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Abstract

For providers operating large-scale global networks, the timeliness
of network failure recovery significantly affects the reliability of
network services. Ideally, a networkmonitoring system should have
enough coverage to detect even minor issues, but high coverage
means alert floods during severe network failures. In practice, there
is a gap between the flooding raw alerts data collected by network
monitoring tools and the readable information needed for failure
diagnosis. Existing solutions using limited network monitoring
data sources and heuristic diagnostic rules, lack comprehensive
coverage and the capability to address severe failures, especially
which network operators have never handled a similar one before.
This paper presents SkyNet, a network analysis system to extract
scope and severity information from alert floods. SkyNet ensures
comprehensive coverage by integrating multiple monitoring data
sources through a uniform input format, enhancing extensibility
for new network monitoring tools. During alert floods, SkyNet
groups alerts, assesses their severity, and filters out insignificant
ones to aid network operators in mitigating network failures. To
date, SkyNet has been running stably on our network for one and a
half years without any false negatives and has successfully reduced
the time-to-mitigation for over 80% of network failures since its
deployment in production.
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1 Introduction

As a leading cloud provider, Alibaba Cloud provides 24×7 cloud
network services to millions of customers worldwide. This service
is supported by a network infrastructure comprising a wide area
network (WAN) and numerous interconnected data centers. This
infrastructure includes millions of servers, and the number of net-
work devices reaches 𝑂 (105). Our network operators diligently
maintain network reliability through careful design, construction,
and verification processes. However, incidents in such a complex
network are inevitable. As illustrated in Figure 1, the causes of
network failures are diverse, making it challenging for our network
operators to diagnose and address them. This highlights the critical
need for effective monitoring and failure localization methods to
minimize the impact of these incidents.

Existing research has significantly enhanced network monitor-
ing capabilities. Nevertheless, most studies depend on a single or
limited set of data sources, rendering them effective only under spe-
cific circumstances or for minor failures. For example, tools based
on Ping can accurately identify a fault when a solitary link lacking
a backup malfunctions. Traditional monitoring tools such as SNMP
can detect packet loss within seconds, and Syslog collectors can
provide instant notifications for failures logged by network devices.
However, this reliance on a single data source frequently leads to
restricted coverage. For example, Syslog cannot address routing
errors that do not trigger runtime errors on a device, and other
tools also exhibit their coverage limitations. Based on our indus-
trial experience, the failure detection coverage of various network
monitoring tools ranges from 3% to 84% (Figure 3). None can detect
all network failures.

Here arises a natural question: why not integrate all these tools
to address the coverage issue and achieve comprehensive network
monitoring? Ideally, if the network operates smoothly or suffers only
fromminor failures, as depicted in Figure 2a, the monitoring system
would generate few alerts, thus enabling operators to more easily
identify the root cause. For example, some systems employ belief
networks to automate failure recovery using Standard Operating
Procedures (SOPs) built on prior experience [40, 49]. We refer to
failures that network operators have previously encountered and
matched with predefined rules as “known failures”.

However, when addressing severe failures, as shown in Figure 2b,
which occur only a few times globally each year [1] yet account
for the majority of financial losses and reputation damage, merely
collecting alerts from all tools presents the following challenges:
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Figure 1: The proportion of network failure root causes.
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Figure 2: (a) Known failures which can be matched by SOP

rules. (b) Unknown failures.

• Firstly, severe failures typically impact numerous devices and
connections, generating an overwhelming number of alerts, mak-
ing it difficult for operators to meet the minute-level recovery
Service Level Agreement (SLA) requirements.

• Secondly, severe failures are rare, and an increasing number
of them are unprecedented. We term these “unknown failures”.
Thus, reliance solely on predefined SOPs or models becomes im-
practical, leading to extended processing times or higher chances
of error.

• Finally, there may be alerts triggered by minor failures or sched-
uled updates occurring concurrently, further complicating man-
ual localization efforts.
Figure 4 illustrates the complete life cycle of detecting and re-

solving a network failure. A significant gap exists between the raw
alerts generated by network monitoring tools and the actionable
insights required for diagnosing the failure. In instances of severe
failures, our network operators are inundated with alerts from the
monitoring system, making comprehensive manual analysis chal-
lenging. As a result, operators often either overlook the root cause

 0

 25

 50

 75

 100

SNMP
SYSLOG

Out-of-band

End-to-end ping

Internet ping

In-band network telemetry

Modification events

Route monitoring

co
ve

ra
g

e(
%

)

Figure 3: Network failure coverage of monitoring tools.

Failure 
occurs

Monitoring MitigationDiagnosisAnalysis

Raw
alerts

Readable
information

Root
cause

Failure 
fixedA gap!

Heuristic tools
Human

LLM
SkyNet

Ping
SNMP
…

Figure 4: The life cycle of a network failure.

or take ineffective actions based on incomplete information, lead-
ing to unnecessary delays in localizing and mitigating the failure.
Consequently, the recovery process is prolonged, often taking over
an hour. Although this recovery time might appear rapid consid-
ering the scale of the failure, it remains unsatisfactory, as we are
committed to providing minute-level failure recovery.

In this paper, we address the challenges of resolving severe fail-
ures in large-scale cloud networks. Our goals include enhancing
alert correlation, prioritizing incidents (defined as a set of alerts
originating from the same root cause), and root cause zooming-in,
facilitating effective and efficient recovery from network failures.

To this end, we built SkyNet, an integrated network failure anal-
ysis system bridging the gap between monitoring and diagnosis.
SkyNet employs a structured methodology: (1) It pre-processes
diverse data sources using sophisticated algorithms. The system
records all alerts’ timestamp and location data, classifying them
into predefined categories through heuristic or automatic methods.
SkyNet then filters out non-essential alerts and aggregates spec-
ified alerts into comprehensive alerts based on experiential rules.
(2) SkyNet constructs a hierarchical alert tree(refer to Figure 5c),
indexed by location and comprising all collected alerts, maximizing
the use of available data sources. This structure is then analyzed
to identify locations impacted by incidents. (3) SkyNet employs
telemetry tools to identify the failure location precisely. It queries
user and traffic data related to the failure site and prioritizes con-
current alerts by urgency, enabling operators to address the most
critical issues first.

SkyNet has already been deployed in our cloud infrastructure.
Over the past one and a half years, SkyNet has enhanced network
reliability for our operators. We present four representative cases
to demonstrate its effectiveness and undertake extensive perfor-
mance evaluations to assess SkyNet from multiple perspectives.
The average mitigation time for severe failures decreased by 80%.

2 Background and Motivation

Alibaba Cloud operates a global network infrastructure. By July
2025, our network includes a private wide-area network and 89
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Table 1: Existing network monitoring tools and their data

sources.

Tools Used in Production Data Sources

RD-Probe [10] True Ping
Pingmesh [15] True Ping
NetNORAD [3] True Ping
deTector[34] False Ping

Dynamic mining [50] True Syslog
007 [7] True traceroute

Roy et al. [36] True INT
Netbouncer [42] True INT
PTPMesh [35] False PTP
Shin et al. [37] False SNMP

Redfish-Nagios [6] True Out-of-band

data centers across 29 geographic regions, covering North America,
Europe, Asia, and Oceania [2]. The network comprises approxi-
mately 𝑂 (105) network devices. Failures in these devices and links
can compromise service reliability and potentially breach SLAs.

Although it is impossible to entirely prevent network failures
in an infrastructure of this magnitude, prompt recovery is crucial.
Initially, we considered failure recovery to consist of only three
steps: monitoring, diagnosis, and mitigation.

Over time, we have developed many advanced network moni-
toring tools for our in-production network. These tools are highly
efficient, facilitating the rapid and precise identification of network
failures. Additionally, simple network issues can often be resolved
automatically. For instance, if a device exhibits packet loss while
another device in the same group functions normally, and the traffic
remains manageable, the malfunctioning device is automatically
isolated.

However, this scenario is an ideal theoretical situation. In prac-
tice, not all network failures can be resolved so easily.

2.1 Limitation of Existing Work

This section examines the limitations of various monitoring data
sources, which stem from a current focus on enhancing the func-
tionality of tools reliant on individual sources. While these efforts
improve performance and accuracy, a singular data source approach
limits the ability to capture all network failures. The detailed limi-
tations of each monitoring data source are outlined below:
• Ping is restricted to detecting failures related to reachability and
cannot identify issues such as partial link failures that affect
redundancy but not reachability.

• Traceroute loses effectiveness in networks with asymmetric
paths or when tunnels such as Segment Routing Traffic Engi-
neering (SRTE) are employed.

• Syslog-based tools cannot detect failures that are not evident
to the devices, including silent packet loss, transmission errors,
routing errors, or bit flips.

• SNMP [39] collects only information available within the SNMP
protocol constraints.

• Out-of-band monitor addresses predominantly infrastructure
related issues, focusing on device liveness, CPU utilization, tem-
perature, etc.

• In-band network telemetry (INT) is not universally supported
across all devices.

• Route monitoring is limited to the control plane and cannot
diagnose data plane issues.
Table 1 provides a summary of several existing studies, indicating

whether they are claimed to be used in production and specifying
their data sources to highlight their limitations. Enhancing the com-
prehensiveness of our monitoring system necessitates integrating
alerts from multiple network monitoring data sources.

Does combining multiple data sources work? Several attempts
have been made to integrate multiple network monitoring data
sources [12, 28, 29]. They employ a wide array of monitoring tools
to trigger telemetry tasks or redirect network alerts to appropriate
network operator teams. But essentially, these tools are doing a
trade-off between achieving higher monitoring coverage and tol-
erating a larger number of alerts, which means a higher level of
analytical difficulty. They cannot help avoid the problem of “alert
flooding”, especially when addressing “severe failures”.

2.2 Alert Flooding in Severe Failures

“Severe failure” refer to incidents that significantly impact extensive
areas, generating numerous alerts from various networkmonitoring
tools almost simultaneously. This situation impedes our network
operators’ ability to prioritize critical alerts and identify the root
cause of the failure.

As shown in Figure 2b, on one occasion, half of the cables serv-
ing as the Internet entry point for one of our data centers failed
simultaneously, triggering a surge of alerts. Our Syslog-based tool
issued multiple alerts concerning links and interfaces being down.
Concurrently, Ping-based monitoring tools reported packet drops
to specific servers in the data center, later attributed to congestion.
Simultaneously, SNMP reported sharp traffic declines on certain
links. Furthermore, the Out-of-band monitor flagged some net-
work devices as unreachable. In total, over 10,000 alerts related to
this network failure were generated within minutes. Additionally,
unrelated glitches continued to produce alerts, further complicating
the task of accurately identifying the root cause.

At that time, our network operators observed packet loss on
several devices, initially attributing the issue to device-level failures.
In accordance with standard operating procedures, the affected
devices were isolated; however, this action failed to resolve the
issue. Subsequently, the operators analyzed additional alerts and
suspected the problem might be due to damaged cables. If this were
the case, resolution would require a repair technician’s intervention.
Fortunately, a thorough inspection of each device and a detailed
analysis of network packet propagation revealed that the packet loss
was due to network congestion rather than faulty cables, suggesting
that some cables remained functional.

To mitigate the congestion, bandwidth for certain services was
reduced, allowing for the migration of some network services out-
side the data center. This mitigation process took several hours and
resulted in significant financial and reputational losses. Notably, a
congestion alert had been issued by our SNMP agent at the onset
of this incident, but it was obscured by a flood of alerts. Reflecting
on this challenging experience, we have decided to implement a
network analysis system to extract valuable insights from a multi-
tude of alerts collected by monitoring tools, thereby expediting the
recovery from severe failures.
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2.3 Why not LLM?

Recently proposed network diagnostic systems leveraging large
language models (LLMs), such as Ahmed et al. [5], MonitorAs-
sistant [54] and NetAssistant [44], theoretically fails to meet our
requirements. The primary challenge is the vast volume of alert
data generated by monitoring tools. For instance, even only con-
sidering Syslog, approximately 10 million entries are produced
every 15 minutes, far surpassing the input capacity of existing long-
context LLMs, which at most support 20 million tokens [11]. Thus,
these LLM-based solutions necessitate the specification of time and
location parameters, operating more as diagnostic tools rather than
comprehensive monitoring systems. Incorrectly chosen parameters
can render the LLM incapable of accurately identifying the root
cause of issues.

Additionally, LLMs function as black boxes. Although they might
efficiently identify root causes under ideal conditions, their propen-
sity for hallucination [20] means that erroneous diagnoses could
force network operators to restart the diagnostic process, poten-
tially wasting time on misleading instructions. As a network service
provider, it is essential to maintain control even in worst-case sce-
narios, a reliability that LLMs currently lack. In summary, LLMs are
great future opportunities, but for now, they serve only as supple-
mentary tools for evaluating network failures, necessitating manual
intervention for severe issues.

2.4 The Desire of Operators

To assist network operators in addressing severe network failures
manually, it is crucial to understand the specific information they
require. Our network operators possess significant experience and
can swiftly diagnose the root cause of network failures when the
number of alerts is limited to no more than approximately 20. In
a practical scenario, our network monitoring tools generated 16
alerts within five minutes. Among these, an internet unreachability
alert prompted the operators to address the issue. Upon initial
inspection, they identified that 12 alerts originated from the same
location, while the remaining 4 were unrelated. Their attention was
subsequently drawn to associated Syslog alerts regarding runtime
errors, ultimately determining that a software error caused the
failure, which was subsequently reported to the device vendor.

Based on the above cases, when a network failure occurs, it is im-
perative for on-call network operators to immediately recognize its
presence. The manual process of identifying failures involves select-
ing all relevant alerts to determine if any indicate potential network
issues, such as packet loss, high transmission delay, or bit flips.
During this process, network operators are primarily concerned
with the presence of certain alert types rather than their quantity.
This procedure is laborious, and, in practice, network failures are
often detected by customers and reported through complaints.

Once a network failure is detected, network operators need to
diagnose the issue. Unlike the detection phase, diagnosing requires
identifying the presence of root cause alerts, including link failures,
device malfunctions, and hardware or software error logs. The
redundancy design in our data center may prevent these root-cause
alerts from impacting customers. However, if customers are affected,
network operators must diagnose the failure based on these alerts.
Furthermore, if multiple network failures occur simultaneously,
operators must prioritize addressing the most severe issue first.

In conclusion, to address network failures manually, network op-
erators require the following information: the occurrence of net-
work failures, related alerts, specifically the types of alerts,

and the severity of these failures. Presenting a distilled set of
approximately 10 messages containing this information instead of
the original 𝑂 (104) alerts enables operators to manually control
network failures.

2.5 Our Goal

Our goal is to develop an in-production network analysis system
to aid network operators in detecting, displaying, and evaluating
all network failures.

Detection. The system should cover all types of network failures.
Upon the occurrence of any network failure, it should be detected
and reported to the network operator immediately, even in cases
of previously unknown failures.

Display. The system must pinpoint the time and location of net-
work failures, efficiently extracting and presenting readable infor-
mation from numerous alerts triggered by severe network incidents.
Additionally, it should classify all related network alerts.

Evaluation. In situations where multiple network failures occur
simultaneously, the system should evaluate the urgency of each
failure to help operators prioritize their response. Ideally, the system
should also identify the specific device or link requiring repair.

3 Overview

We introduce SkyNet, a comprehensive network analysis system
designed for global network infrastructures. The central concept of
SkyNet is aggregating network alerts from numerous monitoring
tools and organizing them into clusters by time and location. We
refer to these clusters as incidents, which categorize the alerts ac-
cording to type. Subsequently, incidents are prioritized based on
severity, determined by associated traffic and customer data.

The architecture of the SkyNet system is presented in Figure 5a.
SkyNet incorporates various data sources as input, and previous
research ensures the clarity and precision of these sources. Alerts
from these data sources include timestamps and location details.
Using a combination of heuristic and automated techniques, each
alert is assigned a specific type, thus characterizing it by timestamp,
location, and type.

Utilizing the structured data, we initially filter alerts that align
with historical patterns and automatically apply SOPs. Subsequently,
SkyNet implements incident discovery to aggregate alerts into in-
cidents, categorizing them by type. SkyNet then prioritizes the
incidents based on their traffic impact on the affected network
and recommends the order in which they should be addressed. Fig-
ure 6 illustrates detailed examples of incidents identified by SkyNet.
During the development and adjustment phases, it became evident
that utilizing sufficient data sources along with a simple algorithm
enables both high levels of accuracy and performance.

Historically, when network failures occurred, on-call network
operators were required to manually sift through a deluge of alerts.
They needed to filter out extraneous alerts and identify all relevant
ones. Given the substantial volume of alerts and limited human
processing capacity, this process was not only time-consuming but
also prone to errors. SkyNet automates this filtering and clustering
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Figure 5: (a) System overview of SkyNet. (b) The hierarchy of our cloud network. (c) Hierarchical alert tree. (d) Correlation

between incidents and different alerts.
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Out-of-band monitoring:
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…
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Preprocessor

Type: [Ping][packet loss]
Time: 2024/07/02 11:45:14 – 11:48:10
Location: 
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Type: [Out-of-band][unreachable]
Time: 2024/07/02 11:45:11 – 11:48:05
Location: 
Region A|City a|Logic site 2|Site I|Cluster ii

Type: [Syslog][link down]
Time: 2024/07/02 11:45:27 – 11:47:59
Location: 
Region A|City a|Logic site 2

Type: [Syslog][port down]
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Figure 6: A running example showing how SkyNet processes alerts, groups alerts into incidents and ranks incidents by

computing their risk scores.

process, assisting network operators in addressing the most critical
network failures first. This automation allows operators to concen-
trate on root cause analysis of significant network issues without
being overwhelmed by irrelevant alerts. This transformative ad-
vancement in network failure recovery has markedly decreased our
average recovery time.

4 Design

In this section, with a running example(shown in Figure 6), we in-
troduce how SkyNet works by three functional modules including
the preprocessor (§4.1), the locator (§4.2) and the evaluator (§4.3).

4.1 Preprocessor

The original data sources utilized by SkyNet are detailed in Table 2.
While the output alerts collected from network monitoring tools
are typically well-structured, an alert ideally indicates when, where,
and what is occurring in the network. However, even with the

assumption that all monitoring tools are well designed, the raw data
collected from them cannot be directly employed by SkyNet. The
differences between monitoring tools are highlighted as follows:
• Alert generation frequency varies among monitoring tools. For
instance, in our practice, Ping outputs one data point every 2
seconds, whereas Syslog produces a log only upon encountering
an error. To equitably prioritize different monitoring tools, alert
frequencies must be normalized.

• The structure of location information differs. For example, the
source device for Syslog and SNMP alerts is typically evident.
Conversely, other data sources, such as packet loss between two
logical sites, are generally attributable to an intermediary link.
In such cases, the ping tool reports packet loss alerts for the
affected link.
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Table 2: Network monitoring tools used by SkyNet.

Data source Description

Ping statistics Periodically records latency and reachability between pairs of servers
Traceroute statistics Periodically records latency of each hop between pairs of servers
Out-of-band monitoring Periodically collect device information from out-of-band, including liveness, CPU and RAM usage, etc.
Traffic statistics Data from traffic monitoring system sFlow and netFlow.
Internet telemetry Data from a monitoring system that ping Internet addresses from DC servers.
Syslogs Errors detected by network devices.
SNMP&GRPC Standard network protocol, including status and counters of interfaces, RX errors, CPU and RAM usage.
In-band network telemetry Sending test packets and collect information of devices bypassed.
PTP System time of network devices out of Synchronization.
Route monitoring Loss of default/aggregate route, route hijack and route leaking.
Modification events Failure of network modification triggered automatically or manually.
Patrol inspection Run manual defined commands on network devices and collect result periodically.

• Alert contents are varied. Syslog, for example, has thousands of
types of command-line interface outputs. Furthermore, distinct
monitoring systems present different alert contents.
Given the potential integration of new monitoring tools in the

future, it is crucial to ensure the system’s extensibility by defining a
uniform input format and converting raw alert data into this format.
SkyNet addresses the disparities among various data sources by
transforming raw data into standardized data structures through
the following methods.

To address the variation in frequency among different monitor-
ing tools, the preprocessor aggregates similar alerts based on prior
experience. For instance, SkyNet uses the start time of packet loss
detected by ping as the alert timestamp, with subsequent alerts
contributing to a “duration” attribute that aids network operators.

To explain how the location issue is resolved, prior knowledge
must be introduced. The entire network, comprising both the WAN
and the DC network, is organized hierarchically, as shown in Fig-
ure 5b. Each device is assigned a level in this hierarchy. Based on
our observations, if a failure occurs on a device, all devices at the
lower levels are impacted, which helps evaluate the extent of a
network failure. Therefore, we associate alert information with the
hierarchical level of the device from which the alert is collected.
An alert related to a link is split into two alerts corresponding to
the devices it connects. In the example illustrated in Figure 6, the
alerts from Devices i, ii, iii, and n are associated with Site I, Site II,
Logic Site 2, and Cluster n, respectively.

For alerts collected from various network monitoring tools, it
is essential to separately consider the alert types. For tools with
limited alert content, such as Ping for monitoring packet loss rates
and SNMP for trafficmonitoring, alert types are manually defined. To
process Syslog, templates are employed to automatically convert
command-line outputs into alert types. The template tree is con-
structed as follows: initially, it gathers command-line outputs from
all devices and breaks them down into individual words. Variable
words, such as addresses, interfaces, and numbers, are then removed
using predefined regular expressions. The remaining words create
templates for alert classification. An FT-tree [56] is constructed
using these templates, based on their frequency. The classification
process starts with manually assigning types to existing alerts. With
hundreds of alert types to consider, we prioritize the most critical
and complete the manual classification over several months. In
practice, although severe failures are rare and unprecedented, these
templates account for Syslog alerts during such events.

After standardizing the data structure of the alerts, we encounter
another challenge: the sheer volume of alerts. While each individual
monitoring tool produces reasonable alerts, from the perspective of
SkyNet, which evaluates the entire network to identify hotspots,
some alerts necessitate further processing. SkyNet primarily em-
ploys three methodologies to reduce the number of alerts.
• Consolidate Identical Alerts: SkyNetmay receive duplicate alerts

from the same monitoring tool. For instance, if the CPU or RAM
usage of network devices is excessively high, or if there is sub-
stantial traffic through an interface, SNMP might repeatedly gen-
erate identical alerts. If a specific alert has been analyzed, SkyNet
disregards the subsequent ones. Otherwise, it updates the times-
tamp of the initial alert.

• Consolidate Alerts from a Single Data Source: Certain alerts
gain importance only when they exceed a specific threshold. For
example, sporadic packet loss is ignored, while persistent packet
loss is recorded. Moreover, some alerts are linked to associated
alerts; for example, a sudden traffic surge on an interface may
cause increased traffic through adjacent interfaces. SkyNet filters
out these related alerts to streamline the analysis.

• Consolidate Alerts from Diverse Data Sources: Alerts from vari-
ous monitoring tools may not independently indicate a problem;
however, they might suggest an issue when combined with data
from another tool. For example, a sudden decrease in port traffic
is typically expected, but if it occurs alongside packet loss or a
Syslog error, it might suggest an abnormal decline in traffic.
Ultimately, the preprocessor generates a series of filtered, struc-

tured alerts that include information such as alert type, time, and
location.

4.2 Locator

When a network failure occurs, identifying the root cause begins
with detecting the failure and understanding which alerts are asso-
ciated with it. Prior to the development of SkyNet, network failure
mitigation typically involved responding to custom complaints,
typical alert patterns, or alert floods. Subsequently, network op-
erators inspect the links and devices that generated alerts or that
are topologically adjacent. This involves connecting to the devices,
reviewing logs, and executing status commands in a systematic
manner to identify and rectify the root cause. Based on our network
operating experience, we have gathered the following insights:
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• Multiple alerts appearing at the same location within a short
timeframe may indicate a network incident. A fundamental ap-
proach is to group alerts by both their time and location.

• Network alerts often propagate through topological links; if two
adjacent devices generate alerts simultaneously, they likely share
the same root cause.

• It is crucial for network operators to comprehend the full extent
of a network failure in order to evaluate its scope and severity.
Utilizing the aforementioned insights, the proposed system, re-

ferred to as SkyNet, employs a hierarchical alert tree structured by
the temporal and locational characteristics of alerts, known as the
“main tree” (illustrated in Figure 5c). When a new alert is received,
SkyNet checks for the existence of its location node; if found, the
alert is added to that node. Otherwise, a new node is created for
the alert(Algorithm 1). SkyNet continuously monitors these nodes,
removing alerts that have expired, and assesses whether any nodes
contain a sufficient number of alerts. The timeout threshold should
be minimized to avoid associating unrelated alerts. However, if
this threshold is set shorter than the alert delay, other alerts under
the same node might expire before the delayed alert arrives. Con-
sidering that the maximum delay for alerts, due to SNMP on older
network devices with CPU limitations, is approximately 2 minutes,
we have selected a 5-minute threshold to prevent data gaps caused
by transmission errors or high CPU usage, which could lead to a
maximum delay of approximately 4 minutes.

Algorithm 1: Alert node insertion
Data: alert data 𝑑 , main tree𝑚, incident trees 𝐼
Result: updated main tree𝑀 and incident trees 𝐼

1 for 𝑖 ∈ 𝐼 do

2 if 𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ 𝑖 then

3 𝑖 .𝑔𝑒𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).𝑎𝑑𝑑 (𝑑);
4 𝑖 .𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑖𝑚𝑒 = 𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

5 else

6 if 𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ 𝑖 .𝑠𝑢𝑏𝑡𝑟𝑒𝑒 then

7 𝑖 .𝑝𝑢𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑙𝑖𝑠𝑡 ());
8 𝑖 .𝑔𝑒𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).𝑎𝑑𝑑 (𝑑);
9 𝑖 .𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑖𝑚𝑒 = 𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

10 if 𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈𝑚 then

11 𝑖 .𝑔𝑒𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).𝑎𝑑𝑑 (𝑑);
12 else

13 𝑖 .𝑝𝑢𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑙𝑖𝑠𝑡 ());
14 𝑖 .𝑔𝑒𝑡 (𝑑.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).𝑎𝑑𝑑 (𝑑);

The alert count for a node encompasses its own alerts as well as
those of its descendant nodes. If the number of alerts surpasses a
specified threshold, the subtree beneath the node is replicated from
the main tree and designated as an “incident tree”. However, as
network alerts propagate through topology links, when calculating
alerts, the algorithm only considers alerts within the area connected
to the root node of the incident tree(Algorithm 2). For instance,
in Figure 5c, alerts are raised solely by the nodes enclosed in red
rectangles. Since device n is isolated from other alerting nodes in

Algorithm 2: Tree generation
Data: main tree𝑚, incident trees 𝐼
Result: updated main tree𝑀 and incident trees 𝐼

1 for node 𝑛 ∈𝑚 do

2 if 𝑛 ∈ 𝐼 .𝑟𝑜𝑜𝑡𝑠 then

3 continue;
4 failureAlerts, allAlerts = 𝑠𝑢𝑚(𝑛.𝑠𝑢𝑏𝑡𝑟𝑒𝑒);
5 if (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑙𝑒𝑟𝑡𝑠 > 2) | | (𝑎𝑙𝑙𝐴𝑙𝑒𝑟𝑡𝑠 > 5) | |
6 (𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝐴𝑙𝑒𝑟𝑡𝑠 > 1&&𝑎𝑙𝑙𝐴𝑙𝑒𝑟𝑡𝑠 > 3) | | then
7 for 𝑖 ∈ 𝐼 do

8 if 𝑖 .𝑟𝑜𝑜𝑡 ∈ 𝑛.𝑠𝑢𝑏𝑡𝑟𝑒𝑒 then

9 𝐼 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑖);

10 𝐼 .𝑟𝑜𝑜𝑡𝑠.𝑎𝑑𝑑 (𝑛);
11 𝑛.𝑠𝑢𝑏𝑡𝑟𝑒𝑒.𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑖𝑚𝑒 (𝑚𝑎𝑥 (𝑛.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠));
12 𝐼 .𝑎𝑑𝑑 (𝑛.𝑠𝑢𝑏𝑡𝑟𝑒𝑒);

the main tree, the alerts collected from device n are attributed to a
different root cause. Consequently, two incident trees are stored.
Subsequently, when a new alert arrives, the algorithm evaluates
both the main tree and any existing incident trees to determine
the appropriate location for the alert. If an incident tree for a node
already exists, the algorithm refrains from creating a new one. If
no alerts are added to an incident tree for an extended period, the
incident tree times out. Theoretically, the timeout threshold is 5
minutes(Algorithm 3), but as timeliness is not critical here, the
threshold is set to 15 minutes.

To determine whether there are sufficient alerts under a node,
it is essential to consider two potential issues that may arise from
merely counting the number of alerts associated with a node. First,
the frequency of alerts from different data sources can vary. Some
alerts, such as “link down”, are triggered only once, while others,
such as “packet loss”, often appear in batches with diverse sources
and destinations. Second, the significance of alerts may differ. For
example, packet loss usually indicates that network service is com-
promised, whereas a sudden increase in delay might be only the
result of concurrent access and could be automatically resolved.

To address the discrepancy in alert frequency, the proposed
method counts alerts based on their types. If multiple alerts of the
same type are added to a node, they are counted only once.

Algorithm 3: Tree checking
Data: main tree𝑚, incident trees 𝐼
Result: updated main tree𝑀 and incident trees 𝐼

1 for node 𝑛 ∈𝑚 do

2 if 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 > 𝑛.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 300 then
3 𝑚.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑛);

4 for 𝑖 ∈ 𝐼 do

5 if 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 > 𝑖 .𝑢𝑝𝑑𝑎𝑡𝑒𝑇𝑖𝑚𝑒 then

6 𝑖 .𝑒𝑛𝑑 ();
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In addressing the issue of varying alert importance, SkyNet
categorizes alerts into three levels:
• Failure alerts: These occur when network behavior is definitively

abnormal, including instances of packet loss, packet bit flip, and
high packet transmission latency.

• Abnormal alerts: These are triggered by irregular network packet
behaviors such as jitter, sudden increases in latency, or abrupt
decreases in flow. They do not directly imply network failures.

• Root cause alerts: These indicate failures of network entities,
such as device or NIC failures, link outages, CRC errors, or risky
routing paths.
To illustrate the differences and relationships among these alert

types, consider the following example: Imagine a router in the net-
work suddenly fails, redirecting its traffic through a backup router,
leading to congestion and subsequent packet loss. Packet loss is
absolutely faulty and thus classified as a failure alert. Concurrently,
there is a sudden decrease in traffic on the failed router and a sharp
increase on the backup router. These abrupt changes are classified
into abnormal alerts as they might be expected due to user behav-
ior. However, identifying packet loss and sudden traffic changes
alone does not directly guide network operators in resolving the
issues. It is the root cause alerts, such as the notification of a device
failure, that specify the precise solution. Network operators then
understand they must repair the malfunctioning device based on
this alert.

As discussed in §2.4, failure alerts are considered the most au-
thoritative during incident detection, while the others are regarded
as less significant. Historical network failure records support the
greater importance of failure alerts in incident detection. As illus-
trated in Figure 5d, although the overall incidence of failure alerts is
relatively low, nearly all network failure incidents are accompanied
by these alerts, highlighting their positive correlation with network
failures.

Given this correlation, failure alerts are of paramount importance
in incident detection. The threshold for incident tree generation
is set at either two failure alerts, one failure alert plus two other
alerts, or five alerts of any type. These thresholds were determined
through experiments detailed in §6.3 and are consistent across all
location layers. Although it might be assumed that higher-level
thresholds should be set higher to filter noise from lower-level
nodes, in practice, SkyNet often identifies a single alert, such as
a port or device down, as the root cause for a complete failure.
Consequently, each alert is treated with importance by maintaining
uniform thresholds across layers.

Despite having equal significance in incident detection, abnor-
mal alerts and root cause alerts require different approaches from
our operators to resolve incidents. Specifically, root cause alerts
are more critical during manual mitigation procedures. Therefore,
SkyNet categorizes them into two levels to aid network operators.

In practice, random events can generate numerous alerts. For
instance, if a device probe used for activity detection encounters an
error, it may trigger numerous identical device down alerts. These
alerts can easily surpass the incident threshold, causing false alarms
and increasing the workload for our network operators. To mitigate
this, we consolidate alarms of the same type from different devices

into a single alert. This means we focus solely on the types of alarms
occurring within an incident’s scope, irrespective of their origin.
This method reduces false positives, as demonstrated in §6.3.

The output of the locator, illustrated in Figure 6, displays the
incidents. Each incident report includes the time and location of
the incident, along with the alerts associated with it, categorized
into three types.

4.3 Evaluator

In production settings, minimizing losses requires prioritizing the
resolution of failures that impact themost crucial services. A straight-
forward approach is to analyze the affected workflows based on
time frames and the locations of grouped incidents. However, sim-
ply grouping alerts into incidents provides network operators with
information only about the occurrence of incidents, without indi-
cating their severity. For instance, consider one link experiencing
5% packet loss and another link with 50% packet loss. Both can be
monitored using tools like Ping, with packet loss alerts generated,
yet they differ significantly in severity. When multiple incidents
occur simultaneously, the network operator might not prioritize
the most severe one accurately.

A real-world example from our network illustrates this issue.
Two incidents happened concurrently at different locations. One
incident affected a larger number of network devices, generating
more alerts, whereas the other involved fewer devices but affected
more critical customers. The network operator focused on resolving
the incident with more alerts, causing a delay in addressing the
second, more critical incident, resulting in unnecessary financial
and reputational losses.

Thus, SkyNet provides a quantitative assessment of incident
severity, prioritizing incidents to help network operators address
the most critical issues first. The severity of incidents is evaluated
based on the following criteria:
• Packet Loss Ratio: This includes packet loss ratios determined

by both Ping and sFlow, as packet loss directly impacts service
quality. We use the packet loss ratio to normalize the packet loss
rate collected by sFlow under varying traffic conditions, rather
than relying solely on the packet loss rate.

• Link Break Ratio: Devices connect to link sets for redundancy
purposes. While a break in some links within a set may not
directly cause packet loss, it can reduce the total bandwidth,
thereby affecting service quality during traffic surges.

• Importance of Affected Customers: Customers who purchase
services with higher stability expectations should experience
minimal downtime. The impact on affected customers is deter-
mined using traffic data collected via Netflow.

• Duration of the Incident: Ignoring an incident indefinitely is
unreasonable, even if its impact is mild. Adhering to our ser-
vice level agreements (SLA), prolonged recovery times cause
significant financial and reputational losses.
With the information above, the severity 𝑦𝑘 of an incident 𝑘 is

calculated using Equations 1-3.

𝐼𝑘 = max ©­«1,
𝑁∑︁
𝑖=1

𝑑𝑖𝑔𝑖𝑢𝑖 +
𝑁∑︁
𝑗=1

𝑙 𝑗𝑔 𝑗𝑢 𝑗
ª®¬ (1)
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Figure 7: A reachability matrix example.

Table 3: Explanation of symbols used to evaluate incident.

Symbol Explanation

𝑁 The total num of circuit set related to the incident
𝑑𝑖 The break ratio of circuit set 𝑖
𝑙𝑖 The ratio of SLA flows beyond limit on circuit set 𝑖
𝑔𝑖 The importance factor of customers related to circuit set 𝑖
𝑢𝑖 The number of customers related to circuit set 𝑖
𝑅𝑘 The average ping packet loss rate
𝐿𝐾 The max average SLA flow rate beyond limit
Δ𝑇𝑘 The alert lasting time
𝑈𝑘 The number of important customers

𝑇𝑘 = max
(
log 1

𝑅𝑘

(Δ𝑇𝑘 + 𝑆𝑖𝑔(𝑈𝑘 )) , log 1
𝐿𝑘

(Δ𝑇𝑘 + 𝑆𝑖𝑔(𝑈𝑘 ))
)

(2)

𝑦𝑘 = 𝐼𝐾 ·𝑇𝑘 (3)

Table 3 clarifies the symbols used in the equations, each corre-
sponding to variables within the evaluated incident’s context. For
redundancy purposes, all links connecting network devices consist
of multiple circuits, each is called a circuit set.

To make it easier to understand, we split the incident severity
calculation into two parts. The first part is impact factor 𝐼𝑘 , illus-
trating the impact on significant users, calculated by Equation 1.
The impact factor 𝐼𝑘 increases as the number of circuit sets used by
important users that experience breaks or overloads increases. With
a maximum function, we ensure that the severity remains non-zero,
even when no critical customers are affected. The second part is
time factor 𝑇𝑘 , calculated by Equation 2. The time factor 𝑇𝑘 demon-
strates that severity escalates with the incident’s duration, ensuring
all incidents eventually capture the attention of network opera-
tors. An increased average packet loss rate accelerates this growth.
The sigmoid function (represented by 𝑆𝑖𝑔) significantly influences
severity when only a few key users are affected but stabilizes when
many important users are impacted, thus preventing false alarms
due to jitter. With this time factor𝑇𝑘 , critical incidents are promptly
highlighted, ensuring attention while excluding incidents resolved
by transient jitter.

Location zoom-in. To maintain manageable control over incident
areas and prevent the average packet loss rate from being influenced
by unrelated links, our method employs behavior monitoring tools
to conduct a “location zoom-in”. This approach aids in accurately
identifying the exact location of the incident.

The location zoom-in is triggered under the following conditions:

• A focal point is identified within the reachability matrix calcu-
lated by the Ping tool. Using the end-to-end reachability teleme-
try results produced by Ping, a reachability matrix is constructed.
For example, in the illustrative scenario, the reachability matrix,
depicted in Figure 7, allows zooming into Cluster II. Source-
destination pairs exhibiting high packet loss rates are indicated
by dark colors. A column and a row shaded in dark colors pin-
point the precise location of the incident after zoom-in. The
reachability matrix vary in granularity from cluster to region.

• The sFlow detects packet loss, with all affected devices trac-
ing back to a node within the incident tree. Thus, the incident
location is refined to this specific node.

• In-band network telemetry generate test flows with desig-
nated DSCP values to compare input and output rates. A dis-
crepancy between these rates indicates packet loss. Should the
affected devices correlate with a node in the incident tree, the
zoom-in process identifies this as the incident location.
There may be instances where the location cannot be further

refined. In such cases, emergency procedures revert to the general
location of the incident. The evaluator’s output assigns a severity
score. In this running example, incident 1 has a severity score of 60,
whereas incident 2 scores 9.5. Consequently, our network operators
prioritize addressing incident 1.

5 Deployment Experience

SkyNet has operated stably within our global network infrastruc-
ture for one and a half years and detected 𝑂 (10) severe network
failures.1 It has expedited the processes of network failure detec-
tion and localization, ultimately reducing failure mitigation time.
We present case studies demonstrating SkyNet’s assistance to our
network operators and examine its extensibility based on our de-
ployment experiences.

5.1 Case Study

We demonstrate the capabilities of SkyNet by analyzing its perfor-
mance in four incidents involving simple, concurrent, and severe
failures.
Automatically SOP for known failures. As illustrated in Fig-
ure 2a, SkyNet detected various alerts from a network device,
including packet loss, Syslog errors, and abnormal SNMP counter
statistics. No other devices in the same group triggered alerts. Con-
sequently, SkyNet generated an incident report exclusively for
this device and initiated an automatic SOP, successfully isolating
it. Our network operators later verified the correctness of the au-
tomatic isolation. The entire mitigation process was completed in
approximately one minute without manual intervention.
Multiple scene detection. Last year, we experienced a DDoS
attack targeting five different locations simultaneously. Without
SkyNet, our network operators would have needed to manually
correlate the abrupt traffic increases. By clustering the alerts by
location, SkyNet generated five separate incidents, indicating the
attacks were unrelated. With this information, our network opera-
tors quickly implemented IP blocking for all five regions efficiently
and comprehensively. Without SkyNet, although manual diagnosis

1We omit the absolute numbers for confidential reasons.
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can manage alert floods and identify a DDoS attack, it is possible
to overlook certain attack points, thereby increasing recovery time
and causing greater damage.

Scene ranking. On one occasion, two network failures occurred
nearly simultaneously. SkyNet successfully detected both, gener-
ating two incidents. Although one incident covered a larger ge-
ographical area and included more alerts, SkyNet identified the
other incident as more urgent based on the traffic and service impor-
tance. This prioritization enabled our network operators to address
the more critical incidents first. Without SkyNet, network oper-
ators may be distracted by minor yet more conspicuous failures,
potentially resulting in increased losses.

Fine-grained localization. Following the deployment of SkyNet,
a similar failure occurred as described in §2.2, involving another
broken Internet entrance cable. SkyNet consolidated the related
alerts into a single incident and, using the reachability matrix de-
rived from ping data, identified the data center entrance as the
likely failure point. Relevant alerts, including link-down notices,
were effectively grouped and displayed. The mitigation time was
reduced to just a few minutes, including cable repairs, compared
to several hours in the case outlined in §2.2, representing a near
two-orders of magnitude reduction in recovery time.

5.2 Extensibility

The initial input format of SkyNetwas limited to data sources such
as SNMP, Syslog, and device detection. Over the past eight years,
additional data sources, including route monitoring, end-to-end
ping, modification events, and GRPC, have been iteratively in-
corporated. The seamless integration of these new data sources
demonstrates the extensibility of SkyNet, suggesting its potential
to accommodate even more data sources in the future.

6 Performance Evaluation

We conducted a series of experiments to evaluate SkyNet, aligning
with the goals outlined in §2.5. Initially, we establish the necessity
of integrating multiple data sources with SkyNet to achieve exten-
sive network failure coverage (§6.1). Subsequently, we examine the
preprocessor’s impact on reducing alerts and evaluate its advan-
tages by presenting the time required for incident detection (§6.2).
Furthermore, we demonstrate the accuracy of the locator, includ-
ing its false positive and false negative rates (§6.3). By adjusting
the incident thresholds, we elucidate the criteria for their deter-
mination based on accumulated experience. We also compare the
severity scores of all incidents with failure incidents, evidencing the
evaluator’s effectiveness in filtering trivial incidents (§6.4), thereby
diminishing the workload of network operators. Finally, we deliver
an overall assessment of SkyNet by comparing the network failure
mitigation times pre- and post-deployment in our network.

Experiment setup. SkyNet was deployed on a server using an
Intel Xeon Platinum 8260 CPU(2.40 GHz), with 96 cores and 32 GB
of RAM for all performance evaluations. The dataset utilized for
the evaluation comprised alerts collected from our real production
network, as described in 1, consisting of 𝑂 (105) network devices,
over the past one and a half years. The alerts are raised by over 10
network monitoring tools shown in Table 2

6.1 Coverage

Initially, we have demonstrated that no single network monitoring
tool is sufficient to address all network failures, shown in Figure 3.

In our analysis, we systematically removed data sources, begin-
ning with those having low coverage and progressing to those with
high coverage. This allowed our network operators to manually
evaluate SkyNet’s false positives and false negatives. As depicted
in Figure 8a, a reduction in the number of data sources minimally
impacts false positives but leads to an increase in false negatives,
pointing to potentially overlooked failures. While false positives
mainly impose additional workload on network operators and can
be tolerated within certain limits, it is vital to minimize false nega-
tives. Thus, integrating as many data sources as possible is crucial
to ensuring comprehensive coverage.

6.2 Preprocessing

The alert preprocessing occurs through a stream processing mech-
anism. Consequently, evaluating the time required to preprocess
an individual alert is not meaningful. Instead, our evaluation em-
phasizes how effectively the preprocessing tool reduces the overall
volume of alerts. We collect logs from all monitoring tools over
several hours and process them using the preprocessing stream.
On average, the system generates approximately 100,000 alerts per
hour before preprocessing. The preprocessing tool typically reduces
this number to fewer than 10,000 under normal conditions and to
fewer than 50,000 in more extreme circumstances. The resulting
performance benefits are substantial.

The locator leverages the preprocessor output to identify in-
cidents hourly. In the worst-case scenario, it takes less than 10
seconds to locate failures, which is significantly below our minute-
level Service Level Agreement (SLA). In addition, there is a positive
correlation between the time required and the number of alerts.
Without the preprocessor, the time to locate failures can extend to
several minutes, which is ineffective for mitigating network issues.

6.3 Accuracy

We assessed the accuracy of SkyNet using various incident detec-
tion parameters. The results are depicted in Figure 9. The x-axis
uses the format𝐴/𝐵+𝐶/𝐷 , representing incident generation thresh-
olds as “𝐴 failure alerts”, “𝐵 failure alerts and 𝐶 other alerts” or “𝐷
any alerts”. In production, the parameters currently set for SkyNet
are “2/1 + 2/5”. A parameter set to 0 indicates the corresponding
threshold is disabled. While some false positives bringing extra
solving time can be tolerated, minimizing false negatives causing
undetected failures is crucial and ideally should be eliminated.

Type and location. As mentioned in §4.2, SkyNet, by default,
consolidates multiple alerts of the same type at different locations
into a single alert. The “type and location” data refer to incident de-
tection results treating alerts of the same type at different locations
as distinct alerts. Although this approach avoids false negatives, it
increases false positives from less than 20% to 70%, imposing an
additional burden on network operators.

Disabling Thresholds. As noted in §4.2, all three thresholds are
justified. Disabling any of these thresholds results in higher false
negatives.
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Figure 8: (a) Locating accuracy vs data source number. (b) Alert num before and after preprocessing. (c) The time cost of locating.
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Figure 9: Accuracy with different parameters.

Adjusting parameters. We also experimented with adjusting the
thresholds and determined that the current settings used by SkyNet
provide the lowest false positives while maintaining zero false
negatives, thereby achieving the optimal balance between false
positives and false negatives.

6.4 Evaluator

Indeed, even when incidents are grouped by locator, hundreds of
network events occur monthly, though only a few truly consti-
tute harmful network failures. This volume can be overwhelming
for network operators to manage. It should be noted that not all
high-risk incidents culminate in network failures, thanks to our
high-availability design, which incorporates redundant links and
devices. Nevertheless, high-risk incidents are more likely to impact
our customers. We have configured a severity threshold in the eval-
uator, allowing SkyNet to only trigger alerts for incidents whose
severity exceeds this threshold. This threshold is determined based
on historical experience. Over the past nine months, we gathered
network incidents identified by SkyNet, then had our network op-
erators select those attributable to network failures. The results are
depicted in Figure 10a. For clarity, we capped the maximum sever-
ity score at 100. Generally, the severity scores for failure-related
incidents are higher than those for all incidents. To avoid false
negatives, we set the severity threshold score to 10, which reduces
the number of incidents by almost two orders of magnitude, as illus-
trated in Figure 10b. After applying this filter—while ensuring no
false negatives—the average number of incidents falls to fewer than
one per day, which effectively alleviates the analytical workload of
network operators regarding network failures.

During its nine-month stable operation, SkyNet has assisted
our network operators in mitigating approximately ten failures.

Compared to mitigation efforts without SkyNet, the time required
for network failure resolution has significantly decreased. Figures
on mitigation time statistics, both with and without SkyNet, are
shown in Figure 10c. Both the median and maximum mitigation
times have been reduced by more than 80% due to SkyNet.

The median mitigation time is reduced from 736s to 147s, and the
maximum mitigation time is from 14028s to 1920s, but we cannot
directly post these detailed numbers.

7 Lessons and Discussion

Here we share some experience on consolidating our network mon-
itoring system, and what we are doing now to further improve
SkyNet.

7.1 Visualization

To provide network operators with an intuitive understanding of
network incidents, we have developed a visualization frontend for
SkyNet, as depicted in Figure 11. In this graph, nodes symbolize
network devices, while edges represent the connections between
these devices. The temporal and spatial scope of the graph is de-
limited by incidents identified by SkyNet. Devices and links are
highlighted based on the outcomes of alert voting; an alert gener-
ated by a device or link registers a vote for itself and the connected
links or devices. In severe incidents, the visualization frontend aids
network operators in swiftly localizing the root cause. For example,
during a logic-site incident last year involving multiple devices at
the logic-site level, the visualization frontend identified the device
with the highest voted score as a reflector, which is not a com-
mon logic-site level device. As a result, the failure was promptly
mitigated, effectively reducing its duration.

7.2 Heuristic Rules

Before implementing SkyNet, we deployed a network diagnosis
andmitigation system based on heuristic rules manually formulated
from historical failures. The following example illustrates the rule
operation:
• If a device within a group is detected to be losing packets.
• If other devices within this group do not generate alerts.
• If the total traffic through this group is below a specified thresh-
old.
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of mitigation time before and after deploying SkyNet.
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Figure 11: Visualization of SkyNet.

When these conditions are met, the monitoring system diag-
noses a device-induced packet loss and devises a plan to isolate
the faulty device. If any conditions are unmet, mitigation is not
initiated. Concurrently, a rollback plan is prepared, enabling net-
work operators to manually revert actions to prevent incorrect
mitigation. Despite the operators having developed nearly 1,000
rules, it remains challenging to address every network failure with
these rules alone. For instance, last year we encountered a failure
in which all entry links to a data center were broken. This situa-
tion was unprecedented, thus no heuristic rule could effectively
address it. However, SkyNet rapidly identified that the alerts were
concentrated on a single data center, enabling resolution within
15 minutes. Currently, our network employs both heuristic rules
and SkyNet, with minor network issues typically resolved by the
heuristic system and severe failures addressed by SkyNet.

7.3 Time-series relationship among alerts

In common sense, time series analysis is employed to establish
causal relationships between alerts, where the first alert is seen
as the root cause, and subsequent alerts are considered effects.
However, this approach is not always reliable in practice. Usually
network behavior is affected first, then the logs of root cause alerts

are collected, such as device errors or interface failures. In an in-
cident last year, both an unbalanced hash and device hardware
error jointly caused a network failure. Contrary to expectations,
the device hardware error was not the initial alert; instead, a BGP
link break alert was the first to occur, followed by an flood of packet
drop and device unreachable alerts. Several minutes later, SkyNet
received a syslog indicating the device had encountered a hardware
error, which is finally proved to be the root cause of the incident.
Based on these observations, we choose not to use time series to
decide the relationship between alerts, but use a alert tree with
time-out window to associate alerts and detect incidents.

8 Related Work

Network monitoring tools. To do fast network failure mitigation,
we should start from network monitoring tools [3, 6, 10, 15, 17, 18,
27, 35–38, 42, 50, 60]. We define the network monitoring tools here
as the works using various techniques to get aware of the status
of the network. The outputs are information possibly related to
network failures, for example, packet-level or flow-level reachability
issues, device level hardware or software errors. Some of these
works [7, 19, 24, 34, 55] have the ability of zooming the root cause
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of failure into a specific link or device, and even mitigate it, but as
we mentioned before, because they only depends on single data
source, they may have limitation of coverage. On the other hand,
in the view of SkyNet’s workflow, the output of them is the input
of SkyNet’s preprocessor.

Meanwhile, there are other works focusing on optimizing the
existing network monitoring tools to improve their performance,
granularity, reliability and availability [4, 8, 13, 14, 16, 21–23, 26, 30,
31, 41, 45, 52, 53, 58, 59]. Although they does not import new data
sources to SkyNet, the improvement of data quality also improves
the accuracy of SkyNet.

Network diagnosis systems. Not all of them directly collect in-
formation from the network, but they analyze the information col-
lected by networkmonitoring tools [12, 28, 29, 40, 46, 49], and trying
to point out the root cause of network failures. Other tools [33, 48,
61] recommends mitigation plans with least impact to network
services in the given range of some heuristic operations. Due to
the limitation of data sources or heuristic diagnosis rules, they
cannot meet our demand on coverage or cannot solve the alert
flooding issue. The difference and relationship between SkyNet
and LLM-based solutions [5, 44, 47] has already been discussed in
§2.3.

Incident prioritizing. There are many existing works [25, 32, 43,
51, 57] that evaluate the severity and priority of bugs in general
programs and systems. However, there are few works specifically
aims at evaluating the severity of network failures. DeepIP [9] use
the history data to train a model with deep learning to evaluate the
severity of network incidents. But for severe network failures it is
impossible to get enough history data for model training therefore
we can only use heuristic way like in SkyNet.

9 Conclusion and Future Work

This paper presents SkyNet, a practical network monitoring sys-
tem with high coverage of network failures by importing various
network monitoring data sources. SkyNet avoid alert flooding
by clustering network alerts into incidents, filtering network fail-
ures which are not urgent. SkyNet has been stably running in our
network over the past nine months, reducing the network failure
mitigation time by over 80%. We are actively working on importing
more data sources into SkyNet to further improve its coverage and
reliability, and adjusting parameters to reduce false positives.

Our future work would focus on the following directions.

More data sources. To enhance the coverage of SkyNet, we are
currently integrating additional network monitoring data sources,
such as user-side telemetry, which transmits telemetry packets
from users’ clients to the data center. For our newly designed SRTE
network, we are utilizing a label-based testing tool to periodically
verify link reachability. After being structured, the alerts raised by
these tools can be simply injected into SkyNet.

Better thresholds. SkyNet employs several experience-based
thresholds, including those for alert numbers in incident gener-
ation and severity scores in evaluation. In the future, with the
accumulation of more experiential data, it will be possible to imple-
ment AI solutions, such as deep learning, to develop more precise
and dynamically adaptive thresholds.

Integration with LLM. The use of SkyNet is not inconsistent
with failure localization tools that rely on large language models
(LLMs). On the contrary, the time and location data extracted from
incidents identified by SkyNet can serve as valuable inputs for
LLMs. In theory, SkyNet truncates the monitoring results to main-
tain compliance with the LLM input length constraints without
sacrificing valuable information. We are currently exploring the
integration of SkyNet and LLMs to enhance the precision of root
cause localization in network failures.
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