
ResCCL: Resource-Efficient Scheduling for Collective
Communication

Tongrui Liu
1†
, Chenyang Hei

1†
, Fuliang Li

1∗
, Chengxi Gao

3
, Jiamin Cao

2
, Tianshu Wang

2

Ennan Zhai
2
, Xingwei Wang

1∗
1Northeastern University 2Alibaba Cloud

3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

ABSTRACT

As distributed deep learning training (DLT) systems scale, collec-

tive communication has become a significant performance bottle-

neck. While current approaches optimize bandwidth utilization

and task completion time, existing communication libraries (CCLs)

backends fail to efficiently manage GPU resources during algo-

rithm execution, limiting the performance of advanced algorithms.

This paper proposes ResCCL, a novel CCL backend designed for

Resource-Efficient Scheduling to address key limitations in cur-

rent systems. ResCCL enhances execution efficiency by optimizing

scheduling at the primitive level (e.g., send and recvReduceCopy),

enabling flexible thread block (TB) allocation, and generating light-

weight communication kernels to minimize runtime overhead. Our

approach tackles the global scheduling problem, reduces idle TB

resources, and enhances communication bandwidth. Evaluation

results demonstrate that ResCCL achieves up to 2.5× improvement

in bandwidth performance compared to both NCCL and MSCCL. It

reduces SM resource overhead by 77.8% and increases TB utilization

by 41.6% while running the same algorithms. In end-to-end DLT,

ResCCL boosts Megatron’s throughput by up to 39%.

CCS CONCEPTS

• Networks → Network design and planning algorithms;

KEYWORDS

Collective Communication, Deep Learning, Scheduling Algorithm

ACM Reference Format:

Tongrui Liu, Chenyang Hei, Fuliang Li, Chengxi Gao, Jiamin Cao, Tian-

shu Wang, Ennan Zhai, Xingwei Wang. 2025. ResCCL: Resource-Efficient

Scheduling for Collective Communication. In Proceedings of ACM SIG-
COMM 2025 Conference (SIGCOMM ’25). ACM, Coimbra, Portugal, 16 pages.

https://doi.org/10.1145/3718958.3750514

†
Tongrui Liu and Chenyang Hei contributed equally to this paper.

∗
Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1524-2/25/09

https://doi.org/10.1145/3718958.3750514

1 INTRODUCTION

Collective communication is a specific pattern among workers

within a collaborative group, used to synchronize gradients, param-

eters, and optimizer states across GPUs in distributed deep-learning

training (DLT) [4, 23, 30, 31]. However, as distributed training sys-

tems continue to scale, collective communication has increasingly

become a bottleneck [28, 32, 37]. For example, Domino [36] reports

that, even on DGX-H100 systems linked by 400Gb/s InfiniBand,

communication overhead still consumes 17%–43% of the total itera-

tion time when training GPT-3-13B end-to-end.

The performance of collective communication is crucial. Ex-

isting efforts mainly focus on designing more efficient collective
communication algorithms to improve the performance. A collective

communication algorithm defines the data transfer plan between

GPUs. Open-source collective communication libraries (CCLs), such

as NCCL [13] and RCCL [1], provide standardized algorithms (e.g.,
ring and double binary tree [10]). To address various collectives and

topologies, advanced collective communication algorithm synthe-

sizers (e.g., SCCL [2], TACCL [33], and TECCL [29]) automatically

synthesize near-optimal algorithms by mathematical modeling and

solving. However, these efforts primarily focus on algorithm opti-

mization, without taking into account how to execute the algorithm

efficiently.

We observe that the efficient execution of collective communi-

cation algorithms (implemented by the collective communication
backend) is crucial for performance. A collective communication

backend translates the algorithm to hardware instructions and

schedules the GPU thread blocks (TBs) and CPU threads to uti-

lize intra-server (e.g., NVLink) and inter-server (e.g., RDMA) band-

widths. Without optimization at the execution level, even theoreti-

cally optimal algorithms may perform poorly. For example, a naive

backend lacking execution optimization, when running a standard

hierarchical algorithm, may cause the transmission plan for high-

bandwidth intra-machine links to frequently wait for inter-machine

transmissions. This leads to substantial bandwidth underutilization,

resulting in poor algorithm performance.

Generally, a collective communication backend should satisfy

two key requirements. First, it should be able to execute any collec-

tive communication algorithm efficiently. Second, it should main-

tain low overhead so that computation is not affected, meaning it

should use minimal GPU resources (i.e., streaming multi-processors,

SMs). SMs are essential on a GPU, as they are used for both compu-

tation and communication. When communication occupies more

SMs, fewer are available for computation, which can negatively

https://doi.org/10.1145/3718958.3750514
https://doi.org/10.1145/3718958.3750514

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

affect end-to-end performance [3, 11, 12, 22]. In practice, achiev-

ing high performance and low overhead requires a careful balance

based on specific needs. For example, if a model supports over-

lapping computation and communication, and if computation is

critical, we should focus on reducing communication overhead

while enhancing computation performance. Conversely, if commu-

nication is more important, our priority should shift to maximizing

communication performance.

Current CCL backends, such as NCCL [13], RCCL [1], and

MSCCL [7] (which is based on NCCL), do not meet the above

two requirements. The root cause is that they employ static re-

source allocation and scheduling mechanisms, leading to inefficient

utilization of bandwidth and SM resources for various collective

algorithms. We have identified several bottlenecks in them, which

we summarize into the following two key points:

(1) High resource overhead. Current backends use static TB al-

location, assigning one TB per GPU peer link for data transport.

However, not all links are active throughout the entire algorithm

execution, and often only a small fraction of links are engaged in

data transfer. This results in many TBs remaining idle for long peri-

ods, leading to significant resource wastage. Additionally, existing

backends can only achieve low-level optimizations (e.g., pipelin-
ing) by consuming extra resources to open additional transmission

channels.

(2) Performance degradation. The backend fails to address the

global optimal scheduling problem for complete data transfers,

executing the algorithm lazily (requiring multiple iterations of com-

munication algorithms during a single data synchronization to

complete full data transfer). This results in significant “bubbles” in

the algorithm’s execution pipeline during the data transfer process.

Simultaneously, due to the lack of proper coordination among TBs

in these backends, unnecessary dependencies and contention are

introduced between TBs, which significantly hampers execution

performance. Moreover, current CCLs embed an interpreter at run-

time to dynamically parse communication algorithms, including

data routing for each step and fixed TB allocation. However, this

continuous loading and memory reads during execution signifi-

cantly reduce algorithm efficiency.

Our approach: ResCCL. In this paper, we propose ResCCL, a

CCL backend designed for Resource-Efficient Scheduling. ResCCL

ensures that existing optimized collective algorithms achieve their

theoretical peak bandwidth through backend-level execution opti-

mizations. More specifically, ResCCL proposes the following three

components: (1) Primitive-level execution scheduling opti-

mization: To address the performance degradation caused by the

lack of global optimal TB resource scheduling and poor collabo-

ration between TBs, ResCCL provides a global dependency anal-

ysis for complete data transfer. It also designs fine-grained exe-

cution scheduling optimizations at the primitive level (e.g., send,
recvReduceCopy etc.) to minimize execution pipeline bubbles and

approach global optimal scheduling. (2) Flexible TB resource allo-

cation mechanism: To address the issue of excessive TB resource

consumption, we propose a more flexible TB resource allocation

mechanism that overcomes the rigid, communication-connection-

based resource distribution in existing communication libraries. By

analyzing the transmission patterns between communication pairs,

we integrate idle resources while ensuring high link utilization

Release
1 2

Time

Synthesizer Operator

Execution with Overhead

TimeTask Pipeline

Interpreter

Existing Work Our Approach

NVLink PCIe IB

Our
Approach

Existing
Work

×

Stage-level
Execution

Communication Algorithm

Direct Execution

Synthesizer Operator

Communication Algorithm

NVLink PCIe IB

3

Time
Overhead

Algo-level
Execution

ManualLazy

Backend Optimization

Lightweight Kernel Generation3
Flexible TB Allocation2

Primitive-level Execution (Automatic)1

Figure 1: Comparison between our approach (ResCCL) and

the state-of-the-art efforts.

and efficient communication bandwidth. (3) Lightweight kernel

generation: ResCCL directly generates executable communica-

tion kernels, eliminating the overhead of runtime interpretation.

This lightweight kernel generation ensures both the correctness

and efficiency of the synthesized kernels while minimizing system

overhead.

Figure 1 illustrates the design comparison between ResCCL and

existing CCL, highlighting how ResCCL effectively addresses and

overcomes their current limitations.

This paper makes the following contributions.

• We identified and analyzed key performance bottlenecks in ex-

isting CCL backends, including inefficiencies in scheduling, re-

source allocation, and runtime execution.

• We developed ResCCL, a resource-efficient scheduling backend

for the collective communication library that optimizes algo-

rithm execution and significantly improves communication band-

width and thread resource utilization.

• Our evaluation demonstrates that ResCCL outperforms existing

solutions, achieving up to 2.5× higher bandwidth and a 39%

improvement in end-to-end training throughput compared to

NCCL and MSCCL. It also reduces TB consumption by up to

77.8% and increases TB utilization by 41.6%.

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

2.1 Collective Communication Libraries

Collective communication is a critical component of distributed

deep learning [20, 25, 44]. To complete collective communication,

each worker must cooperate in executing a specific communication

pattern, often referred to as a communication operator, such as

AllGather, ReduceScatter, or AllReduce. The efficiency of

these operators relies on high-performance collective algorithms

that aim to minimize data transfer.

Current collective communication methods can be categorized

into two types: standard algorithms and custom algorithms. Typical

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Table 1: Global link utilization during the execution of exist-

ing expert and synthesized algorithms. MS represents MSC-

CLang, TA/TE correspond to TACCL and TECCL, and AR/AG

refer to the AllReduce and AllGather operators.

Topo Scale MS-AG MS-AR TA-AG TA-AR TE-AG

1 Server (8 GPUs) 76.7% 71.0% 51.6% 45.7% 52.7%

2 Servers (16 GPUs) 67.5% 61.8% 34.3% 31.8% 33.2%

4 Servers (32 GPUs) 66.8% 46.1% 44.6% 41.9% 38.1%

open-source communication libraries [21, 26, 41], such as NCCL

and RCCL, provide fixed implementations of vendor-specific op-

timized standard algorithms, along with a dedicated backend exe-

cution. Custom algorithms is further divided into two categories:

automatically generated algorithms proposed by synthesizers and

topology-specific algorithms based on expert knowledge [17]. Al-

gorithm developers can use synthesizers or MSCCLang [8, 15],

in conjunction with MSCCL, to flexibly implement and execute

algorithms. However, due to MSCCL’s reliance on the NCCL back-

end, custom algorithms suffer from significant performance and

resource overhead issues (as detailed in §2.2).

Conceptual clarification. Communication operators imple-

mented in communication libraries consist of two components:

communication algorithms and backends. The communication al-

gorithm represents the data transfer plan between GPUs, while the

backend is responsible for scheduling TBs to transport communi-

cation data under the guidance of the algorithm. During backend

execution, each TB in the GPU executes a communication kernel to

complete the data transfer. Each kernel runs many communication

primitives, with the unit of data transmitted in a single operation

called a chunk. The size of a chunk is typically a small fraction (usu-

ally about 1%) of the total data transferred during synchronization.

Thus, the backend divides the data to be synchronized into multiple

micro-batches for sequential transfer. The size of each micro-batch

is the total size of all chunks scheduled by a single execution of

the communication algorithm. Current communication algorithms

does not take the execution of micro-batch transfers into account,

leaving this responsibility to the backend. There are two execution

granularities for micro-batches in existing backends:

(1) Algorithm-level execution: At the algorithm level, the

execution granularity adopts a lazy execution scheduling approach,

where only chunk transfers within a single micro-batch are sched-

uled, without considering execution across multiple micro-batches.

This results in low parallelism. Synthesizers execute at this gran-

ularity, which is the primary reason they fail to achieve optimal

performance.

(2) Stage-level execution: The current backend only provides

a manual stage division method for this granularity. It allocates

separate TBs and buffer resources for each stage, with parallel exe-

cution between stages, completing the entire micro-batch transfer

after all stages are executed. Although this execution approach

improves parallelism, the heavy scheduling and dependency anal-

ysis, combined with additional resource demands, make it both

time-consuming and resource-intensive. Expert-customized meth-

ods like MSCCLang adopt this approach, which is the root cause of

their resource bottlenecks.

Figure 2: Time cost breakdown of primitives in custom and

synthesized single-node AllReduce algorithm on existing

CCL runtime.

2.2 Motivation

We conducted multiple experiments to analyze collective commu-

nication libraries supporting expert-designed and synthesized algo-

rithms (refer to §5.1 for more information about experiment setup),

such as MSCCL [7], and identified several bottlenecks:

Inefficient execution granularity ofmicro-batches leads to se-

vere bottlenecks: low link utilization and significant resource

waste.When the backend executes collective algorithms synthe-

sized by the synthesizer, it lacks a global (cross-micro-batch) sched-

uling strategy and instead schedules data transfers sequentially

within the algorithm. This approach leads to significant pipeline

bubble overhead, which is understood as idle link time during al-

gorithm execution. The accumulation of bubbles results in low

link utilization during the communication task, severely limiting

effective communication bandwidth. As shown in Table 1, on a

16-GPU topology spanning two servers, each equipped with 8 A100

GPUs and interconnected via 200 Gbps RoCE, the AllReduce algo-

rithm synthesized by TACCL utilizes only 31.8% of the active link

bandwidth for communication.

The backend also faces challenges when executing expert algo-

rithms, particularly with complex cross-micro-batch dependency

analysis. It cannot automatically schedule the execution pipeline,

and instead requires manual specification of additional communica-

tion channels (which consumes more TB resources). The extra TBs

are constrained by the execution order’s dependency constraints,

leading to periods of inactivity and high resource contention. As

shown in Figure 2(a), the TBs running on additional channels re-

main idle 98.2% of the time, resulting in severe resource wastage.

Inflexible TB allocation. Existing backends rely on connection-

based TB resource management, where each connection is assigned

a dedicated TB. However, due to varying execution times across

different links, this rigid allocation method results in TB synchro-

nization blocking, causing significant and unnecessary resource

constraints, particularly in imbalanced topologies. As shown in Fig-

ure 2(b), the time spent by TBs under synchronization blocking can

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

Figure 3: Performance Comparison: Runtime Interpreter vs.

Direct Kernel Execution.

reach as high as 67.1%, severely impacting both resource utilization

and algorithm efficiency.

Runtime performance degradation. Libraries supporting expert-

designed and synthesized algorithms rely on runtime interpreters to

continually load and process input algorithms, causing performance

degradation. Figure 3 reveals that this process results in an average

performance loss of 17.1%.

2.3 Summary

Based on the experiments and analysis above, we conclude that an

efficient CCL backend requires optimizations in execution granular-

ity, flexible TB allocation strategies, and lightweight, low-overhead

communication kernel generation. In the following sections, we

introduce ResCCL as a solution to these challenges. Specifically,

§3 analyzes the optimal objectives for execution plan scheduling

and presents the key insights we used to address this issue. §4 sys-

tematically discusses the design details of ResCCL as a backend.

First, ResCCL offers a language (§4.2), ResCCLang, for algorithm
developers to write flexible and high-performance algorithms. Sec-

ond, ResCCL introduces an innovative execution granularity (§4.3)

to minimize pipeline bubbles during algorithm execution and im-

prove global link utilization. Next, ResCCL presents an efficient TB

allocation strategy (§4.4) to significantly reduce idle TB usage and

improve resource utilization. Finally, ResCCL transforms the opti-

mized pipeline into lightweight communication kernels to minimize

backend runtime overhead (§4.5).

3 PROBLEM AND GOAL

Any communication algorithm can be abstracted as a set of trans-

mission tasks, 𝑇 , under a specific cluster topology. A transmission

task 𝑡 (𝑒, 𝑑) ∈ 𝑇 is defined as a chunk transfer between GPU peers,

where 𝑒 represents the communication link used by the task, and 𝑑

denotes the dependencies between tasks.

We define the dependencies between tasks as two types: (1)

Data dependency: When two transmission tasks access the same

buffer offset at the same time, we define them as having a data

dependency. This dependency expresses the sequence in which

transmission tasks must be executed according to the algorithm

logic to ensure the correctness of the results. (2) Communication

Figure 4: Impact of TB parallelism on communication band-

width.

dependency: This type of dependency refers to link conflicts be-

tween tasks that overlap in their time slots. If two tasks use the same

link at overlapping times, they are considered to have a communi-

cation dependency. Our key insight is that using multiple threads

to perform transmission tasks on the same link introduces unnec-

essary resource contention between tasks. Therefore, introducing

communication dependencies into the execution plan is essential to

optimize link bandwidth utilization by constraining the execution

order.

We conducted experiments to observe the link contention be-

tween TBs caused by communication dependencies, as shown in

Figure 4, which investigates the impact of communication depen-

dencies by performing P2P transfers over a single NIC to emulate

an AllGather involving only two GPUs, while varying the num-

ber of TBs. When the TB count is ≤ 4, the algorithm’s bandwidth

steadily increases; beyond four TBs, additional TBs actually reduce

bandwidth. We attribute this to the balance between aggregate

thread-level communication capability and link bandwidth. With

four TBs, the combined throughput of all threads just matches the

link’s capacity. However, when the number increases to 8, the total

thread-level communication capacity becomes twice that of the

link bandwidth—i.e., each transmission task contends with another

task running in parallel for the same link resource.

This experiment demonstrates that when the transmission tasks

performed by the TB reach the peak link bandwidth, adding more

parallel TBs results in a degradation of communication perfor-

mance. This phenomenon validates the authenticity of the com-

munication dependencies we have defined. Therefore, optimizing

the scheduling of the pipeline should aim to avoid communication

dependencies to maximize bandwidth utilization.

The execution time for transmission tasks with communication

dependencies is approximated using the following formula:

𝑇𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 = 𝑛 · 𝑧 · (𝛼 + 𝑐 · 𝛽) + L(𝑧) · 𝛾 (1)

Here, 𝑛 represents the number of micro-batches, 𝑧 represents

the factor by which thread-level transmission capability exceeds

the bandwidth of a single link, 𝛼 denotes the startup overhead

of a transmission task, 𝑐 refers to the data size of a chunk, 𝛽 is

the inverse of the link bandwidth, L is the penalty term for the

performance loss caused by additional TB contention, and 𝛾 is a

constant factor representing the link contention overhead.

As discussed above, transmission tasks are subject to two types

of dependencies: data dependency and communication dependency.

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Violating data dependency compromises the correctness of the al-

gorithm, while violating communication dependency leads to link

contention, reducing link utilization. We model the optimal sched-

uling problem for transmission tasks as follows: Given a directed

acyclic graph 𝐺𝐴 = (𝑉𝑇 , 𝐸) that captures algorithm 𝐴’s data de-

pendencies—where each vertex 𝑣𝑡 ∈ 𝑉𝑇 represents a transmission

task, each edge 𝑣𝑡𝑖 → 𝑣𝑡 𝑗 ∈ 𝐸 denotes that 𝑣𝑡𝑖 consumes the data

produced by 𝑣𝑡 𝑗 . The execution time of each transmission task, ac-

counting for both link latency and bandwidth, is explicitly defined.

Task execution must satisfy two rules:

(1) When invoking task 𝑣𝑡 for a given micro-batch, all tasks that

𝑣𝑡 depends on must have already finished their invocation for that

same micro-batch.

(2) When tasks with communication dependencies are scheduled,

their execution time is prolonged as described by Equation 1, due

to the additional overhead introduced by link contention.

The algorithm’s total completion time is defined as the moment

when all tasks have completed their invocations across every micro-

batch after scheduling. Hence, the goal is to devise a transmission

task schedule that minimizes this completion time.

The optimal objective problem described above is equivalent to

a complex graph coloring problem [24], which has been proven

to be NP-hard and cannot be solved optimally in polynomial time.

Furthermore, no known universal solving strategy exists for the

original scheduling problem presented in this paper. Therefore,

we have summarized constraints in our detailed investigation to

reduce the problem’s complexity. Our key insight is that, between

micro-batches, only communication dependencies exist between

transmission tasks, with no data dependencies. As a result, the same

combination of transmission tasks can exist across different micro-

batches, and in most cases, the optimal solution is constructed by

a cycle of transmission task combinations occurring in sequence

over time. Based on this insight, we propose a novel execution

granularity cross micro-batches: task-level execution. The solution
under this execution granularity satisfies the following constraint:

The same TB iteratively executes the same transmission

task in sequence until the task is completed across all

micro-batches.

Although the problem remains NP-hard after introducing this

constraint, we have derived a guiding solution strategy (detailed in

§4.3) that can achieve the optimal solution in most cases.

Furthermore, we believe that introducing the above constraints

to the original scheduling problem offers the following advantages:

(1) Scalability. The constraint simplifies the problem, requiring

only one scheduling step for each transmission task. Without this

constraint, all tasks for each micro-batch would be scheduled sep-

arately.
1
Specifically, 𝐺𝐴 would need to be expanded by a factor

of the number of micro-batches, and additional considerations for

the source micro-batch would increase the problem’s complexity

to the power of the number of micro-batches. Therefore, as the

number of micro-batches increases, the original problem is difficult

1
Task constraints allow a single scheduling to be extended across all micro-batches

globally.

to scale. However, after introducing the constraint, the solution

space becomes linearly scalable.

(2) Execution overhead. The scheduling is executed by the

GPU’s TB. Without constraints, TB must execute each transmission

task individually. With the constraints, however, TB only needs to

sequentially execute cycles of task combinations, reducing the exe-

cution complexity to
1

𝑛 (where 𝑛 is the number of micro-batches).

(3) Solution quality. In our scheduling formulation, the total

execution time of an algorithm equals the completion time of its

last task. Formally,

𝑇
algo

= max

𝑒𝑖 ∈𝐸
{𝑇𝑖 } (2)

where 𝑇
algo

denotes the algorithm’s overall runtime and 𝑇𝑖 is the

execution time of edge 𝑒𝑖 (hereafter referred to as the link execu-
tion time). Consequently, the total runtime is determined by the

bottleneck link. Building on this observation, we next detail how

different execution strategies impose distinct constraints on the

scheduling problem and analyze the resulting solution quality for

each strategy.

Algorithm-level execution. Algorithm-level execution repeats

the same task sequence for every micro-batch, yielding a fixed

schedule. The link’s execution time is given by:

𝑇𝐴 = 𝑛

𝑚∑︁
𝑗=1

(
𝛼 + 𝑐 𝛽 + 𝐵 𝑗

)
(3)

where 𝑛 is the number of micro-batches,𝑚 is the number of tasks

in each micro-batch, and 𝐵 𝑗 denotes the bubble time incurred by

task 𝑗 due to data dependency stalls. Because the algorithm is

executed identically across all iterations—and both expert-designed

and synthesizer-generated algorithms are structured to avoid link

contention—the total link execution time is modeled as the per-

micro-batch cost (in the absence of contention) multiplied by the

number of micro-batches.

Stage-level execution. Stage-level execution requires partitioning

the algorithm into multiple stages, with algorithm-level execution

applied within each stage. The stages are only required to satisfy

data dependencies between them. Under this constraint, different

stage partitions lead to different schedules, but once the partitioning

is fixed, the schedule is fully determined. For a partition into 𝐾

stages, the link execution time is given by the following formula:

𝑇𝑆 = max

1≤𝑘≤𝐾

𝑛
𝑚𝑘∑︁
𝑗=1

[
𝑧𝑘 (𝛼 + 𝑐𝛽) + 𝛾L(𝑧𝑘) + 𝐵 𝑗

] (4)

where𝑚𝑘 represents the number of tasks per micro-batch in stage

𝑘 , and 𝑧𝑘 denotes the instance of 𝑧 corresponding to the case where

the algorithm is divided into 𝑘 stages. Since stage-level execution

splits the workload of a link into multiple stages executed in parallel

to reduce bubbles, it results in fewer bubbles but may introduce

communication contention.

Task-level execution (Ours). Under task-level execution, once a

task is scheduled, it must execute its invocations across all micro-

batches. This constraint confers two notable advantages: (1) Be-

cause every task processes all of its invocations, tasks that share

data dependencies are pipelined: while one invocation stalls on a

dependency, another invocation from a different micro-batch can

proceed, thereby masking bubbles caused by data stalls. (2) Tasks

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

transfer(srcRank, dstRank, Step, ChunkIndex, recvType)
1 def ResCCLAlgo(nRanks, AlgoName, Allgather):
2 N = 4
3 for r in range(0, N):
4 offset = r
5 peer = (r+1)%N
6 for step in range(0, N-1)
7 transfer(r, peer, step, (offset-step)%N, recv)

communication
dependency

Chunk 0 Chunk 1 Chunk 2
v0 v1

v4

v2 v3

v5 v6 v7

v8 v9 v10 v11

(a) ResCCLang

(b) Dependency DAG

Pipeline
Scheduling

(c) Primitive-level Execution

m-b0

m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2

m-b2

m-b0

m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2

m-b2

m-b0

m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2

m-b2
m-bN

m-bN

m-bN

...... m-bN

m-bN

m-bN

m-bN......

......

m-bN

m-bN

m-bN

m-bN......

......
Sub Pipeline 0

Sub Pipeline 1

Sub Pipeline 2

Stage 0

Stage 1

Stage 0

Stage 1

Stage 0

m-b1

Lowering to Runtime

m-bN

Transfer = Sender Receiver+ Transfer = +Sender Receiver Transfer = +Sender Receiver

(e) TB Allocation
(Rank 0)

m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2 m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2

m-b0

m-b0

m-b0

m-b1

m-b1

m-b1

m-b2

m-b2

m-b2

m-b2

m-bN

m-bN

m-bN

m-bN

m-bN

m-bN......

m-b0

......
m-bN

m-bN

m-bN......

......

m-b1

m-bN......
......

......
 (d) Task Pipeline

TB 0
TB 1
TB 0

Sub Pipeline 0 Sub Pipeline 1 Sub Pipeline 2

Rank 0 Rank 1 Rank 0 Rank 2 Rank 0 Rank 3

......

......

......

m-b0 m-b1 m-b2 m-b0 m-b1 m-b2

......

m-bNm-bN......

m-b0 m-b1 m-b2 m-b0 m-b1 m-b2 m-b0 m-b1

m-b2

m-b2

m-bN

m-bN

m-b0

m-bN......
m-b1

m-bN......
......

......
m-b0 m-b1 m-b2 m-b0 m-b1 m-b2 m-bNm-bN m-b2 m-bNm-b0 m-b1

Task-to-Primitive
Translation

Primitive Pipeline (f) Lightweight Kernel

Figure 5: Workflow of ResCCL.

that would otherwise contend for the same communication link is

assigned to separate pipelines, eliminating link-level conflicts.

Solutions produced under this model are therefore not predeter-

mined; they honor all communication dependencies, and the extent

to which bubbles are eliminated depends on how the pipelines are

constructed. The resulting link execution time is

𝑇𝑃 = 𝑡
Load

+ 𝑛𝑚 (𝛼 + 𝑐𝛽) + 𝑛
𝑚′∑︁
𝑗=1

𝐵 𝑗 , 𝑚′ ≤ 𝑚 (5)

where 𝑡
Load

is the one-time pipeline fill cost, independent of the

number of micro-batches; 𝑛 is the micro-batch count; 𝑚′ is the
number of residual bubbles after scheduling. Because both the size

and count of bubbles diminish under task-level execution, the final

bubble term is no greater—and typically much smaller—than that

of algorithm-level execution.

Comparison. By contrasting the solution costs under the three

execution strategies, we obtain

lim

𝑛→∞
(
𝑇𝐴 : 𝑇𝑆 : 𝑇𝑃

)
=

𝑚∑︁
𝑗=1

𝐵 𝑗 :

𝑚𝑘∑︁
𝑗=1

[
𝛾 L(𝑧𝑘) + 𝐵 𝑗

]
:

𝑚′∑︁
𝑗=1

𝐵 𝑗 (6)

Hence, when the number of micro-batches 𝑛 is sufficiently

large and the pipeline construction substantially reduces bubbles,

the task-level schedule yields a strictly better solution than the

algorithm- or stage-level strategies.

4 DESIGN

4.1 Backend Optimization Workflow

Figure 5 illustrates the execution optimization workflow of ResCCL

for a given collective communication algorithm. First, ResCCL per-

forms a global dependency analysis on the input algorithm, which is

described by our DSL, ResCCLang (introduced in §4.2 and illustrated
in Figure 5(a)), generating a dependency DAG (Figure 5(b)), where

each node represents a transmission task, and the directed edges

between nodes indicate data dependencies. Since the algorithm

does not have cyclic dependencies (which would lead to deadlocks),

it forms a DAG. Different chunks are stored in isolated addresses,

so there are no data dependencies between transmission tasks for

different chunks, while nodes of the same color have communi-

cation dependencies. Guided by the dependency DAG, ResCCL

performs primitive-level scheduling across micro-batches, as de-

tailed in §4.3. Sub-pipelines for executing tasks are hierarchically

assembled (Figure 5(c)), ensuring both data and communication

dependencies are respected during the assembly process. Once all

transmission task nodes in the dependency DAG are scheduled

into the execution pipeline, ResCCL lowers the transmission task

pipeline to the runtime and combines all sub-pipelines into a com-

plete execution pipeline (Figure 5(d)). This primitive-level execution

pipeline scheduling optimization maximizes bandwidth utilization

for collective communication algorithms, allowing their perfor-

mance to approach the theoretical peak. Subsequently, at runtime,

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

ResCCL translates
2
the transmission tasks into communication

primitives (such as send, recv, recvReduceCopy) and proceeds

with thread block (TB) allocation optimization (as detailed in §4.4).

ResCCL abandons the traditional, rigid connection-based allocation

in favor of a more flexible, state-based TB allocation mechanism

(Figure 5(e)). ResCCL combines multiple non-overlapping commu-

nication primitives based on their temporal sequence and assigns

them to the same TB for execution. This flexible allocation mecha-

nism significantly reduces the usage of SM resources. Finally, §4.5

presents ResCCL’s lightweight kernel paradigm, which generates

streamlined executable kernels for the optimized primitive pipeline,

thereby minimizing runtime overhead.

4.2 ResCCLang

Design choices. ResCCL takes algorithm logic as input and auto-

matically optimize the runtime execution and generalize it across

diverse deployment scenarios. The input is defined as the data

movement between buffers at each step. In this process, algorithm

designers and synthesizers only provide the algorithmic logic, with-

out the need to invest additional effort in runtime tuning or in

adapting the algorithm to different hardware or execution environ-

ments. To achieve this goal, introducing a new DSL for ResCCL

is essential, rather than extending existing languages. Specifically,

(1) existing collective communication backends lack automated

optimization and transmission scheduling capabilities, resulting in

complex DSLs (e.g.,MSCCLang) that require algorithm designers

to manually apply various redundant interfaces for performance

tuning—such as explicitly assigning transmissions to separate chan-

nels to improve parallelism. In contrast, ResCCL allow algorithm

designers to specify only the core algorithm logic, without needing

to manage TB allocation, channels, or other low-level details. All

optimization tasks are handled internally by ResCCL, enabling a

much simpler and more streamlined language interface. (2) Further-

more, we observed that algorithms is executed either in-place or

out-of-place during training. Existing languages require algorithm

designers to account for both scenarios and write a redundant DSL

for each case.

To address these issues, ResCCL introduces ResCCLang, a DSL
that provides algorithm designers with a flexible and efficient tool

for algorithm development. ResCCLang defines a unified abstrac-

tion for algorithm logic, enabling both human experts and auto-

mated synthesis tools to express a wide range of collective algo-

rithms in a concise and analyzable form. The abstraction is com-

posed of the following key elements: (1) DataBuffer. ResCCLang

models the input and output memory regions for each rank as a

unified DataBuffer. Each buffer is partitioned into transmission

units called chunks, which are indexed by a ChunkId. The number

of chunks per rank is equal to the total number of ranks, ensuring

that each 〈Rank, ChunkId〉 pair maps uniquely to a specific chunk

in the system’s global memory space. (2) Step. Temporal order is

represented using a discrete Step index. All algorithmic actions are

strictly ordered by their step values—actions assigned to smaller

steps must occur before those assigned to larger ones—enforcing

2
The task abstraction is employed for global analysis, whereas a primitive denotes
the unit actually executed at runtime, we will alternate between the two terms in the

subsequent sections.

Algorithm 1 Hierarchical Priority-based Dynamic Scheduling

(HPDS)

1: Input: 𝐺 = (𝑉 , 𝐸)
2: Output: 𝑃𝑟

3: 𝑄 ← PriorityQueue()

4: 𝑃𝑟 ← PipelineResult()

5: while 𝐺 ≠ ∅ do
6: 𝑃𝑐 ← CurrentPipeline()

7: 𝐹 ← ChunkFlag()

8: while ¬ all 𝐹 = False do

9: 𝐶 ← Q.GetHighestWithFlag(𝐹)

10: 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 ← ∅
11: for each 𝑁𝑜𝑑𝑒 ∈ 𝐺 [𝐶] & without data dependency do

12: if 𝑁𝑜𝑑𝑒 satisfies all comm dependencies then

13: 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 .append(𝑁𝑜𝑑𝑒)

14: end if

15: end for

16: if 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = ∅ then
17: 𝐹 .setFalse(𝐶)

18: else

19: 𝑃𝑐 .insert(𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡)

20: 𝐶 .priority← 𝐶 .priority - 1

21: Q.sort()

22: 𝐺 .remove(𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡)

23: end if

24: end while

25: 𝑃𝑟 .append(𝑃𝑐)

26: end while

a total ordering over the sequence of operations. (3) Transfer.

ResCCLang uses the function Transfer to describe communica-

tion behaviors. A transfer is defined as: Transfer(srcRank, dstRank,
step, chunkId, opType). This tuple uniquely identifies a transmission

task, specifying the source and destination ranks, the logical ex-

ecution step, the target data chunk, and the operation type (e.g.,
send, recv). To further discuss its functionality, we have provided

an example diagram of ResCCLang and a description of the DSL

syntax in Appendix B.

4.3 Primitive-Level Execution Scheduling

As discussed in §3, the scheduling problem remains NP-hard even

under primitive(task)-level execution, making direct optimization

intractable. To address this issue, we first analyzed existing expert-

designed and synthesized algorithms and obtained the following

insight: For the same ChunkId, primitives with later Step values

depend on those with earlier Step values, introducing data depen-

dencies. However, primitives across different ChunkIds are inde-

pendent and free from such constraints. Consequently, algorithms

tend to distribute primitives with different ChunkIds across sepa-
rate links within the same Step to avoid communication conflicts.

This observation suggests that after scheduling the primitives of

a given ChunkId, it is often more beneficial to switch to schedul-

ing primitives of other ChunkIds rather than continuing with the

current one.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

Building on this insight, we propose the hierarchical priority-

based dynamic scheduling (HPDS) strategy, defined by the itera-

tive process outlined in Algorithm 1, which presents the pseudocode

of our proposed hierarchical priority-based dynamic scheduling

(HPDS) algorithm. Given a dependency DAG𝐺 as input, the algo-

rithm outputs a global task pipeline 𝑃𝑟 , which is constructed by

concatenating multiple sub-pipelines 𝑃𝑐 . Each sub-pipeline consists

of tasks that simultaneously satisfy both data and communication

dependencies. Since this constraint may not hold globally, multiple

sub-pipelines must be constructed to cover the entire DAG (lines

5–26).

Sub-pipeline Construction. The construction of each sub-

pipeline 𝑃𝑐 proceeds as follows: (i) Candidate selection. From the

priority queue 𝑄 , select the Chunk-DAG 𝐺 [𝐶] with the highest

priority whose flag 𝐹𝐶 is set to true (line 9). (ii) Task extraction.

Traverse all tasks in𝐺 [𝐶] and collect those satisfying both data and

communication dependencies into a list NodeList (lines 11–15).

(iii) Scheduling decision. If NodeList is empty, it indicates that no

eligible task remains in 𝐺 [𝐶] for this sub-pipeline; the flag 𝐹𝐶 is

updated to false (lines 16–17). Otherwise, the tasks in NodeList
are appended to the current sub-pipeline 𝑃𝑐 , the DAG𝐺 is updated

accordingly, and the priority queue 𝑄 is adjusted to reflect the

changed priority of 𝐺 [𝐶] (lines 18–24). (iv) The inner loop termi-

nates once all 𝐹𝐶 are false, signifying no further tasks can be

added to the current 𝑃𝑐 (Line 8).

Global pipeline assembly. Once a sub-pipeline 𝑃𝑐 is completed,

it is appended to the global pipeline 𝑃𝑟 (Line 25). The process is

repeated until all tasks in 𝐺 have been scheduled, at which point

the final pipeline 𝑃𝑟 is returned (lines 5–26).

The algorithm works by dynamically assigning tasks to sub-
pipelines 𝑃𝑐1, 𝑃𝑐2, . . . , 𝑃𝑐𝑘 based on their priorities and dependency

relationships, such that each sub-pipeline 𝑃𝑐𝑖 is constructed itera-

tively. Each sub-pipeline represents a modular unit of execution,

contributing to global coordination. The sub-pipelines are combined

progressively, forming a complete execution pipeline.

The priority assignment mechanism plays a central role in the

HPDS strategy. Let P = {𝑝1, 𝑝2, . . . , 𝑝𝑛} represent the set of pri-
orities, with each 𝑝𝑖 corresponding to a task 𝑡𝑖 ∈ 𝑇 . Tasks with
lower execution frequency (i.e., underutilized chunks) are assigned

higher priority, ensuring dynamic load balancing. This priority

mapping is dynamically updated based on the progress of each

sub-pipeline. The scheduling proceeds by selecting tasks with no

data dependencies from the dependency DAG, ensuring that tasks

are scheduled following communication dependency constraint:

For each task 𝑡𝑖 , it must not be scheduled to share the same com-

munication link as any task 𝑡 𝑗 from the current sub-pipeline, i.e.,
∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑃𝑘 , if comm(𝑡𝑖 , 𝑡 𝑗) ≠ ∅ ⇒ 𝑙𝑖 ≠ 𝑙 𝑗 , where comm(𝑡𝑖 , 𝑡 𝑗)
represents the communication dependency between tasks.

This process continues iteratively until all tasks have been suc-

cessfully scheduled, satisfying the task dependencies and commu-

nication constraints.

Minimizing pipeline bubbles. The effectiveness of a scheduling

algorithm is measured by the extent to which it eliminates pipeline

bubbles; below, we analyze how efficiently HPDS reduces such bub-

bles. Let 𝑏 (𝑡𝑖 , 𝑡 𝑗) denote the pipeline bubbles, which are defined as

an idle time interval caused by an imbalance in task execution times

across different links. Task execution times vary significantly based

on link latency and bandwidth. Specifically, let 𝜆𝑖𝑛𝑡𝑟𝑎 and 𝜆𝑖𝑛𝑡𝑒𝑟
represent the intra-machine and inter-machine latency, respectively.

Our experiments show that 𝜆𝑖𝑛𝑡𝑒𝑟 ≥ 2.5 × 𝜆𝑖𝑛𝑡𝑟𝑎 , even under iden-

tical bandwidth conditions. Therefore, if an intra-machine task 𝑡 𝑗 is

scheduled in the same sub-pipeline as its dependent inter-machine

task 𝑡𝑖 , the latency mismatch between them delays 𝑡 𝑗 , resulting in

a bubble 𝑏 (𝑡𝑖 , 𝑡 𝑗).
To minimize these bubbles, HPDS assigns tasks with lower exe-

cution frequencies to higher priority positions, ensuring that inter-

machine and intra-machine tasks dependent on them are not sched-

uled in the same sub-pipeline. This approach reduces the bubble

𝑏 (𝑡𝑖 , 𝑡 𝑗) and improves overall pipeline efficiency.

Task-to-primitive translation. The transmission tasks 𝑇 are

mapped to a set of primitives 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚}, where each task

𝑡𝑖 is represented by a pair of send (𝑟
send
(𝑡𝑖)) and receive (𝑟recv (𝑡𝑖))

primitives. This mapping is one-to-one, with each task 𝑡𝑖 corre-

sponding to a single transfer of a data chunk. After all tasks are

mapped to primitives, a global set of primitives 𝑅 is generated,

which will be used in subsequent steps of the scheduling process.

4.4 Flexible TB Allocation

In traditional methods, the connection-based allocation approach is

used, where each transmission link (connection) between GPUs is

independently assigned a TB. This results in the number of TBs

being equal to the number of connections, i.e., for each connection

𝑐𝑖 ∈ 𝐶 , a corresponding𝑇𝐵(𝑐𝑖) is assigned, where𝐶 is the set of all

GPU connections. This leads to a potentially inefficient allocation

because many of these connections share the same network inter-

face card (NIC), causing congestion due to their communication

dependencies.

The connection-based allocation would result in only one TB

being active at a time for each link, thus leading to inefficiency. To

address this inefficiency, we introduce the state-based allocation

strategy, which works as follows:

Timeline analysis. First, the entire pipeline P is analyzed over

time, and the active times of each connection are identified. Let

active𝑙 (𝑡) represent the time interval during which link 𝑙 is active

at time 𝑡 . The aim is to identify and merge connections that will

never be active simultaneously.

Merging connections.Connections 𝑙𝑖 and 𝑙 𝑗 are merged if they are

not active simultaneously, i.e., if active𝑙𝑖 (𝑡) ∩ active𝑙 𝑗 (𝑡) = ∅. The
merged connections are then assigned a single 𝑇𝐵(𝑙𝑖 , 𝑙 𝑗), reducing
the number of TBs without affecting overall execution time. This

method relies on serial activity of connections: all inter-connections

that do not overlap in active time are merged.

Thus, the total number of TBs is reduced from |𝐶 | (the number

of connections) to a smaller number |𝑇𝐵 |, where:

|𝑇𝐵 | =

������ ⋃
(𝑙𝑖 ,𝑙 𝑗) ∈Merged Connections

𝑇𝐵(𝑙𝑖 , 𝑙 𝑗)

������ (7)

Network contention. Collective communication operates at a

higher abstraction level, making it orthogonal to network-layer

issues such as ECMP hash collisions. Thus, explicitly considering

network-level path selection and underlying congestion is beyond

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

the current scope of ResCCL. Future enhancements may lever-

age programmable data planes, employing telemetry to obtain in-

network state information through platforms such as Crux [3] or

vFabric [38]. Nevertheless, ResCCL’s current capabilities effectively

alleviate intra-job network congestion. ResCCL allocates thread

blocks with full awareness of flow dependencies, thereby limiting

the number of simultaneous connections on each link and elimi-

nating link-level conflicts in the resulting schedule. Because such

conflicts manifest as transmission slowdowns—fundamentally a

form of link congestion—ResCCL’s state-based allocation inherently

mitigates congestion. Consequently, the system experiences signifi-

cantly less performance degradation under network contention.

4.5 Lightweight Kernel Generation

To improve runtime system efficiency, ResCCL adopts directly gen-

erated kernels as its execution engine, significantly reducing the

overhead associated with control logic inside the kernel. As the
first collective communication backend to implement primitive-level
execution, ResCCL runtime needs to execute invocations of each

primitive across all micro-batches in one pass, whereas existing

runtimes only support primitive invocation within a single micro-

batch. Therefore, a dedicated runtime system is required to support

this execution model.

To address this, we establish a general paradigm for kernel gener-
ation that applies to any collective communication algorithm. This

paradigm is defined across three dimensions: (1) Rank dimension:

Specifies the complete set of primitives that each GPU (rank) must

execute during runtime. (2) TB dimension: Further refines the

rank dimension by specifying the primitives assigned to each thread

block. (3) Pipeline dimension: Provides a finer partitioning of

the TB dimension by grouping primitives according to pipeline

indices. Each specific pipeline dimension defines the primitive to be

executed by the current TB and cycles through all corresponding

micro-batch invocations during execution. This paradigm provides

an effective model for lowering primitive pipelines into executable

kernels. ResCCL materializes the resulting pipeline into concrete,

lightweight kernels, enabling hardware-level execution of the opti-

mized schedule. Compared with conventional online interpreters,

these kernels eliminate substantial control overhead and deliver

significantly higher runtime efficiency.

5 EVALUATION

In this section, we conduct an extensive experimental evaluation of

ResCCL. We benchmark the two most widely used collective com-

munication operators: AllReduce and AllGather, and compare

their performance and resource savings across various network

topologies and algorithm configurations. We also quantify the over-

head introduced by ResCCL’s proposed techniques and report the

real-world performance gains observed in end-to-end training sce-

narios.

5.1 Experiment Setup

Implementation. ResCCL encompasses both offline scheduling

of communication algorithms and their runtime execution, and is

therefore realized in a three-layer architecture comprising roughly

Table 2: Summary of experimental setup: cluster, network,

CCL, and training parameters.

Cluster Config

GPU Intra-Fabric Inter-Fabric Scale Topo

A100 NVSwitch RoCE 32 GPUs Clos

CCL Config

Instance Algorithm ChunkSize Protocol nWarps

Default/4 Ring/Custom 1MB Simple 16

Training Config

Model Size BS TP DP

GPT-3 6.7–44B 32 8 2–4

T5 220M–3B 16 1 16

6K+ lines of code. (1) Offline compiler (top layer).Modularly em-

bedded in Python, the compiler accepts an algorithm logic, performs

primitive-level scheduling, and generates lightweight communica-

tion kernels. (2) Control plane (middle layer). Implemented in

C++, this layer serves as the control plane of the communication

library, supplying CPU-side coordination and management for the

runtime system. (3) Runtime system (bottom layer). Developed

in CUDA, the runtime extends NCCL primitives, allowing flexible

selection of communication links and providing backend support

for executing the lightweight kernels.

Testbed.We set up an A100 server cluster consisting of four nodes,

each equipped with 8 NVIDIA A100 80GB GPUs, 32 GPUs in total.

Each GPU provides 300 GBps of communication bandwidth and

is connected via 6 NVSwitches operating at 600 GBps. In addition,

each server is equipped with four NICs, each offering 200 Gbps of

network bandwidth. The cluster employs a two-tier Clos network

topology. Each server connects to a Top-of-Rack (ToR) switch via

four links (one per NIC), with every two GPUs on the host sharing

the same NIC. Communication between servers located in different

racks (i.e., not attached to the same ToR) is forwarded through

second-tier aggregation switches.

Comparison baselines. We compared ResCCL against three base-

lines: NCCL [13], MSCCL [7], and MSCCLang/TACCL/TECCL [15,

29, 33] with MSCCL. NCCL (v2.25.1) represents the most widely

used vendor-standardized library, while MSCCL (v1.0.2) is a uni-

fied collective communication library from Microsoft that supports

expert-designed and synthesized algorithms. For expert-designed

algorithms, we adopt the hierarchical algorithm, whose detailed

design is provided in Appendix A. For synthesized algorithms, we

used the TACCL and TECCL synthesizer to generate communica-

tion schedules tailored to our experimental setup and then executed

TACCL/TECCL with MSCCL and ResCCL as backends, respectively,

for comparison.

Configurations. Table 2 details the principal experimental settings.

To guarantee a fair and consistent comparison, all communication

backends—ResCCL, MSCCL, and NCCL—run under identical con-

ditions: the same cluster hardware, network topology, backend

parameters, and model configurations. Any parameters not explic-

itly listed in the table also follow identical, standard default values.

Collective-communication libraries generally expose three trans-

port protocols—Simple, LL, and LL128—each offering a different

latency-bandwidth trade-off. Simple delivers the highest sustained

bandwidth, LL minimizes latency, and LL128 preserves LL’s low la-

tency while partially recovering bandwidth. Because our evaluation

focuses on training throughput, we configure all three backends

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

Figure 6: Communication performance of Expert-Designed AllReduce and AllGather across buffer sizes.

under test to use the Simple protocol. To evaluate the effective-

ness of ResCCL in optimizing expert-designed algorithm execution,

we developed several high-performance algorithms tailored to our

experimental topology with detailed designs available in the Ap-

pendix A.

5.2 Communication Benchmark

Performance on expert-designed algorithms. Figure 6(a)-(b)

presents AllGather algorithm bandwidth
3
achieved by ResCCL

under two cluster scales and two algorithms optimized for specific

topologies, compared against the same algorithms executed with

MSCCL and the baseline NCCL. The transfer-chunk size is fixed

at 1MB for all three backends. In the 16-GPU (two servers) setting,

ResCCL delivers the largest speed-up, outperforming NCCL by

28.1%–2.2× and MSCCL by 12.4%–1.6× as the buffer size increases

from 8MB to 4GB. In larger scales (Figure 6(b)), ResCCL consistently

yields substantial algorithm bandwidth gains across all configura-

tions. For buffer sizes above 32MB, it improves over NCCL by at

least 38.2%, reaching up to 1.6× at 4GB, and achieves up to a 1.4×
speed-up relative to MSCCL.

The AllReduce operator is implemented by combining All-

Gather with its reverse operation, conceptually similar to Re-

duceScatter and exhibiting an analogous traffic pattern. Using

the same server configurations as in the AllGather experiments,

Figure 6(c)-(d) shows that ResCCL improves algorithm bandwidth

by 6.7%–2.5× over NCCL and by 10.7%–2.5× over MSCCL. Only

in the four-server, 32-GPU setting, ResCCL is slightly slower (at

most 8.3%) than MSCCL when the buffer size is below 16MB. This is

because small messages yield fewer micro-batches, reducing sched-

uling opportunities. However, ResCCL amortizes its fixed overhead

over larger micro-batches, enabling scheduling efficiency and per-

formance gains to scale with workload size and delivering effective

communication speed-ups across a wide range of data sizes in real-

world training workloads.

Performance on synthesized algorithms. We supplied TACCL

and TECCL with inputs tailored to our experimental topology and

used each synthesizer to generate AllGather and AllReduce al-

gorithms for these topologies. Notably, the open-source release of

TECCL does not natively support AllReduce, we extended TECCL

using the general assembly technique introduced in the expert-

algorithm evaluation and synthesized a TECCL-AllReduce variant.

We then executed the synthesized algorithms on both MSCCL and

3
Algorithm bandwidth and latency are equivalent metrics, as bandwidth is derived

from total data divided by communication latency, so reporting one fully captures the

other.

Figure 7: Communication performance of Synthesized

AllReduce and AllGather across buffer sizes.

ResCCL backends and compared their algorithm bandwidth perfor-

mance. Figure 7 presents the resulting speedups, with the y-axis

denoting the relative acceleration and the orange horizontal line

indicating the normalized baseline performance of MSCCL running

the synthesized algorithms. The blue (square marker) and green

(diamond marker) curves indicate the speedup achieved by ResCCL

over MSCCL when executing the synthesized algorithms.

ResCCL consistently accelerates TECCL-synthesized algorithms

over the entire buffer-size range, achieving speedups from 4.6%

up to 1.5×. For TACCL, in the 2-server (16 GPUs) configuration,

ResCCL consistently outperformed MSCCL for all larger buffers,

achieving speedups of up to 1.4×, with only a slight performance

drop (up to 8.5%) when the buffer size is below 8 MB, due to the

same pipeline-fill and limited scheduling opportunities effects ob-

served in the expert-algorithm experiments. In larger cluster scales,

the trend is similar: once the buffer size exceeds 16 MB, ResCCL

consistently yields substantial algorithm bandwidth improvements,

with speedups ranging from 12.6% to 1.4×.
Communication benchmarks across additional topologies.

To further validate the versatility and scalability of ResCCL, we con-

ducted supplementary bandwidth benchmarks on two additional

cluster configurations: (i) two servers with four A100 GPUs each,

and (ii) four servers with four A100 GPUs each. As illustrated in

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

Figure 8: Communication performance of expert-designed AllReduce and AllGather under additional topologies.

Figure 9: Communication performance of synthesized

AllReduce and AllGather under additional topologies.

Figures 8 and 9, ResCCL maintains clear performance superior-

ity across both expert-designed and synthesized algorithms. For

Allgather, relative to NCCL, ResCCL improves bandwidth by

1.6×–2.3× on expert algorithms. Compared with MSCCL, it deliv-

ers 6.8%–23.1% speed-ups for expert algorithms and 9.8%–31.1%

for synthesized algorithms. For AllReduce, ResCCL achieves up

to a 3.7× performance improvement over NCCL and up to a 2.4×
speedup over MSCCL when using expert-designed algorithms. Un-

der synthesized algorithms, ResCCL outperforms MSCCL by up to

50.1%.

Comparison for Custom Algorithm on V100 GPUs. We fur-

ther evaluated the generality of ResCCL on a heterogeneous GPU

cluster with V100 GPUs interconnected via 100G RoCE, using high-

performance collective operations. In HM-AllGather (Figure 11

left), ResCCL achieved 1.6×-2.7× better performance for smaller

inputs and 6.1%-18.2% for larger inputs compared to MSCCL, with

a 2.1×-3.7× improvement over NCCL, especially benefiting from

larger buffers. For HM-ReduceScatter (Figure 11 middle) experi-

ment, ResCCL demonstrated up to 30.4% improvement over MSCCL

for smaller inputs, with 4.9%-8.5% gains for larger buffers. Compared

to NCCL, ResCCL achieved a performance increase of 1.9×–4.2×.
Lastly, in the HM-AllReduce (Figure 11 right), ResCCL’s pipelined

execution resulted in 10.3%-68.2% better performance than MSCCL,

and 2.3×-3.9× better than NCCL.

Figure 10: Runtime overhead & scheduling comparison.

5.3 Workflow Breakdown

Phase-by-phase scalability metrics. In our micro-benchmark

study of ResCCL, we isolated the major execution phases of the

workflow and measured their scalability, specifically, the time each

phase consumes as we scale the collective algorithm across increas-

ingly large clusters. Figure 10(a) depicts these results as a per-phase

breakdown. Because the phases in ResCCL execute serially—the

output of one feeding directly into the next—we recorded the start

and end times of each stage to expose their individual contribu-

tions, while the red curve in the figure shows the overall end-to-end

latency.

The pipeline unfolds as follows. Parsing translates the DSL into

an abstract-syntax tree and then extracts the primitive pipeline

required by the communication backend. Analysis converts the AST
into a dependency DAG. Scheduling applies the HPDS algorithm to

that DAG, producing an optimally ordered task sequence. Finally,

Lowering turns the task pipeline into the primitive pipeline that the

runtime executes. Even at the largest scale we tested—1,024 GPUs
4

—ResCCL completes the entire DSL processing pipeline in roughly

11 minutes. Because this workflow is executed once, offline, before

training begins, the cost is negligible over a multi-hour or multi-day

training run.

HPDS vs. RR. To further validate the effectiveness of the HPDS

scheduler, we implemented a baseline round-robin (RR) policy. RR

is a classic scheduling approach that simply cycles through tasks

in a fixed order. In our implementation, we traverse each chunk’s

DAG in ascending chunk-ID order, visit the chunks in a circular

queue, and schedule them in that same immutable sequence. We

compared HPDS and RR on an 8-GPU, two-server topology—the

other configurations exhibit similar trends—and measured their im-

pact on both expert-designed and synthesizer-generated algorithms.

4
The GPU scale was emulated on the host since the workflow overhead is incurred

entirely offline.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

16 32 64 128 256 512 1 2 16 32 64 128 256 512 1 2 4 16 32 64 128 256 512 1 2 40
2
4
6
8

1 0 N C C L M S C C L R e s C C L

M B G B M B G B M B G B
A l l g a t h e r A l l r e d u c eR e d u c e S c a t t e r

Alo
g b

w.(
GB

/s)

Figure 11: Performance comparison of ResCCL, NCCL, and MSCCL across multiple GPU servers for different communication

operators.

Table 3: Comparison of TB resource utilization between ResCCL and MSCCL across different algorithms.

Backend TB Utilization

Expert AllReduce Expert AllGather Synthesized AllReduce Synthesized AllGather

Topo1 Topo2 Topo3 Topo4 Topo1 Topo2 Topo3 Topo4 Topo1 Topo2 Topo3 Topo4 Topo1 Topo2 Topo3 Topo4

MSCCL

TB 14 30 14 30 14 30 14 30 10 18 9 8 10 18 5 5

Comm Time 71.6% 66.2% 63.7% 63.7% 95.2% 82.3% 67.9% 66.1% 33.1% 23.9% 50.9% 34.9% 96.3% 97.8% 47.1% 60.4%

Avg Idle 28.4% 33.8% 36.3% 36.3% 4.8% 17.7% 32.1% 33.9% 66.9% 76.1% 49.2% 65.1% 3.7% 2.2% 52.9% 39.6%

Max Idle 72.38% 99.5% 99.0% 99.0% 19.2% 99.1% 99.5% 99.0% 90.2% 99.9% 99.9% 99.9% 36.6% 87.3% 90.2% 98.1%

ResCCL

TB 8 16 8 16 8 16 8 16 6 6 6 6 4 4 4 4

Comm Time 95.7% 95.8% 85.7% 85.0% 98.3% 98.2% 93.1% 92.3% 67.6% 58.4% 66.5% 61.1% 99.4% 99.2% 88.7% 83.8%

Avg Idle 4.3% 4.2% 14.3% 15.0% 1.7% 1.8% 6.9% 7.7% 32.4% 41.6% 33.5% 38.9% 0.6% 0.8% 11.3% 16.2%

Max Idle 19.6% 20.2% 22.5% 21.4% 5.6% 7.4% 21.4% 20.8% 56.4% 69.8% 60.8% 62.8% 4.9% 8.9% 28.3% 30.7%

As illustrated in Figure 10(b), HPDS consistently outperforms the

Round-Robin baseline, delivering speedups of up to 187%.

5.4 SM Resource Utilization

Efficient SM utilization is crucial to distributed DL training, where

contention between computation and communication for these

shared resources often becomes the dominant bottleneck. We quan-

tify this efficiency by examining three metrics: (i) the total number

of thread blocks (TBs) allocated to communication tasks, (ii) the

average TB idle ratio, and (iii) the maximum TB idle ratio. For

each TB, the idle ratio is the fraction of its lifetime spent busy-

waiting—either synchronizing with other TBs or waiting for a peer

to become ready—while still occupying SM resources.

Table 3 summarizes these metrics for ResCCL and MSCCL across

four topologies and their corresponding algorithms. Topo1 and

Topo2 use 2 servers with 4 and 8 GPUs per server, respectively,

while Topo3 and Topo4 use 4 servers with 4 and 8 GPUs per server.

A large gap between the average and maximum idle ratios signals

poor load balance. MSCCL suffers from pronounced imbalance:

some TBs remain almost completely idle yet continue to consume

SM capacity, with idle ratios reaching 99.9%. This waste stems

from the extra communication channels MSCCL opens to increase

parallelism, as discussed in §2.2.

In contrast, ResCCL consistently delivers higher thread utiliza-

tion, lowers the total number of occupied threads, and achieves

more balanced TB usage than MSCCL across both expert-designed

and synthesizer-generated algorithms. The advantages are most

pronounced when running the expertAllGather algorithm, where

ResCCL sustains an effective TB utilization of more than 92.3%, im-

proving average TB utilization by up to 26.2% over MSCCL, and

reducing total TB occupancy by up to 75%. Moreover, ResCCL’s

maximum TB idle ratio never exceeds 21.4%, underscoring its ability

to maintain well-balanced thread utilization throughout execution.

When executing synthesized algorithms such as those generated by

TACCL, we observe a decline in thread utilization. This is chiefly

because TACCL’s solver abstracts away certain real-world details,

yielding synthesized algorithms that distribute link load unevenly.

TECCL shows similar, if not worse, inefficiencies. Despite the ex-

ecution imbalance and frequent idle phases introduced by these

synthesized algorithms, ResCCL still achieves efficient resource

optimization. Compared to MSCCL, ResCCL reduces thread con-

sumption by up to 77.8% and average idle time by 41.6%.

Resource utilization evaluation onV100GPUs. Figure 12(a) and

Figure 12(b) show that ResCCL reduced thread resource consump-

tion by up to 75% compared to MSCCL when scheduling the same

algorithm. Additionally, ResCCL minimized thread occupation time

to as little as 3.8% of that in MSCCL, with the added flexibility of

early release. Additionally, ResCCL achieves 43.4%-66.9% higher av-

erage resource utilization, indicating a more efficient and intensive

execution pipeline.

5.5 End-to-End Training

We evaluate ResCCL on the distributed training of large language

models (LLMs) of various scales, including both GPT-3 and T5, and

compare it against the native Megatron-LM [9] implementation

using the latest version of NCCL as the communication backend,

as well as a Megatron variant integrated with MSCCL, all under

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

T B 0 T B 1 T B 2 T B 3 T B 4 T B 5 T B 6 T B 7 T B 8 T B 9 T B 1 0 T B 1 1 T B 1 2 T B 1 3
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Tim
e(m

s)

W o r k e r s

 M S C C L (s y n c) M S C C L (e x e c u t i o n) R e s C C L (s y n c)
 R e s C C L (e x e c u t i o n) R e l e a s e S a v i n g

(a) Expert-Designed

T B 0 T B 1 T B 2 T B 3 T B 4 T B 5 T B 6 T B 7 T B 8 T B 9 T B 1 0 T B 1 1 T B 1 2
0

5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0

Tim
e(m

s)

W o r k e r s

 M S C C L (s y n c) M S C C L (e x e c u t i o n) R e s C C L (s y n c)
 R e s C C L (e x e c u t i o n) R e l e a s e S a v i n g

(b) Synthesized

Figure 12: Time cost breakdown comparison of primitives

for ResCCL and MSCCL executing the same expert and syn-

thesized algorithms.

Figure 13: Training throughput for GPT-3 and T5 models of

varying sizes using ResCCL as the Megatron communication

backend, compared with NCCL and MSCCL.

identical settings. For models with fewer than 13 billion parameters,

we deploy them on two servers (16 GPUs) with a batch size of

16. Larger models are deployed on four servers (32 GPUs) with a

batch size of 32. In terms of distributed parallelism strategies, data

parallelism is applied to the T5 models, while tensor parallelism is

used for GPT-3 models.

Integrating ResCCL into Megatron requires only a straightfor-

ward relink and rebuild, making the integration process seamless.

Figures 13(a) and 13(b) illustrate the throughput improvements

achieved by using ResCCL as the collective communication back-

end compared to NCCL, across a range of model sizes from 220M

to 45B parameters. For T5 models (220M–3B), ResCCL accelerates

training throughput by 18%–39% over nativeMegatron and achieves

7.1%–1.8× improvement compared to Megatron with MSCCL. For

larger GPT-3 models (6.7B–45B), ResCCL delivers up to 11%–20%

performance improvement over native Megatron, and 7.5%–29.3%

over the MSCCL-integrated variant.

6 RELATEDWORK

Collective communication optimization. Prior work [2, 7, 29,

33, 40] has focused on optimizing collective algorithms, leverag-

ing topology-aware techniques to design efficient algorithms tai-

lored for specific network topologies. Recent research [39, 43] has

taken a step further by jointly optimizing the topology and collec-

tive communication scheduling. Additionally, several open-source

communication libraries offer vendor-specific optimizations, such

as Nixl [14], which is designed to optimize point-to-point (P2P)

communication within NVIDIA’s inference framework, Dynamo.

However, they have predominantly concentrated on optimizing

the communication algorithms themselves, neglecting the perfor-

mance bottlenecks caused by suboptimal runtime scheduling and

imbalanced resource utilization. In contrast, ResCCL is the first to

identify suboptimal performance arising from inefficiencies in exe-

cution strategies within existing communication libraries. ResCCL

demonstrates that efficient scheduling of transmission tasks can al-

leviate such bottlenecks and significantly enhance communication

performance.

Scheduling optimization in internet and datacenter systems.

Prior work [5, 6] has extensively explored coflow scheduling in

large-scale data processing frameworks, aiming to minimize overall

communication time by considering inter-flow dependencies and

compute placement strategies. While these efforts share conceptual

similarities with the constrained transmission scheduling problem

addressed by ResCCL, a key distinction lies in the complexity of

the dependency structures and the heterogeneity of the commu-

nication topology in ResCCL. Additionally, a wealth of studies in

HTTP/2 [18, 27, 35], RPC [16, 42], and web service [19, 34] domains

focus on resource allocation and thread execution optimization.

However, these approaches typically address single P2P connection

scenarios. On the contrary, ResCCL tackles a more complex, many-

to-many collective communication model that requires coordinated

scheduling across multiple dependent transmission tasks.

7 CONCLUSION

In this work, we propose ResCCL, a resource-efficient scheduling

scheme for the collective communication library, designed to ad-

dress the inefficiencies in existing CCL solutions. By introducing

primitive-level scheduling, dynamic resource allocation, and light-

weight kernel generation, ResCCL optimizes both communication

bandwidth and thread resource utilization. Our evaluation demon-

strates that ResCCL outperforms existing solutions across algorithm

bandwidth, TB utilization, and end-to-end training performance.

ACKNOWLEDGMENTS

We thank our shepherd, Mosharaf Chowdhury, and the anonymous

reviewers for their insightful comments. This work is supported

by the National Natural Science Foundation of China under Grant

Nos. 62432003 and U22B2005; the LiaoNing Revitalization Talents

Program under Grant No. XLYC2403086.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

REFERENCES

[1] Inc Advanced Micro Devices. 2024. ROCm Communication Collectives Library

(RCCL). https://github.com/ROCm/rccl.

[2] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz,

Jacob Nelson, and Olli Saarikivi. 2021. Synthesizing Optimal Collective Algo-

rithms. In Proc. of ACM PPoPP. 62–75. https://dl.acm.org/doi/pdf/10.1145/3437801.

3441620.

[3] Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong, Binzhang

Fu, Dennis Cai, and Ennan Zhai. 2024. Crux: GPU-Efficient Communication

Scheduling for Deep Learning Training. In Proc. of ACM SIGCOMM. 1–15. https:

//dl.acm.org/doi/pdf/10.1145/3651890.3672239.

[4] Sanghun Cho, Hyojun Son, and John Kim. 2023. Logical/physical topology-aware

collective communication in deep learning training. In Proc. of IEEE HPCA. 56–68.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10071117.

[5] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling without

prior knowledge. In Proc. of ACM SIGCOMM. 393–406. https://dl.acm.org/doi/

pdf/10.1145/2829988.2787480.

[6] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient coflow sched-

uling with Varys. In Proc. of ACM SIGCOMM. 443–454. https://dl.acm.org/doi/

pdf/10.1145/2619239.2626315.

[7] Microsoft Corporation. 2022. Microsoft Collective Communication Libarary.

https://github.com/microsoft/msccl.

[8] Microsoft Corporation. 2022. MSCCL Tools. https://github.com/microsoft/

msccl-tools.

[9] NVIDIA Corporation. 2019. Megatron-LM. https://github.com/NVIDIA/

Megatron-LM.

[10] NVIDIA Corporation. 2019. NCCL Tree Algorithm. https://developer.nvidia.

com/blog/massively-scale-deep-learning-training-nccl-2-4.

[11] NVIDIA Corporation. 2020. CUDA Refresher: The CUDA Programming Model.

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model.

[12] NVIDIA Corporation. 2022. PTX ISA – Cache Operators. https://docs.nvidia.

com/cuda/parallel-thread-execution/index.html#cache-operators.

[13] NVIDIA Corporation. 2024. NVIDIA Collective Communications Library (NCCL).

https://github.com/NVIDIA/nccl.

[14] NVIDIA Corporation. 2025. NVIDIA Inference Xfer Library. https://github.com/

ai-dynamo/nixl.

[15] Meghan Cowan, Saeed Maleki, Madanlal Musuvathi, Olli Saarikivi, and Yifan

Xiong. 2023. MSCCLang: Microsoft Collective Communication Language. In Proc.
of ACM ASPLOS. 502–514. https://dl.acm.org/doi/pdf/10.1145/3575693.3575724.

[16] Jon Crowcroft, Ian Wakeman, Zheng Wang, and Dejan Sirovica. 1992. Is layering,

harmful?(remote procedure call). IEEE Network 6, 1 (1992), 20–24. https://

ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=120719.

[17] Daniele De Sensi, Tommaso Bonato, David Saam, and Torsten Hoefler. 2024.

Swing: Short-cutting Rings for Higher Bandwidth Allreduce. In Proc. of USENIX
NSDI. 1445–1462. https://www.usenix.org/system/files/nsdi24-de-sensi.pdf.

[18] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021.

Prognosis: closed-box analysis of network protocol implementations. In Proc. of
ACM SIGCOMM. 762–774. https://dl.acm.org/doi/pdf/10.1145/3452296.3472938.

[19] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-

well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh

Govindan. 2013. Reducing web latency: the virtue of gentle aggression. In Proc. of
ACM SIGCOMM. 159–170. https://dl.acm.org/doi/pdf/10.1145/2486001.2486014.

[20] Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling

Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, et al. 2024. Characteri-

zation of large language model development in the datacenter. In Proc. of USENIX
NSDI. 709–729. https://www.usenix.org/system/files/nsdi24-hu.pdf.

[21] Ltd Huawei Technologies Co. 2024. Huawei Collective Communication Library

(HCCL). https://www.hiascend.com/hccl.

[22] Changho Hwang, KyoungSoo Park, Ran Shu, Xinyuan Qu, Peng Cheng, and

Yongqiang Xiong. 2023. ARK: GPU-driven Code Execution for Distributed Deep

Learning. In Proc. of USENIX NSDI. 87–101. https://www.usenix.org/system/files/

nsdi23-hwang.pdf.

[23] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed

Maleki, Youshan Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Saarikivi.

2022. Breaking the computation and communication abstraction barrier in

distributed machine learning workloads. In Proc. of ACM ASPLOS. 402–416. https:
//dl.acm.org/doi/pdf/10.1145/3503222.3507778.

[24] Tommy R Jensen and Bjarne Toft. 2011. Graph coloring problems. John Wiley &

Sons. Available: Graph coloring problems.

[25] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,

Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al. 2024. MegaScale: Scaling

large language model training to more than 10,000 GPUs. In Proc. of USENIX
NSDI. 745–760. https://www.usenix.org/system/files/nsdi24-jiang-ziheng.pdf.

[26] Heehoon Kim, Junyeol Ryu, and Jaejin Lee. 2024. TCCL: Discovering Better

Communication Paths for PCIe GPU Clusters. In Proc. of ACM ASPLOS. 999–1015.
https://dl.acm.org/doi/pdf/10.1145/3620666.3651362.

[27] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.

The quic transport protocol: Design and internet-scale deployment. In Proc. of
ACM SIGCOMM. 183–196. https://dl.acm.org/doi/pdf/10.1145/3098822.3098842.

[28] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya

Akella, and Michael Swift. 2021. ATP: In-network aggregation for multi-tenant

learning. In Proc. of USENIX NSDI. 741–761. https://www.usenix.org/system/

files/nsdi21-lao.pdf.

[29] Xuting Liu, Behnaz Arzani, Siva Kesava Reddy Kakarla, Liangyu Zhao, Vincent

Liu, Miguel Castro, Srikanth Kandula, and Luke Marshall. 2024. Rethinking Ma-

chine Learning Collective Communication as a Multi-Commodity Flow Problem.

In Proc. of ACM SIGCOMM. 16–37. https://dl.acm.org/doi/pdf/10.1145/3651890.

3672249.

[30] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya Akella. 2023.

Better Together: Jointly Optimizing ML Collective Scheduling and Execution

Planning using SYNDICATE. In Proc. of USENIX NSDI. 809–824. https://www.

usenix.org/system/files/nsdi23-mahajan.pdf.

[31] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024. CASSINI:

Network-Aware Job Scheduling in Machine Learning Clusters. In Proc. of USENIX
NSDI. 1403–1420. https://www.usenix.org/system/files/nsdi24-rajasekaran.pdf.

[32] Joshua Romero, Junqi Yin, Nouamane Laanait, Bing Xie, M Todd Young, Sean

Treichler, Vitalii Starchenko, Albina Borisevich, Alex Sergeev, and Michael

Matheson. 2022. Accelerating collective communication in data parallel train-

ing across deep learning frameworks. In Proc. of USENIX NSDI. 1027–1040.
https://www.usenix.org/system/files/nsdi22-paper-romero.pdf.

[33] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan

Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and Rachee Singh.

2023. TACCL: Guiding Collective Algorithm Synthesis using Communication

Sketches. In Proc. of USENIX NSDI. 593–612. https://www.usenix.org/system/

files/nsdi23-shah.pdf.

[34] Enge Song, Yang Song, Chengyun Lu, Tian Pan, Shaokai Zhang, Jianyuan Lu,

Jiangu Zhao, Xining Wang, Xiaomin Wu, Minglan Gao, et al. 2024. Canal Mesh:

A Cloud-Scale Sidecar-Free Multi-Tenant Service Mesh Architecture. In Proc. of
ACM SIGCOMM. 860–875. https://dl.acm.org/doi/pdf/10.1145/3651890.3672221.

[35] Daniel Stenberg. 2014. HTTP2 explained. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 120–128. https://dl.acm.org/doi/pdf/10.1145/2656877.

2656896.

[36] Guanhua Wang, Chengming Zhang, Zheyu Shen, Ang Li, and Olatunji Ruwase.

2024. Domino: Eliminating Communication in LLM Training via Generic Tensor

Slicing and Overlapping. arXiv preprint arXiv:2409.15241 (2024). https://arxiv.

org/pdf/2409.15241.

[37] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia, Gaoxiong

Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen. 2024. Towards Domain-

Specific Network Transport for Distributed DNN Training. In Proc. of USENIX
NSDI. 1421–1443. https://www.usenix.org/system/files/nsdi24-wang-hao.pdf.

[38] Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li, Yu Zhou, Ennan

Zhai, Chen Sun, Jiaqi Gao, et al. 2022. Predictable vFabric on informative data

plane. In Proc. of ACM SIGCOMM. 615–632. https://dl.acm.org/doi/pdf/10.1145/

3544216.3544241.

[39] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,

Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. TopoOpt: Co-

optimizing network topology and parallelization strategy for distributed training

jobs. In Proc. of USENIX NSDI. 739–767. https://www.usenix.org/system/files/

nsdi23-wang-weiyang.pdf.

[40] William Won, Midhilesh Elavazhagan, Sudarshan Srinivasan, Swati Gupta, and

Tushar Krishna. 2024. TACOS: Topology-Aware Collective Algorithm Synthesizer

for Distributed Machine Learning. In Proc. of IEEE MICRO. 856–870. https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10764470.

[41] Yongji Wu, Yechen Xu, Jingrong Chen, Zhaodong Wang, Ying Zhang, Matthew

Lentz, and Danyang Zhuo. 2024. MCCS: A Service-based Approach to Collective

Communication for Multi-Tenant Cloud. In Proc. of ACM SIGCOMM. 679–690.

https://dl.acm.org/doi/pdf/10.1145/3651890.3672252.

[42] Bohan Zhao, Wenfei Wu, and Wei Xu. 2023. NetRPC: Enabling In-Network

computation in remote procedure calls. In Proc. of USENIX NSDI. 199–217. https:
//www.usenix.org/system/files/nsdi23-zhao-bohan.pdf.

[43] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Jason Fantl, Prith-

wish Basu, Joud Khoury, and Arvind Krishnamurthy. 2025. Efficient Direct-

Connect Topologies for Collective Communications. In Proc. of USENIX NSDI.
705–737. https://www.usenix.org/system/files/nsdi25-zhao-liangyu.pdf.

[44] Yazhou Zu, Alireza Ghaffarkhah, Hoang-Vu Dang, Brian Towles, Steven Hand,

Safeen Huda, Adekunle Bello, Alexander Kolbasov, Arash Rezaei, Dayou Du,

et al. 2024. Resiliency at Scale: Managing Google’s TPUv4 Machine Learning

Supercomputer. In Proc. of USENIX NSDI. 761–774. https://www.usenix.org/

system/files/nsdi24-zu.pdf.

https://github.com/ROCm/rccl
https://dl.acm.org/doi/pdf/10.1145/3437801.3441620
https://dl.acm.org/doi/pdf/10.1145/3437801.3441620
https://dl.acm.org/doi/pdf/10.1145/3651890.3672239
https://dl.acm.org/doi/pdf/10.1145/3651890.3672239
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10071117
https://dl.acm.org/doi/pdf/10.1145/2829988.2787480
https://dl.acm.org/doi/pdf/10.1145/2829988.2787480
https://dl.acm.org/doi/pdf/10.1145/2619239.2626315
https://dl.acm.org/doi/pdf/10.1145/2619239.2626315
https://github.com/microsoft/msccl
https://github.com/microsoft/msccl-tools
https://github.com/microsoft/msccl-tools
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://github.com/NVIDIA/nccl
https://github.com/ai-dynamo/nixl
https://github.com/ai-dynamo/nixl
https://dl.acm.org/doi/pdf/10.1145/3575693.3575724
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=120719
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=120719
https://www.usenix.org/system/files/nsdi24-de-sensi.pdf
https://dl.acm.org/doi/pdf/10.1145/3452296.3472938
https://dl.acm.org/doi/pdf/10.1145/2486001.2486014
https://www.usenix.org/system/files/nsdi24-hu.pdf
https://www.hiascend.com/hccl
https://www.usenix.org/system/files/nsdi23-hwang.pdf
https://www.usenix.org/system/files/nsdi23-hwang.pdf
https://dl.acm.org/doi/pdf/10.1145/3503222.3507778
https://dl.acm.org/doi/pdf/10.1145/3503222.3507778
https://books.google.com/books?hl=zh-CN&lr=&id=leL0Y5N0bFoC&oi=fnd&pg=PR7&dq=graph+coloring+problem&ots=zLFFCPj4kI&sig=aNCui6AN8iTUsEtbyGt6i8k6pTA#v=onepage&q=graph%20coloring%20problem&f=false
https://www.usenix.org/system/files/nsdi24-jiang-ziheng.pdf
https://dl.acm.org/doi/pdf/10.1145/3620666.3651362
https://dl.acm.org/doi/pdf/10.1145/3098822.3098842
https://www.usenix.org/system/files/nsdi21-lao.pdf
https://www.usenix.org/system/files/nsdi21-lao.pdf
https://dl.acm.org/doi/pdf/10.1145/3651890.3672249
https://dl.acm.org/doi/pdf/10.1145/3651890.3672249
https://www.usenix.org/system/files/nsdi23-mahajan.pdf
https://www.usenix.org/system/files/nsdi23-mahajan.pdf
https://www.usenix.org/system/files/nsdi24-rajasekaran.pdf
https://www.usenix.org/system/files/nsdi22-paper-romero.pdf
https://www.usenix.org/system/files/nsdi23-shah.pdf
https://www.usenix.org/system/files/nsdi23-shah.pdf
https://dl.acm.org/doi/pdf/10.1145/3651890.3672221
https://dl.acm.org/doi/pdf/10.1145/2656877.2656896
https://dl.acm.org/doi/pdf/10.1145/2656877.2656896
https://arxiv.org/pdf/2409.15241
https://arxiv.org/pdf/2409.15241
https://www.usenix.org/system/files/nsdi24-wang-hao.pdf
https://dl.acm.org/doi/pdf/10.1145/3544216.3544241
https://dl.acm.org/doi/pdf/10.1145/3544216.3544241
https://www.usenix.org/system/files/nsdi23-wang-weiyang.pdf
https://www.usenix.org/system/files/nsdi23-wang-weiyang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10764470
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10764470
https://dl.acm.org/doi/pdf/10.1145/3651890.3672252
https://www.usenix.org/system/files/nsdi23-zhao-bohan.pdf
https://www.usenix.org/system/files/nsdi23-zhao-bohan.pdf
https://www.usenix.org/system/files/nsdi25-zhao-liangyu.pdf
https://www.usenix.org/system/files/nsdi24-zu.pdf
https://www.usenix.org/system/files/nsdi24-zu.pdf

ResCCL SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal

APPENDIX

Appendices are supporting material that has not been peer-

reviewed.

A CUSTOM ALGORITHM

Figure 15 illustrates the hierarchical mesh (HM) AllGather and

AllReduce algorithms we developed during experimental evalu-

ation to enhance performance. In both algorithms, the buffer is

partitioned into 𝑛 equal segments—one for each GPU—referred to

as chunks. Because the algorithm is designed for a single iteration

and its logic is identical across micro-batches, we simplify the dis-

cussion by assuming a single micro-batch and in-place execution.

Chunks are then indexed sequentially. The example below follows

the configuration shown in the figure 15, in which each machine

contains four GPUs.

HM AllGather. The HM AllGather algorithm consists of

two stages:

(1) Broadcast 1. Each GPU 𝑔𝑖 broadcasts its own Chunk 𝑐𝑖 to all

other GPUs within the same node and to its ring-aligned peer GPUs

across nodes. Intra-node communication uses a full-mesh (direct

send) approach, while inter-node communication employs a ring-

based broadcast. (2) Broadcast 2. Each GPU 𝑔𝑖 then rebroadcasts

to all local GPUs the chunks it received from remote, ring-aligned

peers during the first stage. This stage also uses full-mesh commu-

nication within the node.

HM AllReduce. HM AllReduce proceeds in four stages:

(1) Intra-ReduceScatter. GPU 𝑔𝑖 performs a full-mesh Re-

duceScatter with every other GPU in the same node. Specifi-

cally, 𝑔𝑖 sends to 𝑔 𝑗 all chunks whose IDs are 𝑗 + 4𝑥 (for integer

𝑥) and, conversely, receives from each peer all chunks whose IDs

are 𝑖 + 4𝑥 . (2) Inter-ReduceScatter. 𝑔𝑖 engages in a ring-based

ReduceScatterwith its ring-aligned peers across nodes, operating

only on chunks whose IDs are 𝑖 + 4𝑥 . (3) Inter-AllGather. The
same ring group then performs an AllGather on the identical

chunk subset (𝑖 + 4𝑥). (4) Intra-AllGather. Finally, 𝑔𝑖 conducts
a full-mesh AllGather within the node, sending every chunk with

ID 𝑖 + 4𝑥 to all other local GPUs.

B SYNTAX AND EXAMPLE OF RESCCLANG

Figure 14 illustrates the BNF syntax of ResCCLang. Figure 16

presents a ResCCLang implementation of the HM AllReduce al-

gorithm, targeting a 32-GPU configuration across four nodes. Al-

gorithm definition (line 1): The algorithm is defined using def
ResCCLAlgo, which initializes a ResCCLang instance with neces-

sary global parameters, such as topology size and buffer configu-

ration. Parameter initialization (lines 2-4): Common variables (e.g.,
ranks and chunk size computations) are declared to enhance code

readability and reduce redundancy. Intra-node ReduceScatter

phase (lines 5-12): This phase is implemented via a Python-style

def ::= funcName (paramList) : stat Definition

func ::= ResCCLAlgo Function

paramlist ::= nRanks = digit Parameter List

| nChannels = digit

| nWarps = digit

| AlgoName = string

| OpType = opType

| GPUPerNode = digit

| NICPerNode = digit

stat ::= assign | for | transfer Statement

assign ::= id = exp Assignment

for ::= for id in range (exp+) : stat For Loop

transfer ::= transfer (exp*, commType) Transfer Call

id ::= letter (letter | digit | _)* Identifier

exp ::= digit Expression

| id

| exp mop exp

| (exp)

mop ::= + | - | * | / | % Math Operator

opType ::= "Allgather" Operator Type

| "Allreduce"

| "Reducescatter"

commType ::= "recv" | "rrc" Communication Type

Figure 14: The BNF syntax of ResCCLang.

for loop, iterating over each GPU and communication step. For

each 〈GPU, step〉 pair, the corresponding transmission parame-

ters—including source rank, destination rank, step index, chunk

ID, and communication type—are derived based on the algorith-

mic logic. The Transfer primitive is then invoked to register each

transmission task. Inter-node ReduceScatter phase (lines 13-19):

A ring-based ReduceScatter is performed among GPUs on the

same logical track across nodes, operating exclusively on chunks

with IDs of the form 𝑖 + 4𝑥 , where 𝑖 is the intra-node GPU index.

Inter-node AllGather phase (lines 20-27): An AllGather follows

the same ring structure and operates on the same subset of chunks.

Intra-Node AllGather phase (lines 28-35): A final intra-node All-

Gather is executed using full-mesh communication, distributing

the gathered chunks to all local peers.

This implementation demonstrates the simplicity and flexibility

of ResCCLang, where communication patterns are concisely cap-

tured by the Transfer abstraction. Step indices explicitly define

execution order, ensuring correct synchronization and dependency

resolution across communication stages.

SIGCOMM ’25, September 8-11, 2025, Coimbra, Portugal Tongrui Liu et al.

0

3 2

Machine 0

Broadcast 1

1

7

4 5

Machine 1

6

0

3 2

Machine 0

Broadcast 2

1

7

4 5

Machine 1

6

(a) HM-AllGather

0

3 2

Machine 0

Intra-ReduceScatter

1

7

4 5

Machine 1

6

0

3 2

Machine 0

Inter-ReduceScatter

1

7

4 5

Machine 1

6

0

3 2

Machine 0

Inter-AllGather

1

7

4 5

Machine 1

6

0

3 2

Machine 0

Intra-AllGather

1

7

4 5

Machine 1

6

(b) HM-AllReduce

Figure 15: Custom hierarchical mesh algorithm design for a dual-node 8-GPU system.

1 def ResCCLAlgo(nRanks =32, nChannels=4, nWarps =16, AlgoName="HM", OpType="Allreduce", GPUPerNode =8, NICPerNode =8):
2 nNodes = 4
3 nGpusperNode = 8
4 nChunks = nNodes * nGpusperNode
5 for n in range(0, nNodes):
6 for r in range(0, nGpusperNode):
7 for baseStep in range(0, nNodes):
8 for offset in range(0, nGpusperNode - 1):
9 srcRank = nGpusperNode * n + r
10 dstRank = (r + offset + 1) % nGpusperNode + nGpusperNode * n
11 step = baseStep * (nGpusperNode - 1) + offset
12 transfer(srcRank , dstRank , step , (dstRank + baseStep * nGpusperNode) % nChunks , rrc)
13 for n in range(0, nNodes):
14 for r in range(0, nGpusperNode):
15 for baseStep in range(0, nNodes - 1):
16 srcRank = nGpusperNode * n + r
17 dstRank = (srcRank + nGpusperNode) % nChunks
18 step = nNodes * (nGpusperNode - 1) + baseStep
19 transfer(srcRank , dstRank , step , (srcRank + nChunks - baseStep * nGpusperNode) % nChunks , rrc)
20 for n in range(0, nNodes):
21 for r in range(0, nGpusperNode):
22 for baseStep in range(0, nNodes - 1):
23 srcRank = nGpusperNode * n + r
24 dstRank = (srcRank + nGpusperNode) % nChunks
25 step = nNodes * (nGpusperNode - 1) + nNodes - 1 + baseStep
26 chunkId = (srcRank + nChunks - (baseStep + nNodes - 1) * nGpusperNode) % nChunks
27 transfer(srcRank , dstRank , step , chunkId , recv)
28 for n in range(0, nNodes):
29 for r in range(0, nGpusperNode):
30 for baseStep in range(0, nNodes):
31 for offset in range(0, nGpusperNode - 1):
32 srcRank = nGpusperNode * n + r
33 dstRank = (r + offset + 1) % nGpusperNode + nGpusperNode * n
34 step = nNodes * (nGpusperNode - 1) + 2 * nNodes - 2 + baseStep
35 transfer(srcRank , dstRank , step , (srcRank + baseStep * nGpusperNode) % nChunks , recv)

Figure 16: Example program in ResCCLang.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Collective Communication Libraries
	2.2 Motivation
	2.3 Summary

	3 Problem and Goal
	4 Design
	4.1 Backend Optimization Workflow
	4.2 ResCCLang
	4.3 Primitive-Level Execution Scheduling
	4.4 Flexible TB Allocation
	4.5 Lightweight Kernel Generation

	5 Evaluation
	5.1 Experiment Setup
	5.2 Communication Benchmark
	5.3 Workflow Breakdown
	5.4 SM Resource Utilization
	5.5 End-to-End Training

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Custom Algorithm
	B Syntax and Example of ResCCLang

