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Abstract
The flexibility and portability characteristics have made containers

a popular serverless environment for large model training in recent

years. Unfortunately, these advantages render the network support

for containerized large model training extremely challenging, due

to the high dynamics of containers, the complex interplay between

underlay and overlay networks, and the stringent requirements

on failure detection and localization. Existing data center network

debugging tools, which rely on comprehensive or opportunistic

monitoring, are either inefficient or inaccurate in this setting.

This paper presents SkeletonHunter, a container network moni-

toring and diagnosis system that leverages the intrinsic and regular

sparsity of the network traffic incurred by large model training. Its

key idea is to reason about the traffic skeleton, which comprises a

crucial set of network paths consistently traversed by the training

traffic, so as to reliably detect and localize network failures in short

time. We deployed it in production for six months, uncovering

4,816 network failures with 98.2% precision and 99.3% recall, and

localizing them with a high accuracy of 95.7%. After fixing 98%

problematic network components, the monthly network failure

rate has significantly dropped by 99.1%.
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• Networks→ Data center networks; Network monitoring;
Error detection and error correction; Network dynamics.
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1 Introduction
Large model training is emerging as an important business for

cloud service providers (CSPs) [45, 50, 67]. It is typically launched

in either physical clusters or flexible containers in modern data

centers. While physical clusters can be fully utilized by profes-

sional customers, they are not suited to common users for technical

difficulties and resource wastes. In contrast, containerized model

training [10, 11, 15] has become popular in recent years together

with the advancement of serverless computing [74], due to its light-

weight, portability, and isolation characteristics [57]. Specifically,

containerized model training allows users to launch model training

tasks over shared RDMA NICs (RNICs) and GPUs through con-

tainers that bundle training code, data, and dependencies. As a

mainstream CSP, we have been operating a large-scale container-

ized model training cloud with 40K+ RNICs and 40K+ GPUs for

over three years, serving ∼5M training tasks from users.

At such a large scale, the reliability of the network infrastructure,

especially the connectivity among training containers, is crucial to

the service quality. In a typical setting, an RDMA over Converged

Ethernet (RoCE) network is expected to have a round trip time

(RTT) of less than 20µs [35, 46, 51] with zero packet loss for high-

performance training. This is because the training tasks are highly

synchronous—even a 10µs increase in RTT can lead to a ∼20%
slowdown in the training process [67]. In the worst case, when a

connectivity issue lasts for longer than 4s, the collective communi-

cation will time out and thus fail the entire training task [16].

Unfortunately, our long-term operational experience shows that

accurately and timely pinpointing connectivity issues for large-

scale containerized model training infrastructure is confronted

with three-fold major challenges as follows.

• High Dynamics of Containers. Most containers have short

life cycles, and grouped containers (that belong to the same task)

have asynchronous running states. Our statistics show that over

50% of the containers have a lifetime of less than 60 minutes;

in contrast, the lifetime of a physical host is usually as long as

months to years. Worse still, even grouped containers suffer a

couple of minutes of time lag in state synchronization. Both

factors make the container network structure frequently change.

• Endpoint-Induced Complexity. A container in production

can bind to multiple (e.g., eight) RNICs for adapting to different

patterns of training workloads, i.e., adaptive parallelism. The

bound pair of a container and an RNIC is termed as an endpoint.
This induces more complexity to connectivity monitoring, since

all endpoints now should be covered to ensure a reliable network.

• Interplay between Overlay and Underlay. Containerized
model training infrastructure is typically shared among numer-

ous tenants to concurrently train models, thus involving an
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additional overlay network atop the physical network for train-

ing resource/performance isolation. This, however, renders the

instances of virtual network components (e.g., container network

interface [6], virtual switches [66], and RNIC flow tables [54])

significantly more than those in traditional data centers.

Most importantly, these unique features of containerized model

training bring amultiplicative effect to the difficulty of troubleshoot-

ing connectivity issues in the network. Suppose there are 𝑋 con-

tainers involved in a training task, each container is bound to an

average of𝑌 RNICs, and each RNIC is associated with an average of

𝑍 virtual network components. Then, we need to examine𝑋 ×𝑌 ×𝑍
(e.g., 1K × 8 × 16 = 128K) network components in each training

round (i.e., an iteration of model training, typically ∼30s), which is

impossible to achieve in practice.

Existing solutions for diagnosing data center networks either

comprehensively monitor all network packets [34, 87, 89], or oppor-
tunistically sample the network traffic [32, 58, 71]. Neither applies to

our scenario. The former requires heavy modifications to network

infrastructure—although today’s commodity switches provide some

hardware supports for full-traffic monitoring (e.g., packet mirror-

ing [69]), monitoring virtual network components such as software

switches is heavyweight and incurs nontrivial performance degra-

dation. The latter uses various strategies to sketch the network,

but are not guaranteed to cover all the critical paths leading to

connectivity issues, and thus incur false negatives.

In this paper, we address the above challenges based on a key

insight—there is intrinsic and regular sparsity hidden in the net-

work traffic incurred by large model training. This is attributed to

the wide usage of the collective communication paradigm in large

model training. Supported by sophisticated libraries like UCC [21],

NCCL [20], MSCCL [18], and MPI [44], this paradigm has now be-

come a de facto standard in industry due to its effectiveness and

efficiency. As a result, the actual connectivity only exists among

the endpoints located at the same parallelism group [67], therefore

substantially and safely reducing the scrutinizing scope.

As a CSP, however, practically using the insight is hindered by

our invisibility into the tenants’ model composition, so we cannot

directly figure out the desired sparsity information. Instead, we

resort to a more pragmatic approach by inferring the traffic skeleton
that essentially connects all the active endpoints during a large

model training task. In other words, the skeleton comprises a crucial

set of network paths that the training traffic consistently traverses.

Specifically, we identify each crucial network path based on the

unique patterns of periodic traffic bursts that manifest on active

endpoints of the training containers. This phenomenon originates

from an imperative operation during large model training, i.e., the

iterative synchronization of enormous parameters in each training

round. With the inferred traffic skeleton information, we build an

optimal probing matrix among the endpoints to effectively detect

network failures with minimum resource utilization.

For a detected failure between a pair of endpoints, we localize

the problematic network component(s) through optimistic overlay-
underlay disentanglement, which separately examines the network

components along the path between the two endpoints at each layer,

assuming that the other layer is healthy. The optimism comes from

our observation that the root causes at overlay and underlay layers

are usually software- and hardware-related respectively, which will

not propagate to each other. If we cannot find any problematic

components at each layer, we fine-check the RNICs that connect

the two layers, which requires a lot of manual efforts and may

induce temporary network performance degradation.

We implement the above design into a practical system dubbed

SkeletonHunter, which has been deployed in our production con-

tainerized model training cloud for 10+ months (since Mar. 2024).

Using only two middle-end backend servers, it continuously col-

lects, filters, and aggregates connectivity data from 40K+ endpoints

that belong to ∼2K concurrent training tasks, based on which it

reliably detects and localizes network failures in a short time (8s on

average, which is essentially shorter than 30s, the typical duration

of a training round).

SkeletonHunter helped us discover 4,816 network failures during

Mar.–Aug. 2024 with 98.2% precision and 99.3% recall, and local-

ize them to 1,302 problematic network components with a high

accuracy of 95.7%. We carefully analyze the false cases, finding

that they mainly derive from intra-host connectivity issues like

the GPU-to-NIC NVLink and PCIe buses. Such issues can only be

detected using heavyweight hardware monitoring tools on each

host, which is orthogonal to the scope of SkeletonHunter.

We fixed 98% of the 1,302 problematic network components in

Sep. 2024; the remaining 2% cannot be fixed due to their relevance to

hardware switches and RNICs whose internal implementations are

invisible to CSPs like us [57, 87]. After that, the monthly network

failure rate of our production system during Oct.–Dec. 2024 has

been reduced by 99.1%, paving a dependable and generic network

runtime for stateful/stateless functions in model training tasks.

In summary, this paper makes the following contributions.

• We are the first to point out the real-world challenges against

reliable network support for large-scale containerized model

training, as well as their multiplicative effect on troubleshooting

the connectivity issues.

• We propose SkeletonHunter, a container network monitoring

and diagnosis system that leverages the unique traffic patterns

of large model training to accurately and efficiently pinpoint the

connectivity issues.

• SkeletonHunter has been deployed in our production container

network and has helped discover diverse network failures that

derive from the problems of different network components. We

have fixed most problematic network components and greatly

reduced the monthly failure rate.

This work does not raise any ethical issues.

2 Background
The rapid advancement of deep learning models, especially large

languagemodels (LLMs) such as GPT 3 [8], Llama 3 [17], Qwen 3 [22],

and DeepSeek V3 [14] have driven the demand for massive com-

puting and networking resources for model training. For example,

Llama 3 405B is trained with 16K NVIDIA H100 GPUs, lasting for

over three months [37]. This unprecedented demand for compu-

tational power has created a significant barrier for ordinary users

and developers, due to the high cost of acquiring and maintaining

such vast computing and networking infrastructure.
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Figure 1: Architectural overview of our in-production multi-
tenant large model training infrastructure built on top of the
RDMA NIC- and VXLAN-based container network.

To facilitate users’ rapid deployment and evolution of models,

today’s CSPs all provide containerized large model training ser-

vices [10, 11, 15]. This allows users to submit and run their training

tasks on shared infrastructure with a high degree of flexibility and

cost-effectiveness. The specific number and configuration of con-

tainers, as well as the number of bound RNICs, can all be determined

by the users based on their training requirements, although CSPs

will also provide a recommendation for their reference. In practice,

containerized large model training has become a popular paradigm

for common users to deploy training tasks on the cloud. As a major

CSP, we have been operating a large-scale containerized model

training cloud for over three years. It is equipped with 40K+ RNICs

and 40K+ GPUs, and has served 5M+ model training tasks.

Figure 1 shows the architectural overview of our containerized

large model training infrastructure. Each host is connected to the

underlay network [9] and is equipped with one to eight GPUs for

training, along with RNICs for high-performance RDMA commu-

nication. Also, the host runs a container runtime for managing

multiple containers from different users. When a user creates a

training task, the control plane initializes the corresponding con-

tainers (i.e., the training nodes) on one or more hosts, and binds

the RNICs and GPUs requested by the user to the training nodes.

An RDMA-based container network provides high-performance

data communications among containers within the same tenant

while isolating the traffic from different tenants [57]. As shown in

Figure 1, our RDMA-based container network is built as an overlay

network through the VXLAN [1] technique. A software-based vir-

tual switch (i.e., Open vSwitch [66], or OVS for short) is employed

to control the packet forwarding across the overlay and underlay.

Note that most of the packet en-/de-capsulation and forwarding

tasks are offloaded to RNICs, which significantly reduces the CPU

overhead and improves the network performance.

3 Motivation
Reliable networking among containers is crucial for containerized

large model training. Unlike traditional public cloud services (e.g.,

web services) that are stateless and can tolerate a certain degree of

packet loss, largemodel training is stateful and highly synchronized,

where training containers iteratively exchange the parameters of

the model [13]. A single-point connectivity failure can fail the entire

training procedure, leading to significant financial loss to end users.

During the three-year operation, we observe that ensuring the

network reliability is challenged by the aforementioned multiplica-
tive effect: the number of network components to be examined is

the multiplication of the numbers of containers, RNICs, and virtual

network components involved in a training task. In production, this

number can reach up to 128K (e.g., 1K containers × 8 RNICs per

container × 16 virtual network components per container, as we

have mentioned in §1). This compels us to make efforts to scrutinize

the whole network stack to understand and enhance reliability.

3.1 Observations and Challenges
To understand the fundamental challenges in accurately and effi-

ciently capturing connectivity issues of the container network for

large model training, we perform a comprehensive analysis on the

production data. Our analysis shows that 1) the high dynamics of

containers, 2) the endpoint-induced complexity, and 3) the interplay

between the overlay and underlay networks are the major obstacles

that make existing solutions inapplicable.

High Dynamics of Containers. The high flexibility and multi-

tenancy of our containerized training infrastructure lead to ex-

tremely frequent training task initializations and thus container

creations. Our data show that at peak hours, we need to handle

the creation of ∼2,000 containers every minute. Even in non-peak

hours, there are hundreds of containers created every minute.

In addition to the large number of container creations in a short

time, we observe a skewed distribution in the lifetime of containers.

Figure 2 shows the lifetime of containers in different training tasks

with different sizes in production (we measure the size of a task by

its utilized number of containers). A large portion of the containers

have a short lifetime of less than 60 minutes (e.g., ∼50% containers

for training tasks whose size is ≤256), while the vast majority (70%)

of the training containers have a lifetime of less than 100 minutes.

The lifecycle of a container network is much shorter than that of

traditional bare metal or virtual machine (VM) networks.

Besides, we notice that containers with a higher-end configu-

ration (typically in terms of the number and type of GPUs) tend

to have a longer lifetime, as illustrated in Figure 3. This is because

containers with lower-end hardware configurations are usually

used for debugging or testing during the training process, which

are more likely to be short-lived. After the debugging or testing,

users will use higher-end containers for actual training tasks.

Moreover, although all containers in the same training task are

supposed to have the same lifetime, the state transitions of different

containers are highly uncoordinated in practice. This is due to the

inherent differences between the host environments of different

containers (recall that containers in the same training task are

distributed across different physical hosts). Different hosts can have

different workloads and caching states, which makes the container

orchestration system create/destroy containers with distinct time

durations. Figure 4 profiles the different container startup time of

different training tasks. Most training tasks require a couple of

minutes to initialize all the containers, which presents a phased

pattern. Also, larger tasks bear a higher tail delay, where the longest

delay can reach up to 10 minutes. The deletion time of containers

exhibits a similar situation (and thus is not depicted).
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ferent sizes of training tasks.
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⊲ Challenge 1: Requiring fast connectivity probing on the highly
dynamic network topologies. The containerized large model train-

ing scenario brings short lifetimes to most containers, as well as

asynchronous running states to grouped containers (that belong to

the same task). Both are different from the situations in traditional

long-existing and stable physical networks, rendering existing solu-

tions based on comprehensive or opportunistic monitoring (c.f. §9)

inefficient or inaccurate. This makes it even harder for failure detec-

tion of problematic short-lived training tasks, where the containers

also present short lifetimes like the ones in normal tasks.

Endpoint-Induced Complexity. We note that the multiple RNIC

endpoints attached to each container further complicate connectiv-

ity monitoring. In our production environment, each container is

allowed to be bound to at most eight RNICs in hopes of maximizing

the GPU utilization. Figure 5 shows the distribution of the number

of RNICs allocated to each container in different training tasks. The

vast majority of containers are each bound to eight RNICs, while

a nontrivial portion of containers are each bound to four RNICs.

This is easy to understand since these numbers are the most com-

mon configurations for mainstream model training frameworks to

enable efficient data exchange among the GPUs within a training

node (e.g., through NVLink [55] and NVSwitch [90]).

In detail, today’s data center architectures tailored for LLMwork-

loads typically assign a dedicated RNIC for each GPU [45, 67], so

that each GPU can fully utilize the throughput of the RDMA net-

work. As a result, the number of RNICs bound to each container is

generally equal to the number of GPUs requested by the container,

which is usually the aforementioned four or eight.

⊲ Challenge 2: Requiring efficient coverage of the endpoint-induced
complexity. The multiple RNICs attached to each container addi-

tionally introduce a large number of source-destination pairs (cor-

responding to a wider variety of network paths) that need to be

monitored in real time.

Interplay between Overlay and Underlay Networks. To pro-

vide the multi-tenancy support, CSPs must isolate the resources

and performance for each training task. To this end, an overlay

network is constructed to separate the network traffic of different

training tasks. However, this introduces a significant number of

virtual network components in the network stack compared with

the traditional physical network or the VM overlay network. For

example, each RNIC should enable SR-IOV [40] and eSwitch [73]

to support packet en-/de-capsulation. Also, a virtual switch is de-

ployed on each host to determine how packets should be forwarded

in the data plane. This results in a great number of flow tables on

each host, making the network stack more error-prone.

Figure 6 illustrates the distribution of the number of flow table

items on each host in production, which is in fact only one kind

of virtual components in the network stack. As shown, the aver-

age number of flow table items on each host is over 40, and the

maximum number can reach as large as 9.3K on a host.

⊲ Challenge 3: Requiring effective disentanglement of the overlay-
underlay interplay. The interplay between the overlay and underlay

networks incurs a large number of virtual components in the net-

work stack, leading to essentially more difficulty in locating the

root causes of connectivity failures compared with the traditional

physical network or the VM overlay network.
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Figure 8: Parallelisms in a dense model training task, where
each cell represents a GPU along with its bound RNIC, and
each column represents a container.

3.2 Opportunities

Sparse Spatial Distribution. To address the above-described chal-
lenges, our first insight is that today’s large model training traffic

exhibits a sparse yet regular spatial distribution, where the majority

of network traffic is exchanged only between the RNICs of contain-

ers that have data dependencies. This phenomenon comes from the

intrinsic characteristics of mainstream model training frameworks

(e.g., TensorFlow [26], Megatron [61], DeepSpeed [68]): various

parallelism strategies, such as data parallelisms (DP), tensor paral-

lelisms (TP), and pipeline parallelisms (PP), are used to coordinate

multiple GPUs to efficiently train a single large model. Thus, the

entire training task is divided into multiple parts according to the

employed parallelism strategies assigned to different GPUs. As a

result, each GPU only needs to communicate with others in the

same parallelism group [45, 67].

Figure 8 shows the three types of parallelisms in a typical train-

ing process of a dense model [80] using 512 GPUs. This task is

configured with TP=8, PP=8, and DP=8. Each DP takes a different

batch of data for training. Within a DP, the involved tensors are

split into eight GPUs, and the entire model is divided into eight

levels of pipelines for forward and backward propagation. The in-

termediate training results are exchanged among GPUs in the same

stage or neighboring stages of the pipelines. After each training iter-

ation is finished, the parameters across different DPs are exchanged

among the counterpart GPUs in the same stage of the pipeline. In

particular, within each host (and its hosted containers), the commu-

nication among GPUs is conducted by high-bandwidth intra-host

links like NVLink, while the inter-host communications are over

RNICs. Thus, network transmission only happens in certain RNICs.

Figure 9a shows the corresponding traffic matrix among the

RNICs of the example training task, which is highly sparse. This

offers us the opportunity to efficiently monitor the network con-

nectivity by focusing on source-destination pairs that actually have

the connectivity (rather than all pairs). Besides dense models, other

emerging models such as Multiple-of-Expert (MoE) models [19]

introduce new parallelism strategies like expert parallelism (EP). As

shown in Figure 9b, new parallelism strategies may have different

traffic patterns, but the sparse spatial distribution still holds.

This sparse traffic distribution is caused by the combination of

two factors. First, today’s model training in data centers widely

uses rail-optimized topology [5, 67], which can fully utilize high-

bandwidth NVLink for maximizing the cluster scale. As shown in
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(a) Dense model.
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Figure 9: RNIC traffic patterns of a 512-GPU task.
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Figure 10: GPU communications in a rail-optimized data
center topology.

Figure 10, in a rail-optimized topology, different RNICs on the same

host belong to different rails and connect to different top-of-rack

(ToR) switches, making in-rail transmission the best choice for any

inter-host communications. Second, collective communication li-

braries like UCC [21], NCCL [20], MSCCL [18], and MPI [44], will

automatically transform any cross-rail transmissions to a combi-

nation of intra-host NVLink transmission and inter-host in-rail

transmission to maximize the performance. Thus, traffic patterns

are shaped to be sparse as in Figure 9.

Temporal Burst Cycles. Apart from the traffic sparsity in the spa-

tial dimension, the training traffic also presents a strong periodic

and seasonal pattern in the temporal dimension. Figure 7 shows

the throughput of RNICs in a typical training container. As shown,

during the 900-second period, there are multiple periodic traffic

peaks, where the throughput reaches up to 15 Gbps
1
. Between two

adjacent peaks, the throughput of the RNICs is low (even idle). Such

burst cycles are brought by the collective communications of differ-

ent phases in model training, where each training task is divided

into multiple iterations. In each iteration, network transmission

is trivial across model layers (i.e., the idle period). However, after

the gradients are calculated at the end of an iteration, the network

traffic thus becomes bursty as all the DPs need to exchange a large

number of parameters to synchronize the model (usually with an

all-reduce operation [43]).

The burst cycles of the model training traffic provide the oppor-

tunity to distinguish the “role” of each container. Specifically, by

comparing the time series of the traffic throughput of the RNICs

of the training containers, we can determine in which parallelism

group the current training container is working. Therefore, we can

1
The actual peak value is much higher (close to the line rate). However, due to limited

monitoring granularity in production (1 second), we can only present the average

value in each second.
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Figure 11: Architectural overview of SkeletonHunter.

precisely calculate the minimal source-destination pairs that are

necessary for connectivity monitoring, and remove the unnecessary

ones to significantly reduce the monitoring cost.

4 System Overview
We present SkeletonHunter, a system that enables efficient and

accurate detection of network issues for our in-production con-

tainerized large model training services. Our key idea is to use the

unique sparse traffic patterns of large model training to reduce

the overhead of network monitoring and improve the accuracy of

problematic network component localization. As a CSP, however,

we have very limited visibility into the tenants’ model composition

for privacy reasons and thus we cannot directly exploit the sparsity.

To address this, we propose a more pragmatic approach by in-

ferring the traffic skeleton that essentially connects all the active

endpoints in a training task. As shown in Figure 11, SkeletonHunter

follows the traditional Pingmesh [47] architecture and consists of

three major components including the controller, the agent, and the

analyzer to realize the methodology. The controller is responsible

for generating probing tasks (a.k.a., ping lists) and instructing the

agents for each container to perform actual probing. The agents

report the probing results (including end-to-end latency and packet

loss rate) to the analyzer for failure detection and localization. It

employs the following techniques to meet our goals.

• Traffic Skeleton Inference (§5.1). To enable fast ping task execu-

tion, SkeletonHunter infers the sparsity of the training traffic (i.e.,

the traffic skeleton) by exploiting the traffic bursts of the RNICs.

In particular, SkeletonHunter distinguishes parallelism configu-

rations such as DPs, TPs, and PPs for constructing the concrete

traffic skeleton and the corresponding RDMA probing matrix.

Besides, to accommodate the high dynamics of container state

transitions, the agents execute probings in a phased manner.

• Connectivity Anomaly Detection (§5.2). After collecting probing

results from agents, the analyzer applies temporal windows (i.e.,

a 30-second short-term window and a 30-minute long-term win-

dow) over these data to differentiate the latency patterns among

endpoints. It then identifies abnormal patterns that are prone to

have connectivity issues through statistical distribution testing.

In this way, the analyzer discovers anomalous end-to-end latency

increase and packet loss, as well as the corresponding suspicious

network components that lead to the anomalies.

• Optimistic Overlay-Underlay Disentanglement (§5.3). Once detect-
ing a connectivity issue, SkeletonHunter localizes it by eliminat-

ing the interplay between the overlay and underlay networks. It

examines the root causes at the overlay and underlay layers sep-

arately with an optimistic (and reasonable) assumption that the

root causes at the two layers are mostly software- and hardware-

related respectively, so they will not propagate to each other. If

the root cause is not found at either layer, SkeletonHunter will

validate the RNICs that connect the two layers.

5 Component Design
5.1 Traffic Skeleton Inference
The frequent container creation and state transitions require ex-

tremely efficient ping list generation and connectivity probing. To

achieve this, SkeletonHunter generates the ping list for the agents in

a phased manner, which adapts the ping task in𝑂 (1) time complex-

ity on scaling. First, considering pervasive sparse traffic patterns,

SkeletonHunter constructs the basic pruned ping list with 87.5%

scale reduction. Second, to conquer false probing incurred by differ-

ent startup times of containers on training task initialization, the

above ping list is incrementally activated in the data plane. Finally,

at the runtime of the training task, the ping list is further optimized

based on deduced traffic skeletons.

Preload: Basic Ping List Generation. For a real-world training

task, as shown in Figure 10, commutations only occur in the same

rail. When the training data in GPU 1 of Host A are transmitted

to GPU 2 of Host B, the data are first transmitted to the GPU 2 of

the Host A through the intra-host NVLink, and then forwarded to

the GPU 2 of the Host B through network links. This leaves the

opportunity for the basic pruned ping list generation. Specifically,

cross-rail communications would be automatically optimized to

the combination of intra-host NVLink transmission and same-rail

inter-host transmission [4]. Therefore, the network communication

is only conducted within the same rail of the network topology (i.e.,

the same rank of the RNICs among different hosts).

Based on the above property, SkeletonHunter first removes source-

destination pairs from a full-mesh ping list (i.e., all RNICs should

ping the other RNICs in the same training task) that are not in the

same rail. For typical training-oriented hosts in production, the

number of equipped GPUs and RNICs on each host is eight [45, 59,

67]. Therefore, we can reduce the scale of the basic ping list by 8×.
This process is done immediately at the controller when the user

submits the training task (even before the container initialization),

so we call it as the preload phase.

Initialization: Incremental Ping List Activation. If the con-

tainers directly execute the basic ping list after it is created, we

may encounter a large number of false positives on connectivity

issues derived from container state transitions. This is because the

containers that are under initialization may not have finished their

network stack initialization, and thus are reachable from the already

created containers, causing packet loss or high latency.

To avoid false positives, we choose to incrementally activate

the basic ping list on agents based on the container status (only

running containers are selected as destinations). However, if these

updates are all done by the controller as in traditional Pingmesh [47]

solutions, the controller will become the bottleneck (recall that the
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state transitions of containers are highly frequent). Instead, our

key insight is that the high dynamics of the data plane should be

handled by the data plane itself. In SkeletonHunter, the controller

offloads the ping list activation to data-plane containers.

Concretely, when a container is created, its agent will first get

the basic ping list from the controller but does not start the actual

connectivity probing until other containers register themselves

to activate the corresponding ping target recorded in the already

created source container. This registration process is done once a

container is created and ready to be pinged. In this way, we avoid

false alarms on container initialization.

Runtime: Optimization with Inferred Traffic Skeletons. Even
with the optimized basic ping list, there are still many inactive

source-destination pairs in it. As exemplified in Figure 9a, the basic

ping list for a single GPU in a 512-GPU task should have 64 desti-

nations. Actually, only nine destinations are connected in practice,

leaving 85.9% space for further optimization. However, achieving

this optimization requires a deep understanding of users’ model

parallelism strategies, which is impossible for a CSP like us. Existing

solutions [56] that capture detailed five-tuple information of the

network connections of the service links are also not applicable to

the containerized training scenario, as we cannot modify relevant

RDMA APIs of the network stacks inside the users’ containers for

privacy, security, and stability reasons.

To address this, we propose a more pragmatic yet effective ap-

proach: inferring the traffic skeletons (i.e., a crucial set of network

paths that the training traffic consistently traverses) through the

easy-to-obtained throughput burst cycles (cf. §3.2) over contain-

ers’ RNICs, together with the common parallelism patterns used

in production. In detail, Figure 12 illustrates the scale of training

tasks in production. First, the number of requested GPUs (and the

corresponding RNICs) in a training task is only confined to a limited

set of values (e.g., 128, 512, and 1,024), which are often multiples of

eight. This is easy to understand since if the users want to fully uti-

lize GPUs’ computation capacity, they must request a fixed number

of GPUs so that the GPUs can be divided into different groups for

efficient parallelism (e.g., #𝐺𝑃𝑈𝑠 = 𝑇𝑃 × 𝑃𝑃 × 𝐷𝑃 ).
Next, we notice that the temporal throughput burst cycles are

similar for RNICs (and GPUs) in the same position across different

parallelism groups. For example, in Figure 8, the upper left allocated

RNICs in the same position across the eight different DP groups

have the same burst cycles. This is because the DP only divides

the input training data into different chunks, while the training

processes for these chunks are the same. With the above two key

observations, we devise traffic skeleton inference as follows.

We extract the frequency-domain features of the throughput

burst cycles of containers’ RNICs to describe traffic periodicity.

We use Short-Time Fourier Transform (STFT) [28] to convert the

time-domain throughput burst cycles into the frequency domain.

We have tried other feature extraction methods like Wavelet Trans-

form [42] and Discrete Fourier Transform [82], while STFT can

capture the time-varying characteristics with the lowest computa-

tional complexity, which is crucial for runtime analysis. As shown

in Figure 13, after the conversion, the throughput burst cycles of the

RNICs A, B, C, and D present two kinds of frequency components,

where A and B share similar STFT features, and C and D share

similar ones. This similarity indicates that the RNICs A and B (C

and D) are in the same position across different DPs.

By applying state-of-the-art clustering algorithms on the ex-

tracted STFT features, we can cluster RNICs into different groups,

where RNICs in the same group are highly likely to be in the same

position across different DPs. In particular, we use the hierarchical

clustering algorithm [60] for grouping by measuring the similarity

of the traffic burst’s STFT features on the RNICs. We further ap-

ply the following constraints to the grouping process so that the

grouping results are more interpretable based on the number GPUs

allocated to the training task:

min 𝜎2 =
1

𝑘

𝑘∑︁
𝑖=1

(∥𝑐𝑖 ∥ − 𝑐)2 , (1)

s.t. 𝑁 mod ⌊𝑐⌉ = 0, (2)

𝑟1, 𝑟2, · · · 𝑟𝑥 ∈ 𝐻𝑟 ⇒ ∀𝑐𝑖 , ∥𝑐𝑖 ∩ 𝐻𝑟 ∥ ≤ 1, (3)

where 𝑘 is the total number of RNIC groups in a training task, 𝑐𝑖
represents the 𝑖-th group, ⌊𝑐⌉ is the nearest integer of the average
number of the RNICs in each group, 𝑁 is the total number of the

RNICs, 𝑟𝑖 is the 𝑖-th RNIC in host 𝐻𝑟 .

The objective function in Equation (1) minimizes the variance

of the number of the RNICs in each group. This is particularly

important since each individual model training pipeline in a training

task should have the same scale, which is 𝑇𝑃 × 𝑃𝑃 . Similarly, we

add the constraint in Equation (2) to ensure that the number of the

RNICs in each group can be evenly divided by the number of DPs.

Finally, the constraint in Equation (3) ensures that the RNICs in the

same host are not in the same group, since in this case, the RNICs

are in the same DP for NVLink acceleration within the host.
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The above process helps us infer the DP groups of the training

task, whose value is equivalent to ⌊𝑐⌉. We next infer the TPs and PPs

of the training jobs based on𝑇𝑃 ×𝑃𝑃 = 𝑁 /⌊𝑐⌉. We further leverage

the time shift of the throughput burst cycles to distinguish the level

of PPs. For example, the PP in the first layer always experiences

the same traffic burst earlier than the PP in the second layer.

As a result, we finally infer the parallelism patterns of training

tasks, and we can determine the traffic skeleton (i.e., which pairs

of endpoints have the actual connectivity) for each task. The latest

new models may introduce extra parallelism strategies (e.g., EP),

but can be classified using the same method. At the runtime of the

training, SkeletonHunter removes unnecessary targets from the

ping list for further optimization. By only enabling the probing

along the traffic skeleton in the probing matrix for each container,

the ping list can be further reduced by >95% (cf. §7.1).

5.2 Connectivity Anomaly Detection
While a high packet loss rate can be easily classified as a network

issue, a sudden high latency can be caused by transient congestion

or network resource contention. It is necessary to perform data

analysis to filter out these transient latency spikes. To this end,

our key idea is to leverage state-of-the-art sequential analysis tech-

niques [79, 86] to coherently evaluate whether the communication

patterns have changed over time. Concretely, the analyzer of Skele-

tonHunter aggregates the collected data, and performs short-term

and long-term latency anomaly detections through a statistical test-

ing. The rationale behind this is the law of large numbers [49, 86],

which indicates that the average measured data will be closer to

the true value if we have sufficient data samples.

Short-term Latency Anomaly Detection.We aggregate the la-

tency data at a fine granularity (30s) for each pair of RNIC endpoints

for short-term analysis. In each temporal window, we describe the

latency distribution using the 25th percentile, 50th percentile, 75th

percentile, minimum, mean, standard deviation, and maximum val-

ues. Then, we perform latency anomaly detection based on the local

outlier factor (LOF) [33] on the latency distributions on each time

window. LOF is a density-based score to measure the local deviation

of a data point with respect to its neighbors. We set a look-back

window of five minutes to calculate LOF for each time window so

as to cover probable burst cycles. If a new five-minute window has

a high LOF that cannot be clustered into previous windows, we

determine that an anomaly occurs.

Long-term Latency Anomaly Detection. For the long-term anal-

ysis, we aggregate and analyze the latency every 30 minutes. This

design is to prevent gradual degradation of network performance,

which is not easy to detect in the short-term analysis since the

gradual anomaly may be cumulatively clustered into the previous

short-term windows. As we can gather a huge number of latency

data in the long-term analysis, we apply statistical tests to detect

the latency anomalies. We find that the latency data in the long

term of two RNICs that work properly always follows a log-normal

distribution [2], i.e., the logarithm 𝑌 of the latency data 𝑋 follows

a normal distribution 𝑌 = ln (𝑋 ) ∼ 𝑁
(
𝜇, 𝜎2

)
.

As shown in Figure 14, we perform parameter estimation [31]

on the latency data for each source-destination RNIC pair at time𝑇

and derive the estimated log-normal distribution. At time 𝑇 + 0.5ℎ,

𝑇 + 1ℎ, 𝑇 + 1.5ℎ, we apply Z-test [62] on the collected latency data

respectively to test whether the data still follow the estimated log-

normal distribution. In the example, latency data at 𝑇 + 0.5ℎ still

follow the estimated distribution, while those at𝑇 + 1ℎ and𝑇 + 1.5ℎ

deviate from the estimated distribution. For𝑇 + 1ℎ and𝑇 + 1.5ℎ, we

determine that a latency anomaly occurs.

Algorithm 1 Failure Disentanglement and Localization

1: global 𝑃ℎ𝑦𝐿𝑖𝑛𝑘𝐶𝑜𝑢𝑛𝑡𝑒𝑟 :map[int]
2: 𝐿𝑂 , 𝐿𝑈 ← Separate(𝑃𝐴𝐵 ) ⊲ Overlay/underlay links

3: procedure Separate(𝑃 )
4: for 𝑝 ← 𝑃 do
5: if packets in 𝑝 encapsulated then 𝑃𝑂 ← 𝑃𝑂 ∪ 𝑝
6: else 𝑃𝑈 ← 𝑃𝑈 ∪ 𝑝
7: procedure OverlayReachability(𝐿𝑂 )
8: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝑂 [0]
9: 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← set(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 )
10: for 𝑙 ← 𝐿𝑂 [1 :] do
11: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ← Forward(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑙 )

12: if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = null or 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 then
13: return 𝑙 ⊲ Overlay failure point

14: 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪𝐶𝑢𝑟𝑟𝑒𝑛𝑡
15: return null ⊲ No overlay failure

16: procedure PhysicalIntersection(𝐿𝑈 )

17: for 𝑙 ← 𝐿𝑈 do
18: 𝑃ℎ𝑦𝐿𝑖𝑛𝑘𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝑙]++
19: if ∀𝑙 ∈ 𝐿𝑈 , 𝑃ℎ𝑦𝐿𝑖𝑛𝑘𝐶𝑜𝑢𝑛𝑡𝑒𝑟 [𝑙] ≤ 1 then
20: return null ⊲ No underlay failure

21: return MaxCount(𝐿𝑈 ) ⊲ Underlay failure point(s)

5.3 Optimistic Overlay-Underlay
Disentanglement

After detecting high packet loss or latency distribution anomalies,

SkeletonHunter can only determine there is a network issue be-

tween two containers, but cannot pinpoint which network compo-

nent causes this issue so far. To address this, we devise an optimistic

overlay-underlay disentanglement mechanism (as shown in Algo-

rithm 1) to locate the network issues under the assumption that

the root causes of the overlay and the underlay layers are software-

and hardware-related respectively, which will not propagate to the

other layer. It first separates the paths between the two containers

into distinct overlay and underlay links (lines 1-6). Then, it per-

forms the overlay logical reachability analysis (lines 7-15) and the

underlay physical intersection analysis (lines 16-21) to locate the

network issues in the two layers, respectively.

OverlayNetwork Failures.As shown in Algorithm 1, the analyzer

of SkeletonHunter examines the logical forwarding chain across

the problematic endpoints in the overlay network. It relays the

packet forwarding process and checks if the packets are correctly

forwarded to the destination or whether there is a loop. Once it

detects unreachability (i.e., 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 is null in Algorithm 1), it can

pinpoint the problematic overlay link at the broken point. If the

packet is forwarded to a visited component, it determines that

overlay forwarding rules are incorrect and a loop exists.
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Physical Network Failures. Due to path multiplexing induced

by ECMP routing in the underlay network [45], SkeletonHunter

leverages the network tomography [65] technique to vote for the

physical links that are most likely to be faulty. Besides, we further

deploy an agent on each physical host to enable traceroute probing

for underlay path intersection, which is similar to the scheme used

in R-Pingmesh [56] and 007 [29].

Validating RNICs. If the above two processes cannot locate any
problematic network components while the issue does exist, Skele-

tonHunter further validates the RNICs that connect the overlay

and underlay, which involves some manual operations. The host

agent dumps the flow tables offloaded from the OVS to RNICs for

preliminary detection of the inconsistency between the two layers.

This process can cause temporary network performance degrada-

tion, but it is necessary to ensure the correctness of the network

configurations. If no inconsistency is detected, we manually check

the configurations of the RNICs and OVS to locate network issues.

With all of the above designs, SkeletonHunter can effectively locate

network issues at both overlay and underlay, and classify them into

physical switches, RNICs, virtual switches, host configurations, etc.

Rationale behind the Optimism. In practice, the optimistic dis-

entanglement may not persistently work well in all cases, and we

have encountered the cases where the issues of the overlay and

underlay layers occur at the same time. For example, the underlay

RNIC’s unexpected behaviors can cause the misconfiguration of

the overlay virtual switch [57], which further exacerbated network

issues. In this case, we can only manually resolve the problem based

on our domain knowledge and experience.

Nevertheless, it should be noted such a situation is rare in our

production environment, and designing a system that can handle

all possible issues happening in containerized model training is not

practical. The optimistic disentanglement can handle most of the

cases we have seen in production since it effectively verifies the

overlay’s logical correctness and the underlay’s physical link states.

6 Implementation
Controller. The controller is implemented with 6,350 lines of code

in Java. It is responsible for inferring traffic skeletons (with the help

of the analyzer) and managing probing tasks for agents, which is

deployed on two servers in our frontend network for load balancing

and fault tolerance. All the communications between the controller

and agents are encrypted so that users cannot “forge” the requests

to obtain the information of the training tasks of other users. The

controller connects to the database to synchronize the states of

the training containers. It receives the analysis results from the

analyzer so that it can update the instructions to the agents (e.g.,

dump RNICs’ flow tables).

Agent. We implement the overlay and underlay agents with 5,400

lines of code in golang [36]. For the overlay agent, it is launched

through sidecar containers [72] along with training containers.

In this way, an agent is isolated from the training container at

the process level, while sharing the network namespace with the

training container that it monitors. When a training container is

launched, the agent automatically queries the controller to get the

ping list and then incrementally activates the probings after the

registrations of other containers in the same training task. In terms

of the underlay agent, it is deployed as a standalone container in

the host, which is accessible to all the host’s resources. Both agents

are highly configurable by the controller.

Analyzer. We use the available services in our cloud environment

to construct the analyzer, including log services [24] and real-time

computing services [23]. The log service stores both stateless and

stateful measurement data from agents, which are then indexed

and aggregated based on the training tasks, containers, RNICs, as

well as uplink switches. The real-time computing service analyzes

the logs and generates analyzing results to inform the controller

and trigger alarms in a feedback-loop manner.

7 Evaluation
Wehave deployed SkeletonHunter in production for over 10months.

We utilize online statistics from one large-scale production cluster

with 4K+ physical hosts to evaluate SkeletonHunter. Each host is

equipped with eight commodity RNICs (either 200 Gbps or 400 Gbps

throughput), 128-core CPUs, and 2 TB memory. Each RNIC runs in

SR-IOV mode with 128 virtual functions (VFs)
2
. Users can specify

the number of GPUs and training nodes (i.e., containers) on de-

mand. The information of all training tasks is synchronized with

the SkeletonHunter controller, so that SkeletonHunter can monitor

the connectivity for each task. The evaluation involves six-month

(Mar.–Aug. 2024) data with 2M+ tasks.

7.1 Efficiency and Effectiveness
The Scale of Probing Targets. SkeletonHunter significantly re-

duces the scale of the probing matrix with the help of the traffic

skeleton. Figure 15 shows the scale of probing tasks on different

numbers of allocated RNICs. At all the RNIC configurations, the

number of probing targets (SkeletonHunter-Basic denotes the basic

ping list) is always an order of magnitude smaller than that in the

full-mesh solution. For example, with 2,048 RNICs, the full-mesh

solution requires an average of 60,430.32 probings for each itera-

tion round among all the training containers, while SkeletonHunter

only involves 2,593.03 probings. Note that although some of the ex-

isting network monitoring solutions like deTector [64] also reduce

the scale of probing, they still require a large number of probes

in practice (e.g., 15K+ probes for each training iteration round in

deTector). This is because these solutions only simplify the probing

matrix by considering common data center topologies without the

awareness of the training workloads that have a high sparsity and

symmetry in their traffic patterns.

Time Cost of Each Probing Round. Given the significantly

smaller probingmatrix, we evaluate the actual time cost of a probing

round in SkeletonHunter. As shown in Figure 16, the full-mesh so-

lution bears a significantly longer probing time on all RNICs. When

the number of RNICs in a training cluster is 512, 1,024, and 2,048,

the full-mesh solution consumes 560.25, 1,123.43, and 2,034.12 sec-

onds, respectively. In contrast, under the same probing frequency

and cluster configuration, a basic ping list in SkeletonHunter only

consumes 64.85, 122.54, and 240.54 seconds respectively, while the

final ping list with the inferred traffic skeleton consumes 8.23, 16.91,

and 25.09 seconds for probing. These results show that the two

2
We enable 128 VFs per RNIC for faster VF allocation and deallocation across different

containers, as well as supporting RNIC sharing in the future.
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Figure 17: Resource consumptions of
SkeletonHunter in production.

phases of probing in SkeletonHunter all significantly reduce the

time cost under the same probing frequency. The final ping list

can further reduce the probing time by 87.3%, 86.2%, and 89.6%

respectively compared with the basic ping list.

Agent Overhead. The containerized environment imposes a con-

straint that the agent should have trivial resource consumption, or

the overall overhead will be unacceptable due to the large number

of training containers. In practice, the agent of SkeletonHunter

incurs negligible overhead on the training containers. As shown in

Figure 17, the CPU and memory consumptions of the agent always

converge to 1% and 35 MB respectively over the entire lifetime of a

container. This is easy to understand since we utilize the unique

traffic patterns of the training jobs to minimize the probing matrix,

so that redundant probing tasks are largely eliminated.

Detection Accuracy. SkeletonHunter achieves a high accuracy

in detecting network reliability issues in production. By manually

checking all the detection results, we note that SkeletonHunter

achieves a high precision of 98.2% and a high recall
3
of 99.3% in

discovering network failures during the operation of our services.

In total, it helps us detect 4,816 network failures and correctly

localize them to 1,302 problematic components with an accuracy of

95.7%, which significantly accelerates the diagnosis and recovery of

network reliability issues for containerized large model training in

production. We have fixed 98% of the issues, while the remaining

cannot be fixed due to the limited visibility into the hardware

of commodity switches and RNICs [57, 87]. After the fixes since

Oct. 2024, the monthly network failure rate has reduced by 99.1%

compared with the previous period.

7.2 Network Failure Localization
We summarize representative network issues detected by Skeleton-

Hunter in Table 1. All these issues can be categorized to 19 different

types, which are mainly related to six components in our model

training services (i.e., physical switches, RNICs, host boards, virtual

switches, container runtime, and configurations).

Link/Switch Anomalies. For network issues occurring in the

inter-host network (Issue 1–4), SkeletonHunter can filter all abnor-

mal probing results and leverage the network tomography to locate

the anomalous devices (either links or switches). Most link/switch

anomalies can be immediately verified by warning logs on the corre-

sponding switches to quickly determine the root causes. Therefore,

we deploy an automatic diagnosis and repairing pipeline based on

3
We obtain false negatives based on users’ feedback.
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Figure 18: A case study for SkeletonHunter, where the anoma-
lous connectivity behaviors are caused by the flow table in-
consistency between the overlay and underlay components.

it to trigger subsequent repairing procedures according to different

root causes (e.g., fiber module cleaning for CRC error/port flapping,

and fiber module replacement for port down).

Host-related Anomalies. According to our experience, a variety

of factors (Issue 5–13) may lead to host-side anomalies. When these

issues occur, we immediately isolate problematic hosts/modules to

eliminate their effects on model training.

Figure 18 shows a typical case encountered in production. Before

the 90th second, the latency between two RNICs of containers is

stable at around 16µs. However, after the 90th second, the latency

increases to 120µs, and the ping packets bear a small packet loss

(<0.1%). With statistical testing, SkeletonHunter determines that

such a latency is problematic since it deviates significantly from

the history latency distribution. This can be validated through the

switch queue length, which hardly increases during the period of

anomalous latency spikes and indicates that the actual throughput

does not reach the bottleneck. SkeletonHunter in fact did not find

any overlay/underlay issues at first, and thus dumps the RNIC flow

tables. It then detects an inconsistency in the flow tables for the

overlay virtualization, and isolates the RNIC immediately. After

that, the RNIC recovers in 60 seconds, and all metrics return to

normal. Our further investigation reveals that this issue is because

the RNIC did not update flow counters timely, which makes the

control plane regard the flow as inactive and invalidates it from the

RNIC. As a result, relevant packets are processed at the software

stack with a significantly higher latency. With SkeletonHunter, we

immediately get alerts and take actions to mitigate this issue.

Virtual Switch/Container Anomalies. In addition to physical

links, switches, and hosts, software components (such as virtual

switches, containers, and their related configurations) can also be-

come the culprit of reliability issues (Issue 14–19). Nevertheless,
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Table 1: Network issues detected by SkeletonHunter in production.

No. Issues Components Symptoms Detailed Reasons

1 CRC error Inter-host Network Packet Loss Physical fabric causes packet corruption.

2 Switch port down Inter-host Network Unconnectivity The switch port is unreachable.

3 Switch port flapping Inter-host Network Packet Loss The switch port is flapping.

4 Switch offline Inter-host Network Unconnectivity The switch crashes or is manually set to offline for upgrade.

5 RNIC hardware failure RNIC Unconnectivity Hardware components of the RNIC are not working normally.

6 RNIC firmware not responding RNIC High Latency RNIC firmware bugs result in high latency of specific flows.

7 RNIC port down RNIC Unconnectivity The RNIC port is consistently down.

8 RNIC port flapping RNIC Packet Loss The RNIC port is periodically down.

9 Offloading failure RNIC High Latency Packet en-/de-capsulation cannot be offloaded to the RNIC.

10 Bond error Kernel/RNIC Unconnectivity Unable to bond the ports of the RNIC.

11 RNIC GID change Kernel Unconnectivity The network service of the OS is restarted unexpectedly.

12 PCIe-NIC error Host Board High Latency The RNICs in the same host cannot communicate with each other.

13 GPU direct RDMA error Host Board High Latency The GPU cannot directly communicate with the RNIC in the container.

14 Not using RDMA Virtual Switch High Latency Flows that should be transmitted over RDMA are actually using TCP/UDP.

15 Repetitive flow offloading Virtual Switch High Latency Offloaded flows are frequently invalidated in the RNIC.

16 Suboptimal flow offloading Virtual Switch High Latency Flows are offloaded with incorrect orders with high latency of some flows.

17 Container crash Container Runtime Unconnectivity Containers crash shortly after creation due to container runtime defects.

18 Hugepage misconfiguration Configuration High Latency The host’s hugepage configuration is not consistent with the RNIC.

19 Congestion control issue Configuration High Latency The congestion control of a specific queue in the switch is not enabled.

these issues can be resolved quickly by restarting or reinitializing

the corresponding software components. In this way, Skeleton-

Hunter can truncate usually hours of complete testing and directly

perform the recovery procedure in minutes, which significantly

reduces our operational costs.

7.3 Limitations
Users’ Uncertain Workloads. SkeletonHunter is built based on

a key observation that today’s large model training workloads ex-

hibit sparse traffic patterns due to the wide usage of the collective

communication primitives. Although this holds true for most of

users’ workloads, there can still be some users who do not follow

this pattern. If the user simply starts up a container cluster for

debugging the model or the collective communication libraries, the

inferred traffic skeleton might be inaccurate. Moreover, the paral-

lelism strategies of model training is constantly evolving, which

brings new traffic patterns that are unknown to SkeletonHunter.

In these cases, SkeletonHunter may fail to cluster the containers’

RNICs into the same group, or generate a larger probing matrix

than necessary, leading to a higher probing overhead.

To address these issues, we can further make efforts from two

aspects. First, SkeletonHunter can evaluate the fidelity of the in-

ferred traffic skeleton before the actual probing. For example, it can

validate whether the traffic skeleton persistently aligns with the

actual traffic bursts. Second, on the user interface of our container

services, we can provide an option for users to manually disable

the probing if the users are aware that their workloads use the

parallelism strategies beyond standard collective communication

primitives. We can also provide some degrees of flexibility for users

to add hooks to their intra-host software components (e.g., RDMA

and collective communication libraries), so as to further validate the

traffic skeleton. Besides, our engineering team is also working on a

more generic traffic skeleton inference algorithm that can adapt to

the evolving parallelism strategies.

False Detections. We did encounter some false detections with

SkeletonHunter in production. Specifically, one of the main rea-

sons is that SkeletonHunter mostly focuses on detecting end-to-end

connectivity issues, while the connectivity of the intra-host compo-

nents for model training is only partially covered. As we have men-

tioned in Table 1, SkeletonHunter can detect PCIe-to-NIC errors,

which manifest as the unconnectivity of a container to any other

containers in the training task. However, it cannot detect the GPU-

to-GPU and GPU-to-PCIe connectivity issues. This is because such

connectivity is not network-related but hardware-related. These

issues can only be covered by other hardware monitoring tools,

which are orthogonal to SkeletonHunter.

Some of the false detections are caused by the defects of Skele-

tonHunter itself. In order to accurately measure end-to-end latency,

SkeletonHunter leverages the precision time protocol [3] to elimi-

nate clock drifts. This requires the agent to respond to the probing

requests in a timely manner, while we have encountered some cases

where the agent crashes and cannot respond to the probing. As

a result, SkeletonHunter regards the corresponding links as prob-

lematic by mistake and triggers the alarms. Such issues reveal the

importance of improving the reliability of the monitoring system

before using it to monitor the reliability of the production system.

It should be noted that SkeletonHunter is only one of the crucial

components for failure detections and recovery in our container-

ized modeling training service. The above false detection caused

by SkeletonHunter can still be resolved by our other monitoring

systems like error log analyzers.

8 Experience
Using Pings for Connectivity Monitoring. Choosing to use

pings for probing is actually a trade-off between the monitoring

overhead and the monitoring accuracy. Of course, one can choose

to examine all packets and all real-time connections to get the

most accurate traffic skeleton and the corresponding connectivity

information. However, this would incur a very high overhead and

may also induce privacy issues in the multi-tenant environment.

Deployment Experience of Existing Methods. Before we devel-
oped and deployed SkeletonHunter, we had tried several existing

solutions, in particular Pingmesh and its variants [47, 56]. We found
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that these solutions are not fully suitable for our production environ-

ment because they are not designed for multi-tenant containerized

model training whose network topology is constantly changing.

Also, some of the existing methods require special hardware fea-

tures like IP-in-IP techniques of the switches [78], which induce

additional operational costs and stability risks.

Handling Detected Failures. Although SkeletonHunter mainly

focuses on failure detection, it also provides some basic failure

handling capabilities by integrating with our existing network man-

agement systems. When SkeletonHunter detects an anomaly, it will

first trigger an alert to notify our network operation team. Also,

it will automatically add the corresponding hosts or RNICs to the

blacklist, so that no new training tasks will be scheduled on them

until the issue is fully resolved. Besides, we are now developing

a more comprehensive live migration mechanism for the quick

recovery of training containers, which aims to minimize the impact

of network failures on training tasks.

Accelerating Agent Evolution. Due to the rapid development

of large-scale model training scenarios, the infrastructure (e.g.,

GPUs, RNICs, and data center topologies) and the trained models

are constantly evolving, which requires the continuous upgrade of

SkeletonHunter. In the ten months of operation, we have conducted

over 20 online updates, and each is fully deployed across all our

physical clusters. To achieve such rapid updates, we employ a series

of optimizations in our implementation.

For the deployment of the SkeletonHunter agent, the utilization

of sidecar containers (cf. §6) decouples the deployment and updates

of the agent from the updates of the training tasks. With sidecar

containers, we designed monthly routine releases (to support sig-

nificant upgrades) and weekly emergency releases (to support hot

fixes). After a new agent release, new training tasks automatically

run with the latest version of the sidecar container. As old training

tasks are gradually finished, the agent will then complete the full

updates across all physical clusters and thier hosted containers.

Although using sidecar containers may introduce some over-

head, it is still cost-efficient because we have deployed other ser-

vices over sidecar containers besides SkeletonHunter’s agents, such

as VF statistic monitoring and container health checks. Therefore,

using sidecar containers is in fact a unified solution for monitor-

ing and managing our services with minimal operational costs. In

addition, we have also designed a suite of strategies to enable con-

sistently high-performance execution of serverless applications for

SkeletonHunter agents and sidecar containers, such as data-driven

scheduling, resource optimizations based on workload distributions,

as well as adaptive resource allocation for load balancing.

Coordinating All Systems for Containerized Model Train-
ing. The containerized model training scenario differs significantly

from traditional bare-metal deployments, especially when provid-

ing multi-tenant services that require strict security isolation. For

example, the use of SR-IOV techniques for network virtualization

to achieve secure containers with kernel isolation [12, 25] intro-

duces an essential drawback—after enabling VFs on RNICs, RDMA

capability cannot be enabled on the physical function (PF). This

makes it impossible to monitor and diagnose the RDMA network

directly on the host, and presents a significant challenge during the

development of our multi-tenant containerized model training ser-

vices. A number of RDMA-related components (such as monitoring,

probing, configuration, and management) require modifications

in both deployments and implementations. While SkeletonHunter

only shares the same network environment with the training con-

tainers through the sidecar mechanism, the refactoring of other

functionalities is much more complicated.

Although this paper focuses on particular issues related to net-

work monitoring and diagnosis, containerized training services

need a collaborative effort of nearly all network components to ad-

dress emerging challenges and ensure optimal user experience. This

creates considerable potential for further research and innovations.

9 Related Work
Data Center Network Diagnosis. Over the past decade, there
have been plenty of systems and solutions for diagnosing the data

center network through comprehensive monitoring [30, 48, 52, 53,

70, 71, 75–77, 81, 83, 85, 89] or opportunistic probing [29, 32, 34,

38, 41, 47, 56, 78, 88]. For example, EverFlow [89] performs fine-

grained packet matching to identify the root cause of network

issues, while PINT [32] probabilistically samples packets to achieve

in-band telemetry. However, so far there is no method for efficient

and effective monitoring and diagnosing of the reliability of the

containerizedmodel training. SkeletonHunter is the first-of-its-kind

work to achieve the goal by leveraging the inherent characteristics

of containerized model training to enable fine-grained, accurate

monitoring and diagnosis while minimizing overhead.

Troubleshooting Large Model Training. Developing efficient

and effective diagnosis systems for large-scalemodel training is now

an important research area in the community. Some of the existing

approaches gather customized monitoring data during training pro-

cess from mainstream training frameworks (e.g., MegaScale [50],

TorchProfiler [27], and Dynolog [7]) or collective communication

processes (e.g., C4 [39] and Holmes [63]). However, these meth-

ods often require considerable user intervention or training frame-

work modifications, and sometimes can even lead to performance

degradation. On the other hand, SuperBench [84] proposes a com-

prehensive benchmark but is limited to offline diagnosis. In con-

trast, SkeletonHunter is designed to diagnose network anomalies

at runtime without the modifications to the RDMA and collective

communication libraries, which operates transparently to users.

10 Conclusion
Despite the great benefits of containerized large model training,

it is challenging for CSPs to ensure the reliability of the network

infrastructure for it. Existing monitoring and diagnosing tools for

data centers are inefficient or inaccurate in such a new scenario. In

this paper, we present SkeletonHunter, a monitoring and diagnosis

system for containerized large model training. It infers traffic skele-
tons to reduce monitoring overhead while achieving high accuracy

in network failure detection and localization. After its deployment,

SkeletonHunter has uncovered thousands of network failures, sig-

nificantly improving the network reliability and reducing opera-

tional costs. In a broader sense, our work provides a promising

direction to infer the traffic patterns of the users’ workloads for

efficient management of large-scale data center networks.
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