of them [29]. To address this challenge, we initiated the Hoyan

project [52] in 2017, aiming at building a network verification sys-

tem to check the correctness of configurations for planned network

changes before implementing the change into the production net-

work.
1
The primary goal of Hoyan was to accurately simulate the

protocols running on the WAN (including BGP and IS-IS), in order

to generate the potential RIBs after the planned network change.

The primary properties that Hoyan targeted at were the reachabil-

ity properties for the control plane (e.g., a route X advertised from

router A can reach another router B) and data plane (e.g., a packet P
sending from router A can reach another router B). Since the deploy-

ment of Hoyan in 2018, most reachability related change incidents

on our WAN have been successfully detected and thus prevented

ahead of time. Afterwards, traffic load related change incidents have

become one of the major types of change incidents. In response,

starting from 2020, we gradually built traffic simulation and verifi-

cation capabilities (including two sub-systems Jingubang [26] and

Yu [27]) into Hoyan, to meet the verification needs for flow paths

(e.g., all flows on path A should be moved to path B) and traffic

loads (e.g., no link would be overloaded after the change).

While Hoyan has achieved considerable success in validating

the correctness of configurations for the WAN, recent years have

seen the emergence of a range of new challenges in scalability,
usability, and accuracy, driven by the rapid evolution of the network
infrastructure and the ever-increasing operational requirements. In

this paper, we present the new evolution of Hoyan, in response to

those challenges.

Scalability. Hoyan was initially designed to check the reachability

of 𝑂 (104) high-priority prefixes used in several high-risk changes

(e.g., new prefix announcement) on our WAN which had hundreds

of routers in 2017 [52]. Since then, the scale requirement for Hoyan

1
While we focus on network changes in this paper, Hoyan is also used in a broad range

of scenarios. See §6 for more details.

https://doi.org/10.1145/3718958.3754343
https://doi.org/10.1145/3718958.3754343

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

Table 1: The scale requirement has increased several times
while that of run time has reduced significantly.

Routers # Prefixes # Flows Run Time Req.

2017 hundreds 𝑂 (104) N.A. hours

2024 > 2000 𝑂 (106) 𝑂 (109) minutes

has increased several times in terms of the network size, and the

number of prefixes and flows to be simulated. Table 1 summarizes

the change of scale requirements from 2017 to 2024. First, our

network grows rapidly in recent years, mainly due to to the recent

deployment of our next-generation WAN. As a result, the number

of routers increases about three times from a few hundred to more

than 2000. Looking forward, our operators wish to use Hoyan to

check the WAN with all connected datacenter networks (DCN) in

order to check cross-region risks (e.g., a configuration change in

DC A should not leak a private route to DC B via the WAN), which

would lead to another order of magnitude increase in the network

size. Second, in addition to the high-priority prefixes, our operators

wish to simulate and verify the behavior of all 𝑂 (106) prefixes
residing on our network, in order to reason about the complete

control plane for all types of network changes (see Table 2 for a

complete list of change types). Third, traffic simulation has been

developed in Hoyan to reason about the traffic load properties in the

last two years [26, 27], which requires Hoyan to efficiently simulate

the forwarding of 𝑂 (109) flows. Despite the significant increase in
scale, the run time requirement for each change verification request

has been significantly reduced from hours to minutes, for the high

requirement of urgent change verification cases (see §6 for more

details).

This substantial increase in scale poses significant scalability

challenges to Hoyan. Figure 1 shows the simulation time of the

original Hoyan, which ran on a single server with parallelization,

with the increase of prefixes. It required more than 30 minutes to

simulate all prefixes for the WAN, which cannot meet our oper-

ational requirement. In addition, when extending to DCNs (only

the core layer with 𝑂 (104) routers), it could only simulate 30% of

the total prefixes, and failed to complete the simulation for 40% of

prefixes due to memory exhaustion, indicating its limitations for

future extensions.

To support such a large scale, Hoyan’s route and traffic sim-

ulation has evolved from a centralized approach to a distributed
framework,

2
where a simulation task runs on a set of servers col-

lectively, and each server hosts only a small set of routes/flows at a

time. Our distributed simulation framework is able to complete a

simulation task in minutes, which is 5 times faster than the original

centralized approach. Meanwhile, it can scale to tens of thousands

of routers, millions of input routes and billions of input flows.

Usability. As the intents of network changes differ significantly

from one another, basic reachability properties do not suffice to

specify the change intents in many change scenarios. Table 2 sum-

marizes all 12 types of changes that Hoyan is required to support,

where 9 of them require intent specification beyond reachability.

2
While the recent work [44] proposed a modular approach to scale BGP control plane

verification, it is hard to apply it to our WAN because (1) its assumptions do not hold

in our operation (e.g., specifying local constraints) and (2) we need to verify data plane

and traffic loads in addition to BGP.

10 20 30 40 60 80 100
Percentage of prefixes (%)

500
1000
1500
2000
2500

Si
m

ul
at

io
n

tim
e

(s
)

WAN+DCN
WAN

Figure 1: The original Hoyan needs 30minutes to simulate all
prefixes on WAN, and cannot scale to WAN+DCN for future
requirements.

As a result, for changes with more complex intents, we used to hard

code the verification logic into Hoyan or rely on the operator’s

manual inspection of the simulation results. Both approaches are

time-consuming and error-prone. By analyzing past years’ changes,

we identified three types of intents: route change intents (e.g., the
community of routes with community C1 should be changed to C2),

flow path change intents (e.g., flows on path A should be moved to

path B), and traffic load change intents (e.g., no overloaded links).

Since those intents have fundamentally different abstractions, our

operators wish to specify them separately for better usability. In

our recent work, we designed Rela [50] for flow path change intent

specification; for traffic load change intents, the operators simply

specify the intended thresholds. However, neither can specify the

control plane route change intents, which are required in 6 types of

changes (labeled with * in Table 2).

To enhance the usability for control plane change verification,

we design a specification language, RCL, aimed at offering an intu-

itive abstraction and user-friendly language for our operators, so

they can easily specify route change intents. RCL allows to spec-

ify the relation between the RIBs before and after a change with

simple transformation and evaluation of RIBs. With RCL, most

route change intents can be easily specified by our operators and

then automatically verified, significantly improving the usability

of Hoyan and reducing manual errors. RCL is used on a daily basis

and supports the verification of 𝑂 (10) changes each week.

Accuracy. To ensure that Hoyan accurately simulates the routing

and forwarding behavior of our WAN is particularly challenging in

practice. First, given the high complexity and scale of our system,

there are a wide variety of sources for inaccurate simulation results.

For example, the collected routes may be incomplete, the parsing

may be flawed for specific vendors’ configuration formats. Second,

our WAN deploys a rich set of network features with various ven-

dors (e.g., BGP, IS-IS, segment routing or SR, policy-based routing or

PBR). Correctly modeling those features, especially when some of

them are interpreted differently by different vendors (which is often

referred to as vendor-specific behavior, or VSB [52]), is becoming

increasingly difficult. Third, given the large scale and complexity

of our WAN, analyzing the root cause of an inaccurately simulated

result (e.g., inaccurate simulated traffic load on a link) often requires

experts’ domain knowledge and manual effort, making it complex

and time-consuming.

The original Hoyan supports accuracy diagnosis for route simula-

tion of BGP and IS-IS; we further enhance it to diagnose both route

and traffic simulation with SR and PBR, which (1) automatically val-

idates Hoyan’s accuracy via cross-validation, and (2) analyzes the

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Table 2: All 12 types of network changes together with their example change intents that Hoyan needs to support. Change
types shown in bold require more expressive intent specification than reachability; those labeled with * need specification for
control plane route changes.

Category Change type Example change intents

OS maintenance

OS upgrade (*)
All routes remain unchanged (including the prefix and attributes of a route).OS patch (*)

Configuration

maintenance

Route attributes modifi-
cation (*)

Routes with a specific attribute value C1 (e.g., communities) should be changed to

another attribute value C2, while other routes remain unchanged.

Static route modification The static route should reach the given set of routers.

PBR modification Flows on path A should be moved to path B.

ACL modification All matching flows should be blocked.

Network

deployment

Adding new links (*) 1. The number of prefix P’s next hops should increase; 2. flows traversing the link group

should use the new link for ECMP.

Adding new routers (*) 1. Routes on the new router should be the same as other routers in the group; 2. flows

travering other routers in the group should also traverse the new router.

Topology adjustment Flows on path A should be moved to path B.

Business

demand

New prefix announcement The target prefix should reach the given set of routers.

prefix reclamation The target prefix should not appear on all routers.

Traffic steering (*) 1. Prefix P’s next hops should be changed from A to B; 2. flows on path A should be

move to path B; 3. no links are overloaded.

Table 3: Hoyan’s key evolution.

Original [52] New

Simulation single server;

parallel

distributed

Intents reachability +route/path/traffic load in-

tents

Accuracy support BGP, IS-IS +SR, PBR

root causes with Hoyan’s automation and experts’ domain knowl-

edge. This framework helps us identify 9 types of real-world issues

and 16 new VSBs, significantly improving the accuracy of Hoyan.

We summarize the key evolution of Hoyan in Table 3. In the

following, we first provide essential background on Alibaba Cloud’s

WAN, and then present the high-level overview of Hoyan’s new

architecture (§2), followed by detailed technical solutions and ex-

perience addressing the aforementioned challenges (§3-5). We also

share the deployment experience of Hoyan (§6) and future oppor-

tunities (§7).

Ethics. This work does not raise any ethical issues.

2 Background and Overview
We first show Alibaba Cloud’s global WAN background, and then

present the overview of Hoyan’s new architecture.

2.1 Background
OurWAN’s control plane is in a distributed setting that runs various

protocols, including BGP, IS-IS, and segment routing (SR). Starting

from 2023, the WAN has been upgraded rapidly into the next gen-

eration based on IPv6 and segment routing over IPv6 (SRv6) [25].

As of December 2024, this WAN contains more than two thou-

sand routers (each router has thousands of lines of configuration

commands), hosts millions of prefixes, and carries billions of flows.

The WAN deploys a wide variety of monitoring systems for

topology, configuration, route, and traffic monitoring. Below, we

describe the route and traffic monitoring systems, in order to pro-

vide necessary background for Hoyan’s route and traffic simulation.

Route monitoring system. The route monitoring system collects

BGP routes from all routers in the WAN. The major approach of

this system is to set up BGP connections with all routers, so that

the router can advertise its BGP routes to the connected BGP agent.

As an ongoing effort, we also actively deploy BGP route monitoring

protocol (BMP) [40] onto the WAN, allowing the system to directly

collect all routes from each router’s BGP RIB.

Traffic monitoring system. The traffic monitoring system uses

Netflow [11] and sFlow [35] to collect detailed information of flows

received on each interface of a router, such as values of the 5-tuple

(i.e., source and destination IP/port, protocol), the timestamp of

report time, and the flow’s total traffic volume between two reports.

The monitoring system also collects the total traffic volume each

interface receives in a unit time via Simple Network Management

Protocol (SNMP) [14] to monitor the traffic load on each link.

2.2 Overview of Hoyan’s New Architecture
Figure 2 shows the high-level overview of Hoyan’s new archi-

tecture. We first describe the change verification part shown on

the left with colored background. At a high level, given a change

plan (i.e., planned topology changes and commands for targeted

routers’ configuration change), Hoyan first runs simulation for the

updated network model (i.e., the topology and configurations after

the change) and then runs verification on the simulated results (e.g.,
RIBs) to check whether they satisfy the given change intents. Hoyan

relies on a range of monitoring systems (shown in gray boxes) to

provide the current network topology, routers’ configuration, and

input routes/flows for simulation. To improve the efficiency of each

change verification request, Hoyan adopts a two-phase design: the

pre-processing services (shown in green boxes) run periodically

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

Accuracy report

Selected routes

Base net. model Input routes

Topo. Mgmt.
System

Route Mon.
System

Config. changes

Topo. changes

RIBs

Net. Model
Building Service

Flow paths/traffic loads

Config. Mgmt.
System

Updated
net. model

Traffic Mon.
System

Input Route
Building Service

Input Flow
Building Service

Input flows

Intent VerificationChange intents Change Intent Spec. Language
(Rela [SIGCOMM’24] & this work §4)

New input routes
Formal
spec.

RIBs

Verified/
violated examples

Route Simulation
(SIGCOMM’20)

Traffic Simulation
(Jingubang [NSDI’24]

& Yu [SIGCOMM’24])

Inc. model
Construction

Accuracy
Diagnosis

(SIGCOMM’20
& this work §5)

Distributed
Simulation

RIBs
Traffic loads

Net. Infra.

Base RIBs, traffic loads

Base RIBs,
flow paths/traffic loads

Base net. model
Input routes/flows

Distributed Simulation (this work §3)

Figure 2: The high-level overview of Hoyan’s new architecture. The left part with colored background is for change verification,
and the right part is for Hoyan’s accuracy diagnosis framework to ensure its high accuracy.

each day while the services for change verification (shown in blue

boxes) are triggered for each change verification request.

In the pre-processing phase, the network model building ser-

vice obtains the current configurations of all routers and parses

them into Hoyan’s internal model. Then with the current network

topology, the service builds a base network model for future change

verification uses, avoiding the costly re-parsing of all routers’ config-

urations for each change verification request. The input route/flow

building services build the input routes/flows based on the raw data

from the corresponding monitoring systems. First, the services load

the raw route/flow data from the monitoring systems. Then, they

filter the monitored routes/flows based on a set of pre-defined rules

(e.g., ignore the routes from a VRF with no external BGP peers) to

collect the input routes/flows that are injected into the network.

Next, they further process these input routes/flows (see §3 for more

details) and finally store them on our cloud storage [1].

In the change verification phase, given a change plan specifying

the topology changes and the commands for configuration changes,

Hoyan first parses the commands (typically a few hundred to a few

thousand lines of commands) and constructs the updated network

model incrementally by applying the specified changes to the pre-

computed base network model. Then, Hoyan runs route simulation

for the updated network model on the pre-computed input routes

to generate the potential RIBs for all routers after the change. In the

scenario of new prefix announcement, Hoyan also takes the new

input routes to be injected into the network for simulation. Next,

based on the simulated RIBs, Hoyan takes the pre-stored input flows

for traffic simulation, in order to generate the forwarding paths

for all flows and the traffic load for all links, in the updated net-

work. The route and traffic simulation is conducted in a distributed

fashion as described above, significantly improving the scalability

and efficiency of Hoyan. To formally verify the correctness of the

network change, Hoyan allows the network operators to specify

the intents of the network change in our change intent specification

languages, and then automatically checks whether the simulated

RIBs, flow paths, and traffic loads can satisfy the formally speci-

fied intents. When needed by the specification, Hoyan also loads

the pre-computed base RIBs, flow paths, and traffic loads for its

verification. In the case where the intents are not satisfied, Hoyan

generates a set of concrete counter examples (e.g., routes or flow
paths) demonstrating the violation of the intents.

To ensure high accuracy of Hoyan’s simulation, we enhance

Hoyan’s accuracy diagnosis framework, shown on the right with

white background. First, each day Hoyan runs the simulation for the

based network model on the input routes and flows, to generate the

base RIBs, flow paths, and traffic loads. Then Hoyan compares the

simulated results with those collected by the monitoring systems.

In case of missing data in the route monitoring system, Hoyan also

compares with the live network for selected routes. Based on the

comparison results, Hoyan outputs an accuracy report, indicating

the incorrectly simulated routes and links with inaccurate simu-

lated loads, so that experts can analyze the root cause for them with

the help of Hoyan’s automation (e.g., building the propagation/for-

warding graph of a route/flow).

3 Distributed Simulation
In this section, We first describe Hoyan’s original simulation work-

flow to provide essential background. Then, we present the de-

sign of the new distributed simulation framework, followed by the

performance evaluation, showing that the distributed simulation

framework not only significantly improves the efficiency but also

achieves high scalability.

3.1 Original Simulation Workflow
Route simulation. The goal of route simulation is to simulate

the propagation of all input routes in order to generate the RIBs of

all routers. Hoyan supports all protocols running on our network,

such as BGP, IS-IS, and SR, with BGP being the most important yet

complex one.

Specifically, for BGP simulation, Hoyan runs a fixpoint algorithm

simulating the message-passing process of BGP route propagation.

In each round, a router receives a set of incoming routes, processes

them according to the ingress route policy such as dropping certain

routes and modifying some routes’ attributes, installs the routes

into its RIB, and finally advertises the updated best route for each

prefix to its neighbors after applying the egress route policy (for

add-path enabled routers, multiple routes would be advertised [47]).

The fixpoint algorithm terminates when no incoming routes are

received by any router (within 20 rounds for our WAN).

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Subtask
results

Working server

Cloud object storage

Subtask
inputs

Subtask
status DB

Message queue

Master server

Subtask
preparation

Results
collection

EC
computation

Subtask
simulation

Figure 3: Hoyan’s distributed simulation framework.

A key practical challenge of route simulation is efficiently simu-

lating the large number of input routes in our network (i.e.,𝑂 (107)
input routes for all𝑂 (106) prefixes). Our key technique is to identify
equivalence classes (ECs) of input routes. Particularly, we consider
two input routes to be equivalent if (1) they are injected into the

same router (in the case that multiple VRFs are configured on the

router, it is required that the routes are on the same VRF), (2) their

prefixes have the same matching results across all prefix sets in the

network and trigger the same aggregate prefixes on all routers, and

(3) they have the same values for all BGP attributes (e.g., commu-

nities, AS path). By leveraging ECs, Hoyan only needs to simulate

one route for each EC and is able to reduce the number of input

routes by ∼4 times for our WAN.

Traffic simulation.After generating the RIBs for all routers, Hoyan
then simulates the forwarding process of all input flows by follow-

ing each router’s RIB in order to generate the forwarding paths for

each flow and further compute the traffic load for each link.

Similar to route simulation, Hoyan relies on the equivalence

class technique to reduce the prohibitively large number of flows

that need to be simulated. Specifically, for efficient computation

of ECs, we classify two flows into an EC if their longest-prefix

matches on all RIBs are the same; thus, all flows in an EC share the

same forwarding paths with one another, and Hoyan only needs to

simulate one flow for each EC [26]. In practice, the EC technique is

highly effective and can reduce the number of flows by two orders

of magnitude.

3.2 Distributed Simulation Framework
From the original simulation workflow, we see that the route/traffic

simulation is based on a per-prefix/flow basis, which offers a natural

opportunity to conduct the simulation in a distributed fashion by

splitting a simulation task into a set of subtasks, where each subtask

simulates a subset of inputs and is executed on a server. Since

traffic simulation relies on the results from route simulation (i.e.,
RIBs), how to reduce the dependency of traffic simulation subtasks

on route simulation subtasks remains a key challenge for high

performance. Below, we first describe the general framework for

route/traffic simulation, and then present a heuristic to reduce the

dependencies.

The general framework. Figure 3 shows the general workflow
of Hoyan’s distributed simulation framework. A simulation task

is assigned to a server (referred to as the master server below),

which prepares the subtasks by splitting the inputs into multiple

disjoint subsets, so that each subset of inputs can be independently

simulated as a subtask on aworking server. Thus, a route simulation

r1 = {prefix=10.0.0.0/8, aspath=[1000]}
r2 = {prefix=11.0.0.0/8, aspath=[1000]}
r3 = {prefix=40.0.0.0/24, aspath=[2000]}

r4 = {prefix=30.0.0.0/24, aspath=[2000]}
r5 = {prefix=40.0.0.0/24, aspath=[2000]}
r6 = {prefix=20.0.0.0/8, aspath=[1000]}

f1 = {dst=20.0.0.1, vol=1Gbps}
f2 = {dst=20.0.0.2, vol=2Gbps}
f3 = {dst=30.0.0.1, vol=3Gbps}
f4 = {dst=10.0.0.1, vol=4Gbps}
f5 = {dst=40.0.0.1, vol=5Gbps}
f6 = {dst=40.0.0.2, vol=6Gbps}

A
B

C

Figure 4: An example network with input routes at router B
and C, and input flows at router A.

subtask runs the simulation only for a subset of input routes and a

traffic simulation subtask runs the simulation only for a subset of

input flows. Each subtask’s input is uploaded to our cloud object

storage as a separate file.

After all subtasks are prepared, the master server pushes a mes-

sage for each subtask, including its metadata (e.g., reference to the

subtask’s input and the network snapshot), into a message queue

(MQ). Each message is then consumed by a working server listening

to theMQ, which then loads the corresponding subtask’s input from

the cloud storage, runs the subtask by applying the EC technique,

and updates the running status of the subtask on a database. Once

the subtask is finished, the working server writes the results into

the subtask’s result file on the cloud storage. For route simulation,

the result file contains the RIBs of all routers generated by the input

routes. For traffic simulation, the result file contains the forwarding

paths of the input flows and the traffic load of links (for the input

flows’ traffic volume).

Lastly, the master server keeps monitoring the status of all sub-

tasks. When all the subtasks are finished, the master server collects

their results if needed (e.g., aggregating each link’s traffic load

across subtasks). When a subtask fails, the master server resends a

message back to the MQ to rerun it.

Reducing subtask dependencies. To simulate the forwarding

paths of input flows in a traffic simulation subtask, a working

server needs to know the routes that each flow matches on each

router. A naive approach would load the resulted RIBs from all

route simulation subtasks. However, this approach incurs not only

high network I/O cost due to the large volume data transfer, but

also high memory footprint on the working server, reducing the

performance of simulation. Given a traffic and route simulation

subtask T and R respectively, we say T depends on R, if there exists

a route in R’s generated RIBs that an input flow in T can match.

Thus, if T does not depend on R, there would not be any route that

can match any flow in T, and the working server can safely ignore

(and thus not to load) R’s results without affecting the correctness

of the subtask T.

Based on this observation, we design a heuristic to split the input

routes and flows in order to reduce the traffic simulation subtasks’

dependencies on route simulation subtasks. The high-level idea

is to split the input routes and flows following the same ordering

(thus we call it ordering heuristic). Specifically, for route simulation,

we first order all input routes by the last IP address in the prefix

(which is done offline in the input route building service), and split

the routes into subsets following this order (routes with the same

prefix are in the same subset) in the subtask preparation phase. To

efficiently determine whether a future traffic simulation subtask

may depend on a route simulation subtask R, we compute the

range of IP addresses covered by the routes in R, and record it in the

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

1 2 4 6 8 10
Number of servers

010002000300040005000600070008000

Ru
n

tim
e

(s
) WAN+DCN

WAN

(a)

1 2 4 6 8 10
Number of servers

200
300
400
500
600
700
800

Ru
n

tim
e

(s
) baseline

ordering

(b)

0 20 40 60 80 100 120
Simulation time (s)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(c)

20 30 40 50 60 70 80 90 100
Number of loaded RIB files

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

random
ordering

(d)

Figure 5: Distributed simulation for 𝑂 (106) prefixes, 𝑂 (107) input routes, and 𝑂 (109) flows on WAN (𝑂 (103) routers) and
WAN+DCN (𝑂 (104) routers): (a) The run time for distributed route simulation; (b) The run time for distributed traffic simulation;
(c) The CDF of subtasks’ run time; (d) The CDF of loaded RIBs in traffic simulation.

subtask DB. Similarly, for traffic simulation, we order all input flows

by the destination addresses (which is done offline in the input flow

building service), and split them into subtasks following this order

(in the subtask preparation phase). To determine whether a traffic

simulation subtask T may depend on a route simulation subtask R,

we simply check if the range of all input flows’ destination address

in T overlaps with the pre-recorded range of R.

Example. Consider the example in Figure 4. For route simulation

of the input routes 𝑟1-𝑟6, we first order them and obtain the list [𝑟1,

𝑟2 𝑟6, 𝑟4, 𝑟3, 𝑟5]. Suppose we split them into two subtasks R1 and

R2, then R1 contains 𝑟1, 𝑟2 and 𝑟6, while R2 contains 𝑟4, 𝑟3 and 𝑟5,

based on the ordering of those routes. The range of R1 is simply

[10.0.0.0, 20.255.255.255], while that of R2 is [30.0.0.0, 40.0.0.255].

For the traffic simulation of flows 𝑓1-𝑓6, by ordering the flows based

on the destination addresses, we obtain the list [𝑓4, 𝑓1, 𝑓2, 𝑓3, 𝑓5,

𝑓6]. If we need to split the flows into two subtasks T1 and T2, then

T1 contains {𝑓4, 𝑓1, 𝑓2} and T2 contains {𝑓3, 𝑓5, 𝑓6}, based on the

ordering. Since the range of the destination addresses of {𝑓4, 𝑓1, 𝑓2}

is [10.0.0.1, 20.0.0.2], which only overlaps with the range [10.0.0.0,

20.255.255.255], T1 only needs the results from R1. Similarly, T2

only needs the results from R2.

End-to-end performance evaluation.Weevaluate the distributed

simulation framework using 10 servers (with 96-core 2.50GHz pro-

cessor and 791 GB RAM)
3
. The blue line in Figure 5(a) shows the

run time of distributed route simulation using various number of

working servers for our WAN. We split a route simulation task into

100 subtasks. The simulation time decreases with the increase in

the number of working servers, as expected. Particularly, when

using 10 servers, the simulation time is only 6.6 minutes, which is

∼5 times faster than the original centralized simulation (shown as

the blue line in Figure 1), and meets the run time requirement for

most changes on our WAN. To evaluate whether this framework

can scale to even larger sizes with DCNs, we further measure the

end-to-end simulation time on the WAN with all the core-layer

routers in our DCNs, which consists of 𝑂 (104) routers in total. As

shown in the red dashed line in Figure 5(a) labeled withWAN+DCN,

with such a hyper scale, Hoyan can still complete the simulation in

25 minutes on 10 servers (recall that original Hoyan failed the simu-

lation due to out-of-memory), which demonstrates the future-proof

scalability of the framework.

We run traffic simulation for 𝑂 (109) flows on our WAN by split-

ting the task into 128 subtasks (this number of subtasks is chosen

to evenly split the flows). The blue line with triangle markers in

3
Unfortunately, we cannot compare with other tools (e.g., Batfish [15]) on our WAN,

since they do not support some major vendors used on the WAN.

Figure 5(b) shows the end-to-end simulation time (with the order-

ing heuristic). When using 10 servers, Hoyan can complete the

simulation task in 3.6 minutes, which is 4 times faster than the

single-server setting and also meets our operational requirements.

For comparison, we further evaluate the simulation time by dis-

abling the ordering heuristic and loading all RIB files (referred to as

baseline). The simulation time increases 52% when using 10 servers,

showing the effectiveness of the heuristic.

Cause of the diminishing returns. In the distributed simulation

evaluation, the end-to-end simulation time did not decrease linearly

as the number of servers increases. This is mainly due to the highly

uneven simulation time requirements of each subtask. Figure 5(c)

plots the cumulative distribution function (CDF) of the run time of

all route simulation subtasks; the shortest subtask can be completed

within 4 seconds, while the longest takes >2 minutes. As a result,

balancing the workload to achieve linear scalability is difficult.

The root cause of the uneven simulation time is that the propa-

gation of input routes on our WAN differ significantly due to the

complicated policies deployed on the WAN. For example, routes

advertised from ISPs usually propagates only a few hops, while

routes originated from the data centers may propagate more than

10 hops. As future work, we plan to split the subtasks to achieve

more balanced run time by considering the different characteristics

of input routes.

Evaluation of subtask dependency reduction. To evaluate the

effectiveness of the ordering heuristic, we measured the loaded

RIB files for each traffic simulation subtask. For comparison, we

implemented another strategy that partitions flows into subtasks

based on a random order (referred to as random). Figure 5(d) shows

the CDF of loaded RIB files for our heuristic and the random strategy.

The ordering heuristic significantly reduces the number of RIB files

a working server needs to load. For > 80% working servers, it only

needs to load no more than one third of RIB files, while the highest

one loaded less than 40% of the total RIB files. In contrast, when

partition subtasks in a random order, each subtask still requires all

RIB files from the route simulation, same to the baseline strategy.

This is because that each subtask contains a large number of flows

(i.e., 𝑂 (107) flows per subtask); when partitioning the subtasks in

a random order, there is a high probability that some route in a

route simulation subtask may be required by a flow in the traffic

simulation subtask. Thus, each traffic simulation subtask depends

on all route simulation subtasks with high probability.

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

device vrf prefix communities localPref nexthop ...

A global 10.0.0.0/24 100:1 100 2.0.0.1 ...

A vrf1 20.0.0.0/24 100:1, 200:1 10 3.0.0.1 ...

B global 10.0.0.0/24 100:1 200 4.0.0.1 ...

device vrf prefix communities localPref nexthop ...

A global 10.0.0.0/24 100:1 300 2.0.0.1 ...

A vrf1 20.0.0.0/24 100:1, 200:1 10 3.0.0.1 ...

B global 10.0.0.0/24 100:1 300 4.0.0.1 ...

Figure 6: Example global RIBs: (Top) base (Bottom) updated.

4 Route Change Intent Specification Language
To improve the usability of Hoyan and avoid the error-pronemanual

checking process, we work with our operators and design a user-

friendly specification language RCL to express route change intents
for control plane changes. Below, we first introduce RCL using

an example, followed by its formal definition. We then present use

cases to specify real-world route change intents in RCL. Lastly, we
describe its implementation and evaluation.

4.1 RCL by Example
Consider a typical route attribute modification example, which

changes a set of routers’ route policies with the intent that on all

routers: (a) routes with prefix 10.0.0.0/24 should have local prefer-

ence 300 after the change, and (b) routes with other prefixes should

remain unchanged.

Global RIB abstraction. As shown above, a typical route change

intent needs to specify the relation between RIBs before and after

the change for multiple routers (e.g., all routers’ RIB remain un-

changed). To allow easy specification of intents covering multiple

routers and also match the natural abstraction of router RIBs (as

requested by our operators), we design RCL based on the global RIB
abstraction, which essentially collects all routes from all routers

into a single table, with the additional device and vrf fields to indi-

cate a route’s location. Figure 6 shows example global RIBs before

and after the change above, where there are two routers (A and B),

and A has two routes (in two VRFs) while B has one. For conve-

nience, we refer to the global RIB before/after the change as the

base/updated global RIB, respectively. For simplicity, throughout

this section, we use RIB to mean global RIB, and route for a row in

the global RIB.

Why not SQL? Given the global RIB abstraction, our first attempt

was to use the main stream database query language SQL as the

specification language. However, since SQL is not designed for

network change intent specifications, our operators found it not

intuitive and sometimes difficult to specify change intents. For

example, to specify the relation between the base and updated RIB,

one often needs to use the join operation (potentially after necessary

aggregation on the RIBs). However, as non-proficient SQL users, our

operators found it hard to correctly write the join condition, making

it difficult to correctly specify a wide range of change intents. As

another example, to use a query language for specification, one

often needs to select the routes that violate the intent, and then

asserts the selected results is empty. Our operators reported that this

abstraction was non-intuitive to them, especially for specifications

requiring multiple such assertions, such as some condition should

hold for all prefixes. Thus, we decided to work with our operators to

design a domain-specific specification language specially for route

Comparison ⊙ F > | ≥ | = | ≠ | < | ≤
Field Name 𝜒 F device | vrf

| prefix | nexthop | ...

Route Predicate 𝑝 F 𝜒 ⊙ 𝑣𝑎𝑙

| 𝜒 contains 𝑣𝑎𝑙

| 𝜒 matches 𝑟𝑒𝑔𝑒𝑥

| 𝜒 in {𝑣𝑎𝑙 ...}
| 𝑝1 (and | or | imply) 𝑝2
| not 𝑝

RIB Transformation 𝑟 F PRE | POST | 𝑟 ∥ 𝑝
RIB Aggregate Func 𝑓 F count()

| distCnt(𝜒) | distVals(𝜒)

RIB Evaluation 𝑒 F 𝑣𝑎𝑙 | {𝑣𝑎𝑙 ...}
| 𝑟 ⊲ 𝑓

| 𝑒1 (+ | − | × | /) 𝑒2

Intent 𝑔 F 𝑟1 (= | ≠) 𝑟2
| 𝑒1 ⊙ 𝑒2
| 𝑝 ⇒ 𝑔

| forall 𝜒: 𝑔

| forall 𝜒 in {𝑣𝑎𝑙 ...}: 𝑔

| 𝑔1 (and | or) 𝑔2
| not 𝑔

Figure 7: RCL Syntax

change intents. Our goal is to make it intuitive and user-friendly

for our operators to specify their intents, while still supporting a

wide range of intents in common change scenarios.

Specification in RCL. We first focus on intent (a). An intuitive

specification consists of two steps: (1) define the scope of target

routes with prefix 10.0.0.0/24, and (2) within this scope, assert that

each route in the updated RIB has local preference 300. In RCL, it
can be easily defined as follows.

prefix = 10.0.0.0/24 ⇒
POST ⊲ distVals(localPref) = {300}

Here, p ⇒ g is a guarded intent. It means that intent g holds

on the selected scope of the RIBs defined by p, corresponding to

the two steps above. Specifically, prefix = 10.0.0.0/24 is a route
predicate specifying that the scope of target routes are those with
prefix 10.0.0.0/24. POST ⊲ distVals(localPref)= {300} asserts that

in the updated RIB (in the selected scope), the set of distinct values

of local preference is {300}. Here, POST is a keyword referring to the

updated RIB and distVals(localPref) denotes the set of distinct

values of local preference.

For the global RIBs in Figure 6, only the first routes of A and B

have prefix 10.0.0.0/24 and will be examined further. Since in the

updated global RIB, both routes have local preference 300, (i.e., the
set of distinct values is {300}), they satisfy distVals(localPref)=

{300}; and thus the intent is satisfied.

Similarly, for the second intent, we define the scope of routes

using predicate prefix ≠ 10.0.0.0/24, and then specify that the

global RIBs do not change for the defined scope, as follows (PRE is

the keyword refering to the base global RIB).

prefix ≠ 10.0.0.0/24 ⇒ PRE = POST

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

5 10 15 20 25 30
Specification size

0
20
40
60
80

100
CD

F
(%

)

40 60 80 100 120 140
Verification time (s)

0
20
40
60
80

100

CD
F

(%
)

Figure 8: (Left) CDF of RCL specification sizes. (Right) CDF
of verification time of RCL specifications.

In Figure 6, since only the second route of A has a prefix different

from 10.0.0.0/24 and the route remains unchanged, the intent is

satisfied.

4.2 Formal Definitions of RCL
This section provides formal definitions for RCL. At a high level,

an intent in RCL evaluates base and updated RIBs to a Boolean

value, and the RIBs satisfy the intent when the evaluation result

is true. At its core, an intent either compares two entire RIBs or

imposes predicates on their aggregate values. To support the former,

RCL uses RIB transformation expressions (e.g., filtering a RIB for

targeted routes) to construct the exact RIB to compare. To support

the latter, RCL uses RIB evaluation expressions to evaluate the RIBs

to primitive values (e.g., count the number of routes in the updated

RIB), so that an intent can simply compare those values.

Figure 7 lists the syntax of RCL. We describe the major constructs

below and leave the detailed description, semantics, and verification

algorithms in Appendix A.

Route predicate: A route predicate 𝑝 maps a route to a Boolean

value. It allows comparison of a field to a primitive value (e.g.,
prefix = 10.0.0.0/24), as well as more complex tests such as the

inclusion test (e.g., communities contains 100:1), the membership

test (e.g., device in {A, B}), and regular expression matching (e.g.,
aspath matches ".* 123 .*"). Route predicates can also compose

using Boolean operations.

RIB transformation: RIB transformations allow one to transform

the base and updated RIBs to a single RIB. Keywords PRE and POST

denote the selection of the base and updated RIB, respectively. In

addition, the filter transformation (𝑟 ∥ 𝑝) returns a RIB containing

all routes from the transformed RIB (obtained from 𝑟) satisfying

predicate 𝑝 .

RIB evaluation: RIB evaluation computes a primitive value from

the base and updated RIBs, e.g., by applying an aggregate function

𝑓 . For example, POST ⊲ distCnt(nexthop) computes the number of

distinct next hops in the updated RIB. RCL also supports counting

the number of routes (count) and collecting distinct values of a field

(distVals).

Intent: an intent 𝑔 evaluates the base and updated RIBs to a

Boolean value. A simple intent compares two RIBs for equality (𝑟1
(= | ≠) 𝑟2), or performs arithmetic comparison of aggregate values

(𝑒1 ⊙ 𝑒2). Examples in §4.1 (𝑝 ⇒ 𝑔) illustrate guarded intents. In

addition, the grouping intent forall 𝜒 : 𝑔 specifies that 𝑔 holds on

all sub-RIBs grouped by each value in field 𝜒 . For example, forall

prefix: POST ⊲ distCnt(nexthop) = 2 specifies that in the updated

RIB, each prefix has exactly 2 distinct next hops. Its variant form,

forall 𝜒 in {𝑣𝑎𝑙 ...} : 𝑔, is similar, but limits the grouping to the

given values {𝑣𝑎𝑙 ...}.

4.3 Use Cases
We demonstrate real-world route change intent specifications in

RCL below.

Validating unchanged routes. One of the most common route

change intent types is that certain routes should not be changed. In

a real use case, operators plan to update the exiting point for traffic

from region A to a DC (with prefixes 10.0.0.0/24 and 20.0.0.0/24). It

should not change the exit point for traffic from region B (suppose

B has two routers, R1 and R2). This no-change intent is specified

below, where for all routers in {R1, R2} and prefixes in {10.0.0.0/24,

20.0.0.0/24}, there is no change of the next hops on all their best

routes.

forall device in {R1, R2}:

forall prefix in {10.0.0.0/24 , 20.0.0.0/24}:

routeType = BEST ⇒
PRE ⊲ distVals(nexthop) =

POST ⊲ distVals(nexthop)

Validating the success of route changes. A common type of

intents specifies the change effect on the updated RIB. In a real use

case, operators plan to change the route policy of a border router, in

order to block routes with community 100:1 from being advertised

to another region. To validate the success of this change, operators

wish to check that the routers R1 and R2 in that region would not

have any route containing community 100:1. This can be specified

as follows, which checks that for each of R1 and R2, their related

routes in the updated RIB do not contain community 100:1.

forall device in {R1, R2}:

POST ∥(communities has 100:1) ⊲ count () = 0

Checking conditional changes. This use case shows a common

conditional change pattern that aims to change all routes satisfying

some condition. In a real case, operators plan to re-route the traffic

whose paths are region A-region B to a new path region A-region

C. A straightforward specification is challenging because it is unre-

alistic to enumerate all exact prefixes with next hops to region B.

Instead, using RCL, one can implicitly specify those prefixes and

the corresponding intended changes using the logical implication

and forall, as shown below (R1 and R2 are the routers in region A,

1.2.3.4 and 10.2.3.4 are the IP addresses of region B and C, respec-

tively). Here, for every prefix, the imply rule allows the verifier to

check its next hops in the updated RIB only if its next hops in the

base RIB satisfy the condition (i.e., with the next hop to region B).

forall device in {R1, R2}:

forall prefix:

(PRE ⊲ distVals(nexthop) = {1.2.3.4}) imply

(POST ⊲ distVals(nexthop) = {10.2.3.4})

4.4 Implementation and Evaluation
Implementation. Our RCL implementation includes its parser,

intent verifier, and counter-example generator. The verification of

an RCL intent follows directly from its semantics. For unsatisfied

intents, RCL pinpoints the exact basic predicates that are violated

and outputs related routes.

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

A

B

C

A’s SR config

1.0.0.2

1.0.0.1

1.0.0.3

1Gbps

1Gbps

2Gbps

B’s BGP RIB
10.0.0.0/24 nexthop OUT
…

10.0.0.0/24 nexthop OUT
…

C’s BGP RIB

AS 100route 1.0.0.2/32, match dscp 5
 path 1.0.0.2

A’s real BGP RIB
10.0.0.0/24 nexthop B
…

A’s simulated BGP RIB
10.0.0.0/24 nexthop B
10.0.0.0/24 nexthop C
…

Figure 9: A real-world case demonstrating the root cause
analysis workflow.

Evaluation. Our operators use RCL on a daily basis for the specifi-

cation and verification of 𝑂 (10) changes each week, showing its

high usability. Since its deployment in 2024, it has been able to cover

most change verification requests that require route change intent

specifications (the unsupported intents require concatenation of

two RIBs; we plan to support it in the future). Below, we evaluate

RCL’s performance based on a dataset with 50 specifications written

by our operators in real-world change verification requests.

We quantify the size of an intent specification as the number of

internal (non-leaf) nodes in its syntax tree. The left figure in Fig-

ure 8 shows the CDF of the specifications’ size. RCL’s specifications
of real-world change intents are compact; more than 90% of the

specifications are smaller than 15 in its size.

The right figure in Figure 8 shows the CDF of the real-world

verification time of those specifications on our WAN (run with a

96-core 2.5GHz processor and 791 GB RAM). More than 80% of

them can be verified within 1 minute and all specifications can be

verified within minutes, showing that the verification of RCL is

efficient for production usage.

5 Accuracy Diagnosis Framework
In this section, we present Hoyan’s accuracy diagnosis framework,

including the workflows of automatic accuracy validation and root

cause analysis.

5.1 Automatic Accuracy Validation
On each day, Hoyan runs the route and traffic simulation based

on the network configurations, topology, and input routes/flows

collected from the monitoring systems. Then Hoyan compares the

simulated results with those from the monitoring systems and the

live network. For traffic simulation, Hoyan simply compares the

simulated traffic load on each link with the monitored traffic load

and reports the difference for all links. For route simulation, Hoyan

compares all simulated routes with those from the route moni-

toring system. However, given the fundamental principle of our

route monitoring (§2.1), the monitoring system may lack certain

important information, such as the ECMP routes for a prefix (only

the best route for a prefix is advertised), the next hop of a route

(some vendors may modify the next hop even for iBGP advertise-

ments [2]), and attributes that do not propagate via BGP, such as

the weight. Therefore, Hoyan also compares simulated routes with

the live network by using the show command for selected prefixes

(showing all routes is strictly prohibited in the live production net-

work due to the large number of routes). Specifically, it compares

routes for high-priority prefixes, such as /0 and /8 prefixes, and

those serving key businesses. This hybrid approach not only helped

Table 4: Identified issues during 09/2022 - 03/2023

Description Percentage
Missing routes 23.08%

Inconsistent topology 19.28%

Inaccurate traffic volume 11.54%

Input route building flaws 9.62%

Configuration parsing bugs 9.62%

Implementation flaws 7.69%

VSBs 5.77%

Unsupported features 3.85%

Nondeterministic convergence 1.92%

Unknown 7.69%

us identify implementation flaws in Hoyan, but also uncovered a

list of issues in our monitoring systems.

5.2 Root Cause Analysis
The original Hoyan developed a workflow for analyzing the root

causes of inaccuracy in route simulation [52]; we have further

enhanced it for analyzing traffic simulation results. However, an-

alyzing the root cause of inaccurate traffic simulation results is

particularly difficult due to the large scale of our WAN, the high

complexity of our system, and the wide variety of root causes.

As such, today we mainly rely on a hybrid approach combining

Hoyan’s automation with network experts’ domain-specific knowl-

edge.

This workflow consists of the following steps. (1) Identify the

links with a large difference between the simulated and the real

traffic load (e.g., > 10% of the link’s bandwidth). (2) Identify a

large-volume flow traversing that link. (3) Use Hoyan to build the

forwarding paths of that flow. (4) Compare each router’s forwarding

behavior on that flow starting from the router connected with the

identified link. (5) Network experts analyze the RIBs and configura-

tions for each router with different forwarding behavior to localize

the root cause. Essentially, our workflow attempts to analyze the

difference in forwarding for mis-simulated flows which may lead to

inaccurate traffic simulation. Step (1) and (2) help us identify such

a flow with high likelihood.

Case study.We show a real-world root cause analysis case in Fig-

ure 9. First, from automatic accuracy validation described above,

Hoyan reported a link A-B where the simulated traffic load was

significantly lower than the real one. Then we identified a large-

volume flow 𝑓 traversing A-B alone with its forwarding paths

(shown in green) based on Hoyan’s simulation results. Next, by

comparing the rules matching 𝑓 on routers B’s and A’s simulated

and real RIBs, Hoyan identified the different forwarding behavior

on router A: the simulated RIB of A has two equal-cost BGP routes

with next hops B and C for 𝑓 , respectively, while the real RIB of

A has only one with next hop B (shown in red dashed line). To

understand why the real RIB only had one route, we investigated

deeper into the real RIB and found that the BGP route to C had a

higher IGP cost than that of the route to B. Thus, only the one to B

was used for forwarding. However, by checking the IGP configura-

tion, we confirmed that the IGP costs of A-B and A-C were equal,

so they should have established two ECMP routes as shown in the

simulated RIB. Further investigation revealed that A configured

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

Table 5: Detected vendor-specific behaviors (VSBs)

VSB Description

missing route policy Whether route updates are accepted when no policy is defined.

undefined route policy Whether route updates are accepted when an undefined policy is applied.

default route policy Whether route updates are accepted when they match no explicit policy.

undefined policy filter Whether an undefined filter is treated as always matching or not.

no explict permit/deny Whether a route update is accepted when a matching policy has no explicit permit or deny action.

default BGP preference The default route preference attribute for iBGP and eBGP.

weight after redistribution Whether a default weight is set when routes are redistributed into BGP.

adding own ASN Whether a device’s own ASN is added after a policy overwrites the AS path.

common AS path prefix When aggregating routes without using AS-set, whether the common prefix is added to the AS path.

VRF export policy Whether a VRF’s export policy is applied to global iBGP routes that are leaked into VPNv4.

re-leaking routes Whether routes leaked into global VPNv4 from VRF should be re-leaked into another VRF based on RT.

redistributing /32 route
1

Whether /32 routes produced by direct connections can be redistributed.

sending /32 route to peer Whether /32 routes produced by direct connections can be sent to peers if redistribution is permitted.

IGP cost for SR Whether a route’s IGP cost is treated as 0 when its destination is reached via SR tunnel.

inheriting views Which configuration options are inherited in sub-views.

device isolation Whether devices are isolated through policies or specific configurations.

1
Configuring a non-/32 direct route on a device’s interface produces an extra /32 route, which has the following two VSBs.

an SR policy for traffic sending to B, which suggested there might

be a mis-simulated behavior for the interaction between BGP, IGP

and SR. After consulting A’s vendor, we finally located the root

cause: A’s vendor would change the IGP cost to 0 for SR enabled

destinations, so that A preferred the route via SR over the one via

IGP. We confirmed with other vendors that they would not change

IGP cost for SR policies. Thus, this was a VSB only for vendor A.

We further patched our simulation and fixed this issue.

5.3 Real-World Issues
The accuracy diagnosis framework helped us identify and fix a large

number of real-world issues affecting Hoyan’s accuracy. Table 4

shows the issues we found within 6 months. We categorize those

issues into the following three classes.

Monitoring data (row 1-3). Hoyan relies on our internal moni-

toring systems to provide network topology, configurations, and

input routes and flows. The accuracy of the monitoring data is the

key to the accurate simulation of Hoyan. However, our monitor-

ing systems may provide inaccurate data due to various practical

problems. For example, agents in the route monitoring system may

fail and stop collecting routes; the traffic monitoring system may

record inaccurate traffic volume for flows due to bugs in vendors’

Netflow implementations; the topology management system may

have topology data inconsistent with the live network due to fail-

ures in the network. We reported those issues to corresponding

teams and most of them have been fixed.

Input pre-processing (row 4-5). Hoyan pre-processes the moni-

toring data to build the input for simulation.When the pre-processing

is incorrect, the input to the simulation is also wrong. Two common

flaws of the pre-processing occur in parsing routers’ configurations

and building the input routes. First, Hoyan builds the model of each

router by parsing its configuration. However, due to the complexity

and variety of different vendors’ configuration formats, the imple-

mentation of parsing could be incomplete or incorrect, and thus

introducing incorrect router models. Second, Hoyan’s input route

building service uses a list of pre-defined rules to extract the input

routes injected into the network from all collected routes. Those

rules could be incorrect in some corner cases. For example, one rule

is to discard any route with an empty AS path. However, aggregate

routes from our data centers may not carry any AS numbers [3].

As a result, those routes would not be considered as input routes

mistakenly.

Simulation implementation (row 6-9). The last class of issues
are related to Hoyan’s simulation. First, implementation bugs/flaws

are inevitable in such a large system. For example, Hoyan’s early

implementation of regular expression matching for AS path was

flawed, leading to wrong route policy matching. Second, the wide

variety of vendors implement many network features differently.

We identified a large set of newly discovered VSBs and report

them in Table 5. Third, due to the rapid evolution of our network

infrastructure, Hoyan may not model newly introduced features,

especially given the large number of VSBs we need to investigate

and test. For example, the IS-IS for traffic engineering [28] feature

wasn’t supported by Hoyan until March 2023, leading to inaccuracy

in traffic simulation. Lastly, route simulation faces a fundamental

limitation on the convergence of BGP [8, 52], where Hoyan may

converge to a network state that is different to the live network.

6 Deployment Experience
Hoyan is used on a daily basis for checking the correctness of

changes on our WAN. For high-risk changes that require manual

design and experts’ review, Hoyan allows the operators to input the

change plan and run the verification via our web GUI. For low-risk

changes which are executed automatically, Hoyan is integrated in

the automation and receives verification requests via our REST API.

Each week, Hoyan supports𝑂 (10) and𝑂 (100) times manually and

automatically triggered change verification requests, respectively.
4

In the past years, Hoyan has identified 𝑂 (10) change risks each
year, some of which could lead to severe incidents. Thanks to

Hoyan, those risks are detected and prevented in advance; the

4
We omit absolute numbers for confidential reasons.

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Table 6: The root causes and percentages of change risks
detected by Hoyan in 2024.

Root cause Percentage
Incorrect commands 37.5%

Change plan design flaws 34.4%

Existing misconfiguration 15.6%

Topology issues 6.3%

Others 6.2%

misconfiguration-caused network incident has been reduced from

56% to 5% (the remaining is due to out-of-the-scope misconfigura-

tions such as MTU.).

6.1 Case Study
Table 6 summarizes the root causes and the corresponding percent-

ages of the risks identified by Hoyan in 2024. One of the major

root causes were the incorrect commands used in change plans,

including: (1) typos in the names of routers to be changed or wrong

command formats used for a different vendor, which would cause

the change to be ineffective on some routers; (2) specifying wrong

prefix masks and communities, which would lead to unintended

routing behavior or even incidents after the change; (3) typos in the

names of community filters and prefix lists, which would trigger

unexpected vendor-specific behavior due to referencing undefined

definitions. The second major type of risks are caused by the de-

sign flaws in the change plans, such as setting inappropriate IS-IS

costs, incorrect preference, MED values for BGP routes, which

would cause unintended traffic steering. Another root cause were

the existing misconfiguration on routers that were not planned to

be changed, but a change on a relevant router would trigger the

misconfigured behavior and cause network incidents. This type of

risks are hard to be detected without Hoyan, since the design of the

change plan is correct and the existing misconfiguration does not

cause any unexpected behavior before the change. See below for a

real case study. The final root cause were the topology issues in the

network, such as failed routers and links, due to which the change

would cause unexpected traffic overloading. Below, we show two

real cases to highlight that Hoyan significantly helps our operators

to identify complex change plan risks, which could be hard to be

detected manually.

Shifting traffic to newWAN. Shifting traffic to the next-generation

WAN is one of the most risky changes on our network. Our op-

erators used Hoyan to ensure the correctness of the change and

have prevented several severe change risks. Figure 10(a) shows a

real risk Hoyan detected. In this case, our operators intended to

shift the traffic from DC to 1.0.0.0/24 to traverse the new WAN via

router B instead of router A in the old WAN. Before this change,

the operators pre-installed the ingress route policy on M1 and M2

with two policy nodes (shown as node 10 and node 20), where node

10 denied all routes advertised from B and node 20 permitted the

route to 1.0.0.0/24 advertised from B (denoted as route R below).

In the change, the operator would delete node 10 so that route R

would be permitted and used for routing given its higher preference.

Our operators used Hoyan to check whether (1) route R would be

installed as the best route on both M1 and M2, and (2) the traffic can

be successfully shifting to B after the change. Hoyan then ran the

M2’s config

AS 200

DC

M1’s config

M1

AS 100

A B
AS 300

… …

M2

1.0.0.0/24

route-policy BtoM
 node 10
 deny
 node 20
 if match prefix 1.0.0.0/24
 permit
 …

static 1.0.0.0/8 A
route-policy BtoM
 node 10
 deny
 …

(a) Shifting traffic to newWAN.

C’s config

ISP2

C

D

RR…

ISP1

route-policy CtoRR
 if match ip-prefix PLv6
 apply local-pref 300
 …

(b) Changing ISP exits.

Figure 10: Real-world change risks detected by Hoyan.

route and traffic simulation for the changed network. By checking

the intents against the RIBs and traffic paths, Hoyan found viola-

tions. First, only M2 installed route R while M1 did not have any

route to 1.0.0.0/24. Second, the traffic from M1 to 1.0.0.0/24 would

be forwarded through the path M1-A-M2-B (shown in red), causing

the link A-M2 to be overloaded. The root cause of this problem

was that the pre-installed route policy on M1 missed node 20. As

a result, after the change, M1 would still deny route R. However,

after R was installed on M2, it would be advertised from M2 to

A, which then used it to forward traffic to M2. Since M1 and M2

were in the same AS, A would not further advertise the route to

M1 due to AS loop prevention; M1 then used its pre-configured

default route 1.0.0.0/8 to forward traffic to A. This case is hard to

be identified without Hoyan, since the misconfiguration was intro-

duced before the change, and it had no impact on the network’s

forwarding behavior. Fortunately, Hoyan was able to identify the

risk and avoided a severe incident.

Changing ISP exits. In another scenario shown in Figure 10(b),

our operator intended to change the ISP exit for a list of IPv6 prefixes

from ISP1 to ISP2. This change would update the route policy on

the border router C to apply higher local preferences on the target

prefixes before advertising them to the router reflector RR in the

region. The operator used Hoyan to check that the next hops of

those prefixes should be changed from D to C on all routers in

this region, and traffic to those prefixes would be steered to ISP2.

Hoyan successfully verified the intent; but surprisingly, Hoyan

also found that the links from C to ISP2 would be overloaded. By

added another intent that routes of other prefixes should remain

unchanged, Hoyan identified a violation that the next hop for other

IPv6 prefixes were also changed to Cmistakenly. The root cause was

that the operator used the wrong command ‘ip-prefix’ to specify

the IPv6 prefix list, instead of the correct one ‘ipv6-prefix’. The

behavior of this vendor would only check IPv4 prefixes after the

‘ip-prefix’ command, and permit all IPv6 prefixes by default. As a

result, all IPv6 prefixes received by C would have the higher local

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

preference and resulting in unexpectedly large traffic going through

C. After the command was fixed, Hoyan can verify the intents and

the change was then implemented without triggering any issues.

6.2 Other Use Cases of Hoyan
Hoyan is also used in large scale for the following scenarios.

Daily configuration auditing. A large set of use cases of Hoyan

is to audit the correctness of routers’ live configurations. Each day,

Hoyan runs the simulation based on the routers’ live configuration.

Then Hoyan executes dozens of auditing tasks on the simulated

RIBs and traffic loads, each defining a high-level invariant that the

network should hold, such as the prefixes on all routers in a router

group should be the same. Hoyan has successfully detected tens of

high-risk live configuration problems, such as inconsistent route

policy configurations across different vendors.

Fault-tolerance checking. Our WAN is designed to tolerant a

certain degree of router/link failures; Hoyan is used to check if

there exists any fault-tolerance issues on the live network. The

fault-tolerance checking uses Hoyan’s 𝑘-failure verification capabil-

ities [27, 52], which can efficiently check if a property holds when

no more than 𝑘 routers/links have failed. Through the checking,

Hoyan has identified ∼5 fault-tolerance problems, due to causes

such as misconfiguration, topology design flaws, and unexpected

link maintenance.

Post-change validation.Anunexpected use of Hoyan has emerged

during the deployment of our next-generationWAN. Since the next-

generation WAN introduces new vendors and network features,

our operators use Hoyan’s simulation results as ground truth to

validate if there is any hardware/software issues in the vendors’

implementation. Particularly, after a network change is executed,

operators run Hoyan’s simulation based on the update network

and input routes/flows, and compare the results with those on the

live network. Since the validation happens after the change is exe-

cuted, Hoyan must complete the simulation in minutes, such that

our operators can roll back the change in time when there is any

inconsistency. Without the high accuracy and efficiency of Hoyan,

this use case would not be possible.

In addition to the use cases above, we plan to deploy Hoyan for

other scenarios such as network design validation, runtime change

verification (i.e., verifying the correctness of a change plan during

its execution), and traffic engineering validation (i.e., checking if the
proposed TE implementation satisfies the high-level TE objective).

7 Lessons and Opportunities
Misconfiguration localization. In the past few years, Hoyan

has proven to be useful for checking the correctness and detect-

ing intent violations of network changes. However, localizing the

misconfiguration that causes the violation still relies on experts’

manual analysis, which is hard and time-consuming for complex

violations (e.g., unexpected flow paths), sometimes resulting in

delaying a planned change for days. We leave to future work on

automatically localizing the misconfiguration for intent violations.

Correct specification of change intents. Our change intent lan-
guages were specifically designed to simplify the writing of formal

specifications, thereby reducing the likelihood of invalid specifica-

tions. However, operators may occasionally write incorrect spec-

ifications, leading to wrong verification results. In one such case,

our operator correctly specified the intended change effects of a

change plan, but missed the critical “others do not change” spec-

ification. As a result, although Hoyan verified the specification,

the change plan still caused unexpected route changes and had to

roll back consequently. Today, we use heuristics to aid the writing

of specifications, e.g., by adding a default “others do not change”

specification. We believe a promising approach may use more in-

telligent methods such as LLM to guarantee the completeness and

correctness of specifications [31].

Automatic testing framework for accuracy. Accurately simulat-

ing the network’s behavior is the foundation of Hoyan. Therefore,

we have invested a significant amount of time and effort to ensure

the accuracy of Hoyan. While our accuracy diagnosis framework

facilitate the process to some extent, many key analysis steps still

require manual intervention as discussed in §5. Thus, we believe an

automatic testing framework that can test the difference between

Hoyan and vendor’s implementation [32] and analyze the root

cause of the difference would be invaluable to ensure the accuracy

of a large-scale network verification system like Hoyan.

8 Related Work
Control-plane verification. Many systems were proposed to ver-

ify the control plane [4, 6, 13, 15, 17, 18, 22, 37, 39, 41, 46, 48, 52, 56]

Especially, Brown et al. shared lessons from Batfish’s evolution [9].

Hoyan faces different challenges from Batfish, such as the scalability

challenge on production WAN. Tang et al. proposed a modular way

to improve the efficiency of control plane verification [44], which

is different from our approach based on distributed simulation.

Data-plane and traffic load verification. There is a rich literature
on data plane verification [7, 10, 12, 19–21, 23, 24, 30, 36, 38, 42, 45,

51, 53–55] and traffic load verification [26, 27, 43]. Specially, recently

proposed tool Tulkun [49] runs data plane verification on routers

for high efficiency, which is different from our approach based on

distributed simulation.

Formal languages for networks. There were many formal lan-

guages proposed for specification of a single network snapshot [5, 7,

16, 33, 34]. Rela [50] specifies the relation of two network snapshots.

Our RCL shares similar ideas with Rela, but focus on route change

intents.

9 Conclusion
This paper presents the new evolution of Hoyan on addressing the

emerging challenges on scalability, usability, and accuracy, based

on our distributed simulation, the RCL route change intent speci-

fication language, and our accuracy diagnosis framework. Hoyan

is used in Alibaba Cloud on a daily basis and prevented 𝑂 (10)
incidents each year, helping reduce the misconfiguration-caused

network incidents from 56% to 5%.

Acknowledgments
We acknowledge all teams within Alibaba Cloud that contributed

to the success of Hoyan, including Network Automation, Network

Operation, and Network Systems, to name a few. We thank our

shepherd, Mina Tahmasbi Arashloo, and the SIGCOMM reviewers

for their insightful comments. Ennan Zhai is the corresponding

author.

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] [n. d.]. Alibaba Cloud’s Object Storage Service (OSS). https://www.alibabacloud.

com/en/product/object-storage-service..

[2] [n. d.]. Understand Next Hop Set in iBGP Advertisements on Nexus NX-OS vs

Cisco IOS. https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-

protocol-bgp/213402-understand-next-hop-set-in-ibgp-advertis.html..

[3] [n. d.]. Understand Route Aggregation in BGP. https://www.cisco.com/c/en/us/

support/docs/ip/border-gateway-protocol-bgp/5441-aggregation.html..

[4] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Associ-

ation, Santa Clara, CA, 201–219. https://www.usenix.org/conference/nsdi20/

presentation/abhashkumar

[5] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic foundations

for networks. In 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL).

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (Los Angeles, CA,

USA) (SIGCOMM ’17). Association for Computing Machinery, New York, NY,

USA, 155–168. doi:10.1145/3098822.3098834

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.

2016. Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level

Configurations. In Proceedings of the 2016 ACM SIGCOMM Conference (Florianop-
olis, Brazil) (SIGCOMM ’16). Association for Computing Machinery, New York,

NY, USA, 328–341. doi:10.1145/2934872.2934909

[8] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Mahajan, and

Todd Millstein. 2023. Lessons from the evolution of the Batfish configuration

analysis tool. In Proceedings of the ACM SIGCOMM 2023 Conference (, New York,

NY, USA,) (ACM SIGCOMM ’23). Association for Computing Machinery, New

York, NY, USA, 122–135. doi:10.1145/3603269.3604866

[9] Matt Brown, Ari Fogel, Daniel Halperin, Victor Heorhiadi, Ratul Mahajan, and

Todd Millstein. 2023. Lessons from the evolution of the Batfish configuration

analysis tool. In Proceedings of the ACM SIGCOMM 2023 Conference. 122–135.
[10] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. 2017. Robust Validation

of Network Designs under Uncertain Demands and Failures. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 347–362. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/chang

[11] Benoît Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954.

doi:10.17487/RFC3954

[12] Mihai Dobrescu and Katerina Argyraki. 2014. Software dataplane verification. In

USENIX Conference on Networked Systems Design and Implementation.
[13] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis

Using a Succinct Control Plane Representation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX Association,

Savannah, GA, 217–232. https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/fayaz

[14] Mark Fedor, Martin Lee Schoffstall, James R. Davin, and Dr. Jeff D. Case. 1990.

Simple Network Management Protocol (SNMP). RFC 1157. doi:10.17487/RFC1157

[15] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network

Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). USENIXAssociation, Oakland, CA, 469–483. https:

//www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel

[16] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: a network program-

ming language. In 16th ACM SIGPLAN International Conference on Functional
Programming (ICFP).

[17] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-

jan. 2016. Fast Control Plane Analysis Using an Abstract Representation. In

Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 300–313.

doi:10.1145/2934872.2934876

[18] Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and DavidWalker. 2019. Efficient

Verification of Network Fault Tolerance via Counterexample-Guided Refinement.

In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer

International Publishing, Cham, 305–323.

[19] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time

Network Verification Using Atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,

MA, 735–749. https://www.usenix.org/conference/nsdi17/technical-sessions/

presentation/horn-alex

[20] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhar-

gava, Paul-Andre C Bissonnette, Shane Foster, AndrewHelwer, Mark Kasten, Ivan

Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,

Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating datacenters

at scale. In Proceedings of the ACM Special Interest Group on Data Communication
(Beijing, China) (SIGCOMM ’19). Association for Computing Machinery, New

York, NY, USA, 200–213. doi:10.1145/3341302.3342094

[21] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Charlie

Kaufman. 2014. Automated Analysis and Debugging of Network Con-
nectivity Policies. Technical Report MSR-TR-2014-102. Microsoft.

https://www.microsoft.com/en-us/research/publication/automated-analysis-

and-debugging-of-network-connectivity-policies/

[22] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Millstein, and

George Varghese. 2020. GRooT: Proactive Verification of DNS Configurations. In

Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (Virtual Event, USA) (SIGCOMM ’20). Association
for Computing Machinery, New York, NY, USA, 310–328. doi:10.1145/3387514.

3405871

[23] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). USENIX Association, San Jose,

CA, 113–126. https://www.usenix.org/conference/nsdi12/technical-sessions/

presentation/kazemian

[24] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten

Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
USENIX Association, Lombard, IL, 15–27. https://www.usenix.org/conference/

nsdi13/technical-sessions/presentation/khurshid

[25] J Leddy, D Voyer, S Matsushima, and Z Li. 2021. Rfc 8986: Segment routing over

ipv6 (srv6) network programming.

[26] Ruihan Li, Fangdan Ye, Yifei Yuan, Ruizhen Yang, Bingchuan Tian, Tianchen

Guo, Hao Wu, Xiaobo Zhu, Zhongyu Guan, Qing Ma, Xianlong Zeng, Chenren

Xu, Dennis Cai, and Ennan Zhai. 2024. Reasoning about Network Traffic Load

Property at Production Scale. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). USENIX Association, Santa Clara, CA,

1063–1082. https://www.usenix.org/conference/nsdi24/presentation/li-ruihan

[27] Ruihan Li, Yifei Yuan, Fangdan Ye, Mengqi Liu, Ruizhen Yang, Yang Yu, Tianchen

Guo, Qing Ma, Xianlong Zeng, Chenren Xu, Dennis Cai, and Ennan Zhai. 2024.

A General and Efficient Approach to Verifying Traffic Load Properties under

Arbitrary 𝑘 Failures. In Proceedings of the ACM SIGCOMM 2024 Conference. 228–
243.

[28] Tony Li and Henk Smit. 2008. IS-IS Extensions for Traffic Engineering. RFC 5305.

doi:10.17487/RFC5305

[29] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu, Lei

Zhou, Qing Ma, and Ming Zhang. 2018. Automatic life cycle management of

network configurations. In Workshop on Self-Driving Networks (SelfDN).
[30] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and

George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499–512. https://www.usenix.org/conference/nsdi15/

technical-sessions/presentation/lopes

[31] LezhiMa, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. 2024. SpecGen: Automated

Generation of Formal Program Specifications via Large Language Models. arXiv
preprint arXiv:2401.08807 (2024).

[32] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal (1998).

[33] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker. 2012. A

compiler and run-time system for network programming languages. In 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

[34] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. 2013. Composing Software Defined Networks. In 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[35] Sonia Panchen, Neil McKee, and Peter Phaal. 2001. InMon Corporation’s sFlow:

A Method for Monitoring Traffic in Switched and Routed Networks. RFC 3176.

doi:10.17487/RFC3176

[36] Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, and Scott

Shenker. 2015. New Directions for Network Verification. In 1st Summit on Ad-
vances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishna-

murthi, Benjamin S. Lerner, and Greg Morriset (Eds.). Schloss Dagstuhl – Leibniz-

Zentrum für Informatik, Dagstuhl, Germany, 209–220. doi:10.4230/LIPIcs.SNAPL.

2015.209

[37] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.

2017. Verifying Reachability in Networks withMutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 699–718. https://www.usenix.org/conference/nsdi17/

technical-sessions/presentation/panda-mutable-datapaths

[38] Solal Pirelli, Akvilė Valentukonytė, Katerina Argyraki, and George Candea. 2022.

Automated Verification of Network Function Binaries. In USENIX Symposium on
Networked Systems Design and Implementation.

[39] B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous system

with C-BGP. IEEE Network 19, 6 (2005), 12–19. doi:10.1109/MNET.2005.1541716

https://www.alibabacloud.com/en/product/object-storage-service
https://www.alibabacloud.com/en/product/object-storage-service
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/213402-understand-next-hop-set-in-ibgp-advertis.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/213402-understand-next-hop-set-in-ibgp-advertis.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5441-aggregation.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/5441-aggregation.html
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/3603269.3604866
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chang
https://doi.org/10.17487/RFC3954
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/fayaz
https://doi.org/10.17487/RFC1157
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://doi.org/10.1145/2934872.2934876
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/horn-alex
https://doi.org/10.1145/3341302.3342094
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://www.microsoft.com/en-us/research/publication/automated-analysis-and-debugging-of-network-connectivity-policies/
https://doi.org/10.1145/3387514.3405871
https://doi.org/10.1145/3387514.3405871
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/kazemian
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi24/presentation/li-ruihan
https://doi.org/10.17487/RFC5305
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://doi.org/10.17487/RFC3176
https://doi.org/10.4230/LIPIcs.SNAPL.2015.209
https://doi.org/10.4230/LIPIcs.SNAPL.2015.209
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://doi.org/10.1109/MNET.2005.1541716

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

[40] John Scudder, Rex Fernando, and Stephen Stuart. 2016. BGP Monitoring Protocol

(BMP). RFC 7854. doi:10.17487/RFC7854

[41] Samuel Steffen, TimonGehr, Petar Tsankov, Laurent Vanbever, andMartin Vechev.

2020. Probabilistic Verification of Network Configurations. In Proceedings of the
Annual Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (Virtual Event, USA) (SIGCOMM ’20). Association for Computing

Machinery, New York, NY, USA, 750–764. doi:10.1145/3387514.3405900

[42] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-

Net: Scalable symbolic execution for modern networks. In Proceedings of the 2016
ACM SIGCOMM Conference (Florianopolis, Brazil) (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 314–327. doi:10.1145/2934872.

2934881

[43] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya

Akella. 2020. Detecting network load violations for distributed control planes.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing

Machinery, New York, NY, USA, 974–988. doi:10.1145/3385412.3385976

[44] Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Jayaraman, Tejas Patil, Todd

Millstein, and George Varghese. 2023. Lightyear: Using modularity to scale bgp

control plane verification. In Proceedings of the ACM SIGCOMM 2023 Conference.
94–107.

[45] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,

Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen

Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and automatically updating

in-network ACL configurations with intent language. In Proceedings of the ACM
Special Interest Group on Data Communication (Beijing, China) (SIGCOMM ’19).
Association for Computing Machinery, New York, NY, USA, 214–226. doi:10.

1145/3341302.3342088

[46] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich, Mooly Sagiv,

Scott Shenker, and Sharon Shoham. 2016. Some Complexity Results for Stateful

Network Verification. In Tools and Algorithms for the Construction and Analysis
of Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 811–830.

[47] DanielWalton, Alvaro Retana, Enke Chen, and John Scudder. 2016. Advertisement

of Multiple Paths in BGP. RFC 7911. doi:10.17487/RFC7911

[48] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer

Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. 2012. FSR: Formal

Analysis and Implementation Toolkit for Safe Interdomain Routing. IEEE/ACM
Transactions on Networking 20, 6 (2012), 1814–1827. doi:10.1109/TNET.2012.

2187924

[49] Qiao Xiang, Chenyang Huang, Ridi Wen, Yuxin Wang, Xiwen Fan, Zaoxing Liu,

Linghe Kong, Dennis Duan, Franck Le, and Wei Sun. 2023. Beyond a Centralized

Verifier: Scaling Data Plane Checking via Distributed, On-Device Verification. In

Proceedings of the ACM SIGCOMM 2023 Conference. 152–166.
[50] Xieyang Xu, Yifei Yuan, Zachary Kincaid, Arvind Krishnamurthy, Ratul Maha-

jan, David Walker, and Ennan Zhai. 2024. Relational Network Verification. In

Proceedings of the ACM SIGCOMM 2024 Conference. 213–227.
[51] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. 2020.

Aragog: Scalable runtime verification of shardable networked systems. In USENIX
Conference on Operating Systems Design and Implementation.

[52] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo

Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng She, Qing

Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.

2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a

Global WAN. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication (Virtual Event, USA) (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 599–614. doi:10.

1145/3387514.3406217

[53] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik Subramanian, Kartik Hans,

Soudeh Ghorbani Khaledi, and Aditya Akella. 2020. Liveness verification of

stateful network functions. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI).

[54] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa,

Katerina Argyraki, and George Candea. 2019. Verifying software network func-

tions with no verification expertise. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles.

[55] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George

Candea. 2017. A formally verified NAT. In ACM SIGCOMM (SIGCOMM).
[56] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian,

Bo Song, and Haoliang Zhang. 2020. Check before You Change: Preventing

Correlated Failures in Service Updates. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). USENIX Association, Santa Clara,

CA, 575–589. https://www.usenix.org/conference/nsdi20/presentation/zhai

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A RCL Formalization
This section presents the complete formalization of RCL syntax

(§A.1) and semantics (§A.2). Table 7 summarizes notations used in

this section.

A.1 RCL Syntax
Figure 7 defines the syntax for our specification language, RCL. We

explain each of its sub-language in detail below.

Route predicate: A route predicate 𝑝 maps a route to a Boolean

value, which is commonly used to specify the scope of targeted

routes. A route contains values at each field 𝜒 .

• 𝜒⊙𝑣𝑎𝑙 represents binary comparison, e.g., prefix = 10.0.0.0/24.

• 𝜒 contains 𝑣𝑎𝑙 denotes inclusion test, e.g., communities contains

100:1. It specifies that the field 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 is a set and that it

contains the value 100:1.

• 𝜒 in {𝑣𝑎𝑙 ...} denotes set membership test, e.g., device in {A, B}.

It specifies that the value of field 𝑑𝑒𝑣𝑖𝑐𝑒 is either A or B.

• 𝜒 matches 𝑟𝑒𝑔𝑒𝑥 denotes regular expression matches of a string

field. For example, aspath matches ".* 123 .*" specifies that

the field 𝑎𝑠𝑝𝑎𝑡ℎ is a string and that it contains the substring 123.

• RCL also allows Boolean compositions of predicates.

RIB transformation: RIB transformations map a pair of RIBs, i.e.,
the base and updated RIBs, to a single RIB. The results are used for

specifying RIB comparisons in the intent or for further aggregate

value evaluation.

• PRE and POST are selector functions that refer to the base and

updated RIB, respectively. For example, PRE = POST specifies that

the updated RIB must be identical to the base one.

• 𝑟 ∥ 𝑝 denotes the filter transformation. It returns a RIB contain-

ing all routes from (the returned RIB of) 𝑟 satisfying the predicate

𝑝 . For example, 𝑟 ∥device = A allows operators to focus their

intents on routes associated with device A only.

RIB aggregate func: aggregate functions map a RIB to a primi-

tive value or a set of primitive values. They greatly expand RCL’s
expressiveness in specifying route changes.

• count returns the number of routes in a RIB.

• distCnt(𝜒) returns the number of distinct values in field 𝜒 . This

is useful, e.g., when specifying the number of distinct nexthops

using distCnt(nexthop).

• distVals(𝜒) returns the set of distinct values in field 𝜒 . For ex-

ample, distVals(nexthop) denotes the exact set of nexthops for

further comparison.

RIB evaluation: Given a pair of RIBs, RIB evaluation expressions

compute aggregate values by applying aggregate functions or per-

forming arithmetic operations. They evaluate to concrete values of

string type, numeric type, or a set composed of these types.

• Literal values, such as 𝑣𝑎𝑙 and {𝑣𝑎𝑙 ...}, can be directly used as RIB
evaluations. They evaluate to values represented by themselves.

https://doi.org/10.17487/RFC7854
https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/2934872.2934881
https://doi.org/10.1145/2934872.2934881
https://doi.org/10.1145/3385412.3385976
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.1145/3341302.3342088
https://doi.org/10.17487/RFC7911
https://doi.org/10.1109/TNET.2012.2187924
https://doi.org/10.1109/TNET.2012.2187924
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://www.usenix.org/conference/nsdi20/presentation/zhai

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Table 7: Summary of RCL notations.

Description

𝑣𝑎𝑙, 𝑣 Concrete values of numeric or string type

{𝑣𝑎𝑙 ...}, {𝑣1 ...𝑣𝑛 } Sets of concrete values

𝑀,𝑁 RIBs that an intent (or sub-intent) is specified on

|𝑀 | , | {𝑣𝑎𝑙 ...} | Computes the size of a RIB (number of routes) or a set

𝜏 A route in a RIB

𝜒 A filed name in the RIB, e.g., device, vrf, prefix, etc.
𝜏𝜒 The value at field 𝜒 in route 𝜏

re_match(𝑠, 𝑟𝑒𝑔𝑒𝑥) Matches a string 𝑠 against regular expression 𝑟𝑒𝑔𝑒𝑥 . It

returns a Boolean value.

filter𝑝 (𝑀)
Filters a RIB by the route predicate 𝑝 . It returns a new

RIB consisting of {𝜏 ∈ 𝑀 | ⟦𝑝⟧(𝜏) = 𝑡𝑟𝑢𝑒 }

⟦𝑝⟧(𝜏) Evaluation of a route predicate on𝜏 . It returns a Boolean

value.

⟦𝑟⟧(𝑀,𝑁) Evaluation of a RIB transformation. It returns a RIB.

⟦𝑒⟧(𝑀,𝑁) Evaluation of RIB aggregate values. It returns either a

string, a number, or a set composed of these types.

⟦𝑔⟧(𝑀,𝑁) Evaluation of intent. It returns a Boolean.

• 𝑟 ⊲ 𝑓 applies an aggregate function 𝑓 after performing RIB trans-

formation 𝑟 . For example, POST ⊲ distCnt(nexthop) computes the

number of unique nexthops in the updated RIB.

• 𝑒1 (+ | − | × | /) 𝑒2 denotes arithmetic operations on numeric

RIB evalutions.

Intent: finally, an intent𝑔 is the top-level construct for specifying
route changes. It evaluates to a Boolean value.

• 𝑟1 (= | ≠) 𝑟2 checks the equality (or inequality) of two entire RIBs.

This is useful, e.g., when comparing the base and updated RIBs.

• 𝑒1 ⊙ 𝑒2 compares the results of RIB evaluations. For example,

POST⊲ distCnt(nexthop) = 8 specifies that the number of distinct

nexthops in the updated RIB must equal 8.

• 𝑝 ⇒ 𝑔 denotes a guarded intent. It narrows the scope of intent 𝑔

to only target routes from the base and updated RIBs satisfying

predicate 𝑝 . For example, prefix = 10.0.0.0/24⇒ 𝑔 limits the

intent’s scope to routes with 𝑝𝑟𝑒 𝑓 𝑖𝑥 10.0.0.0/24.

• forall 𝜒 : 𝑔 specifies the intent on individual sub-groups of the

base and updated RIBs. Within each of the sub-group, routes

contain identical values at field 𝜒 . For example, forall prefix:

POST ⊲ distCnt(nexthop) = 2 specifies that in the updated RIB,

each 𝑝𝑟𝑒 𝑓 𝑖𝑥 is associated with exactly 2 distinct nexthops.

• forall 𝜒 in {𝑣𝑎𝑙 ...} : 𝑔 is similar to the previous rule, but provides

more flexibility. It allows operators to specify the set of values

at field 𝜒 to consider. Routes containing other values at field 𝜒

are out of scope regarding intent 𝑔.

• 𝑔1 (and | or) 𝑔2 and not 𝑔1 denote the Boolean composition of

sub-intents.

A.2 RCL Semantics
Figure 11 illustrates evaluation rules for different RCL expressions.

On the high-level, a route change intent either compares entire

RIBs (computed by RIB transformations 𝑟), specifies a predicate

over aggregate values (computed by RIB evaluations 𝑒), or composes

sub-intents. We explain them in further detail below.

Route predicate. A route predicate defines a function mapping

routes to Boolean values.

(a) Route Predicate 𝑝

⟦𝜒 ⊙ 𝑣𝑎𝑙⟧(𝜏) ≜ 𝜏𝜒 ⊙ 𝑣𝑎𝑙

⟦𝜒 contains 𝑣𝑎𝑙⟧(𝜏) ≜ 𝑣𝑎𝑙 ∈ 𝜏𝜒
⟦𝜒 in {𝑣𝑎𝑙 ...}⟧(𝜏) ≜ 𝜏𝜒 ∈ {𝑣𝑎𝑙 ...}

⟦𝜒 matches 𝑟𝑒𝑔𝑒𝑥⟧(𝜏) ≜ re_match(𝜏𝜒 , 𝑟𝑒𝑔𝑒𝑥)
⟦𝑝1 and 𝑝2⟧(𝜏) ≜ ⟦𝑝1⟧(𝜏) ∧ ⟦𝑝2⟧(𝜏)
⟦𝑝1 or 𝑝2⟧(𝜏) ≜ ⟦𝑝1⟧(𝜏) ∨ ⟦𝑝2⟧(𝜏)

⟦𝑝1 imply 𝑝2⟧(𝜏) ≜ ¬⟦𝑝1⟧(𝜏) ∨ ⟦𝑝2⟧(𝜏)
⟦not 𝑝1⟧(𝜏) ≜ ¬⟦𝑝1⟧(𝜏)

(b) RIB Transformation 𝑟

⟦PRE⟧(𝑀,𝑁) ≜ 𝑀

⟦POST⟧(𝑀,𝑁) ≜ 𝑁

⟦𝑟 ∥ 𝑝⟧(𝑀,𝑁) ≜ filter𝑝 (⟦𝑟⟧(𝑀,𝑁))

(c) RIB Evaluation 𝑒

⟦𝑣𝑎𝑙⟧(𝑀,𝑁) ≜ 𝑣𝑎𝑙

⟦{𝑣𝑎𝑙 ...}⟧(𝑀,𝑁) ≜ {𝑣𝑎𝑙 ...}
⟦𝑟 ⊲ count()⟧(𝑀,𝑁) ≜ |⟦𝑟⟧(𝑀,𝑁) |

⟦𝑟 ⊲ distVals(𝜒)⟧(𝑀,𝑁) ≜ {𝜏𝜒 | 𝜏 ∈ ⟦𝑟⟧(𝑀,𝑁) }
⟦𝑟 ⊲ distCnt(𝜒)⟧(𝑀,𝑁) ≜ | {𝜏𝜒 | 𝜏 ∈ ⟦𝑟⟧(𝑀,𝑁) } |

⟦𝑒1 + 𝑒2⟧(𝑀,𝑁) ≜ ⟦𝑒1⟧(𝑀,𝑁) + ⟦𝑒2⟧(𝑀,𝑁)
⟦𝑒1 − 𝑒2⟧(𝑀,𝑁) ≜ ⟦𝑒1⟧(𝑀,𝑁) − ⟦𝑒2⟧(𝑀,𝑁)
⟦𝑒1 × 𝑒2⟧(𝑀,𝑁) ≜ ⟦𝑒1⟧(𝑀,𝑁) × ⟦𝑒2⟧(𝑀,𝑁)
⟦𝑒1/𝑒2⟧(𝑀,𝑁) ≜ ⟦𝑒1⟧(𝑀,𝑁)/⟦𝑒2⟧(𝑀,𝑁)

(d) Intent 𝑔

⟦𝑟1 = 𝑟2⟧(𝑀,𝑁) ≜ ⟦𝑟1⟧(𝑀,𝑁) = ⟦𝑟2⟧(𝑀,𝑁)
⟦𝑟1 ≠ 𝑟2⟧(𝑀,𝑁) ≜ ⟦𝑟1⟧(𝑀,𝑁) ≠ ⟦𝑟2⟧(𝑀,𝑁)
⟦𝑒1 ⊙ 𝑒2⟧(𝑀,𝑁) ≜ ⟦𝑒1⟧(𝑀,𝑁) ⊙ ⟦𝑒2⟧(𝑀,𝑁)
⟦𝑝 ⇒ 𝑔⟧(𝑀,𝑁) ≜ ⟦𝑔⟧(filter𝑝 (𝑀),filter𝑝 (𝑁))

⟦forall 𝜒 in𝑉 : 𝑔⟧(𝑀,𝑁) ≜
𝑛∧
𝑖=1

⟦𝑔⟧(filter𝑝𝑖 (𝑀),filter𝑝𝑖 (𝑁)),

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝜒 = 𝑣𝑖 𝑉 = {𝑣1 ...𝑣𝑛 }

⟦forall 𝜒 : 𝑔⟧(𝑀,𝑁) ≜
|𝑉 |∧
𝑖=1

⟦𝑔⟧(filter𝑝𝑖 (𝑀),filter𝑝𝑖 (𝑁)),

𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 ≡ 𝜒 = 𝑣𝑖 , 𝑣𝑖 ∈ 𝑉
𝑉 = {𝜏𝜒 | 𝜏 ∈ 𝑀 ∨ 𝜏 ∈ 𝑁 }

⟦𝑔1 and 𝑔2⟧(𝑀,𝑁) ≜ ⟦𝑔1⟧(𝑀,𝑁) ∧ ⟦𝑔2⟧(𝑀,𝑁)
⟦𝑔1 or 𝑔2⟧(𝑀,𝑁) ≜ ⟦𝑔1⟧(𝑀,𝑁) ∨ ⟦𝑔2⟧(𝑀,𝑁)
⟦not 𝑔⟧(𝑀,𝑁) ≜ ¬⟦𝑔⟧(𝑀,𝑁)

Figure 11: Evaluation rules for RCL.

• ⟦𝜒 ⊙ 𝑣𝑎𝑙⟧(𝜏) denotes binary comparisons between a field and a

concrete value. It evaluates to 𝜏𝜒 ⊙ 𝑣𝑎𝑙 .
• ⟦𝜒 contains 𝑣𝑎𝑙⟧(𝜏) denotes membership test. It evaluates to

true if and only if 𝜏𝜒 is a set and contains 𝑣𝑎𝑙 .

• ⟦𝜒 in {𝑣𝑎𝑙 ...}⟧(𝜏) denotes inclusion test. It evaluates to true if

and only if 𝜏𝜒 is included in {𝑣𝑎𝑙 ...}.
• ⟦𝜒 matches 𝑟𝑒𝑔𝑒𝑥⟧(𝜏) performs regular expression matches on

string fields. It evaluates to re_match(𝜏𝜒 , 𝑟𝑒𝑔𝑒𝑥), which returns

true if and only if the entire 𝜏𝜒 matches pattern 𝑟𝑒𝑔𝑒𝑥 .

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Yuan et al.

• Predicates can be composed of sub-predicates through Boolean

operations. Their evaluation follows standard logical definitions.

For example, ⟦𝑝1 and 𝑝2⟧(𝜏) first evaluates individual sub-predicates
on 𝜏 , then returns their conjunction as the result.

RIB transformation. They take a pair of RIBs (base and updated,

respectively) and return a single transformed RIB for further speci-

fication.

• PRE and POST are keywords denoting the base and updated

RIB, respectively. For example, ⟦PRE⟧(𝑀, 𝑁) evaluates to𝑀 .

• ⟦𝑟 ∥ 𝑝⟧(𝑀, 𝑁) first evaluates the tranformation 𝑟 , then uses the

filter function to select routes satisfying the predicate 𝑝 and

compose them as a new RIB. The final result correspond to the

set of routes {𝜏 ∈ ⟦𝑟⟧(𝑀, 𝑁) | ⟦𝑝⟧(𝜏) = 𝑡𝑟𝑢𝑒}.
RIB evaluation. They take a pair of RIBs and compute aggre-

gate values. The return value is either a string, a number, or a set

composed of these types.

• ⟦𝑟 ⊲ count()⟧(𝑀, 𝑁) first performs RIB transformations to ob-

tain a single RIB, then counts the number of routes in it, i.e.,
|⟦𝑟⟧(𝑀, 𝑁) |.

• ⟦𝑟 ⊲distVals(𝜒)⟧(𝑀, 𝑁) returns the set of distinct values at field
𝜒 of the RIB transformation result. This is achieved by computing

the set {𝜏𝜒 | 𝜏 ∈ ⟦𝑟⟧(𝑀, 𝑁)}.
• ⟦𝑟 ⊲ distCnt(𝜒)⟧(𝑀, 𝑁) returns the number of distinct values

at field 𝜒 of the RIB transformation result. This is achieved by

computing the size |{𝜏𝜒 | 𝜏 ∈ ⟦𝑟⟧(𝑀, 𝑁)}|.
• Arithmetic operations of numeric RIB evaluations, such as ⟦𝑒1 +
𝑒2⟧(𝑀, 𝑁), are evaluated following standard arithmetic defini-

tions.

Intent checking. This top-level construct takes a pair of base and
updated RIBs and returns a boolean value.

• ⟦𝑟1 (= | ≠) 𝑟2⟧(𝑀, 𝑁) denotes the equality checking between en-
tire RIBs. It first evaluates the two transformations, i.e., ⟦𝑟1⟧(𝑀, 𝑁)
and ⟦𝑟2⟧(𝑀, 𝑁), then performs the equality checking between

the two transformed results.

• ⟦𝑒1 ⊙ 𝑒2⟧(𝑀, 𝑁) denotes the binary comparison of aggregate

values. It first carries out the two RIB evaluations separately,

then computes ⊙ on their results.

• ⟦𝑝 ⇒ 𝑔⟧(𝑀, 𝑁) represents a guarded intent. It uses the filter
function to select routes satisfying the predicate 𝑝 , then evaluates

the intent 𝑔 on (filter𝑝 (𝑀),filter𝑝 (𝑁)).
• The grouping intent ⟦forall 𝜒 in {𝑣1 ...𝑣𝑛} : 𝑔⟧(𝑀, 𝑁) specifies
the conjunction of 𝑛 sub-intents. For each of them, RCL evalu-

ates𝑔 on (filter𝜒=𝑣𝑖 (𝑀),filter𝜒=𝑣𝑖 (𝑁)). Thus, the overall intent
holds if and only if 𝑔 holds on every pair of base and updated

RIBs filtered by 𝜒 = 𝑣𝑖 .

• The expression ⟦forall 𝜒 : 𝑔⟧(𝑀, 𝑁) offers a short-hand version
of the previous one, when operators want to specify 𝑔 on all

distinct values at field 𝜒 of the original𝑀 and 𝑁 , i.e., {𝜏𝜒 | 𝜏 ∈
𝑀 ∨ 𝜏 ∈ 𝑁 }.
• Finally, intents compose with each other through boolean opera-

tions. For example, ⟦𝑔1 or𝑔2⟧(𝑀, 𝑁) evaluates to the disjunction
of ⟦𝑔1⟧(𝑀, 𝑁) and ⟦𝑔2⟧(𝑀, 𝑁).

A.3 RCL Verification
The RCL intent verification happens after the distributed RIB simu-

lation, as illustrated in Figure 2. It loads the entire concrete base

and updated RIBs, then executes the core algorithm below. We use

a data class Row to contain values for each column in a row, and

we represent the whole RIB as a set of Rows. As shown in Figure 8,

the overall verification fits on a single machine (with 96 cores and

791 GB RAM) and can finish within minutes.

Algorithm 1 shows function checkIntent, which evalutes an

intent 𝐼 on given base and updated RIBs,𝑀 and 𝑁 . It follows the se-

mantics in Figure 11 and adopts a syntax-guided approach to break

down the checking into smaller operations. Here, evalPredicate(𝑝, 𝜏)
is a boolean function checking whether the predicate 𝑝 holds on

values contained by row 𝜏 . distVals(𝜒,𝑀) is an aggregation func-

tion that collects the set of distinct values at field 𝜒 in RIB𝑀 . We

omit their implementations here due to their straightforwardness.

Algorithm 1 Evaluating an RCL intent

function checkIntent(𝐼 ,𝑀 , 𝑁)

match 𝐼 with
| 𝑟1 = 𝑟2 →

𝑟 ′
1
← transform(𝑟1, 𝑀, 𝑁)

𝑟 ′
2
← transform(𝑟2, 𝑀, 𝑁)

return ribEQ(𝑟 ′
1
, 𝑟 ′

2
)

| 𝑒1 ⊙ 𝑒2 →
𝑣1 ← eval(𝑒1, 𝑀, 𝑁)
𝑣2 ← eval(𝑒2, 𝑀, 𝑁)
return 𝑣1 ⊙ 𝑣2

| 𝑝 ⇒ 𝑔→
𝑀 ′ ← filter(𝑝,𝑀)
𝑁 ′ ← filter(𝑝, 𝑁)
return checkIntent(𝑔,𝑀 ′, 𝑁 ′)

| forall 𝜒 : 𝑔→
𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡 ← distVals(𝜒,𝑀 ⊎ 𝑁)
return checkForAll(𝐼 , 𝜒, 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡,𝑀, 𝑁)

| forall 𝜒 in𝑉 : 𝑔→
return checkForAll(𝐼 , 𝜒,𝑉 ,𝑀, 𝑁)

| 𝑔1 and 𝑔2 →
return checkIntent(𝑔1, 𝑀, 𝑁) ∧ checkIntent(𝑔2, 𝑀, 𝑁)

end function

function checkForAll(𝐼 , 𝜒 , 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡 ,𝑀 , 𝑁)

for all 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒𝑆𝑒𝑡 do
𝑀𝑣 ← filter(𝜒 = 𝑣,𝑀)
𝑁𝑣 ← filter(𝜒 = 𝑣, 𝑁)
if ¬checkIntent(𝐼 ,𝑀𝑣 , 𝑁𝑣) then

return False

end if
end for
return True

end function

function filter(𝑝,𝑀)

𝑅 ← ∅
for all 𝜏 ∈ 𝑀 do

if evalPredicate(𝑝, 𝜏) then
𝑅.Add(𝜏)

end if
end for
return 𝑅

end function

Algorithm 2 illustrates functions transform and eval. They
also follow the semantics in Figure 11 and adopt a syntax-guided

approach.

New Evolution of Hoyan: Enhancing Scalability, Usability, and Accuracy for Alibaba’s Global WAN Verification SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Algorithm 2 RIB transformations and evaluations

function transform(𝑟 ,𝑀 , 𝑁)

match 𝑟 with
| PRE→

return𝑀

| POST→
return 𝑁

| 𝑟1 ∥ 𝑝 →
𝑅1 ← transform(𝑟1, 𝑀, 𝑁)
return filter(𝑝 , 𝑅1)

end function

function eval(𝑒 ,𝑀 , 𝑁)

match 𝑒 with
| 𝑣𝑎𝑙 →

return 𝑣𝑎𝑙

| 𝑉 →
return𝑉

| 𝑟 ⊲ 𝑓 →
𝑅 ← transform(𝑟,𝑀, 𝑁)
return f(𝑅)

| 𝑒1 + 𝑒2 →
return 𝑒𝑣𝑎𝑙 (𝑒1, 𝑀, 𝑁) + 𝑒𝑣𝑎𝑙 (𝑒2, 𝑀, 𝑁)

......

end function

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Background
	2.2 Overview of Hoyan's New Architecture

	3 Distributed Simulation
	3.1 Original Simulation Workflow
	3.2 Distributed Simulation Framework

	4 Route Change Intent Specification Language
	4.1 RCL by Example
	4.2 Formal Definitions of RCL
	4.3 Use Cases
	4.4 Implementation and Evaluation

	5 Accuracy Diagnosis Framework
	5.1 Automatic Accuracy Validation
	5.2 Root Cause Analysis
	5.3 Real-World Issues

	6 Deployment Experience
	6.1 Case Study
	6.2 Other Use Cases of Hoyan

	7 Lessons and Opportunities
	8 Related Work
	9 Conclusion
	References
	A RCL Formalization
	A.1 RCL Syntax
	A.2 RCL Semantics
	A.3 RCL Verification

