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ABSTRACT

The rapid adoption of Large Language Models (LLMs) in cloud
environments has intensified the demand for high-performance
Al training and inference, where Remote Direct Memory Access
(RDMA) plays a critical role. However, existing RDMA virtualiza-
tion solutions, such as Single-Root Input/Output Virtualization
(SR-IOV), face significant limitations in scalability, performance,
and stability. These issues include lengthy container initialization
times, hardware resource constraints, and inefficient traffic steering.
To address these challenges, we propose STELLAR, a new genera-
tion RDMA network for cloud Al STELLAR introduces three key
innovations: Para-Virtualized Direct Memory Access (PVDMA) for
on-demand memory pinning, extended Memory Translation Table
(eMTT) for optimized GPU Direct RDMA (GDR) performance, and
RDMA Packet Spray for efficient multi-path utilization. Deployed
in our large-scale Al clusters, STELLAR spins up virtual devices
in seconds, reduces container initialization time by 15 times, and
improves LLM training speed by up to 14%. Our evaluations demon-
strate that STELLAR significantly outperforms existing solutions,
offering a scalable, stable, and high-performance RDMA network
for cloud AL
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1 INTRODUCTION

Recent years have seen significant advancements in Artificial In-
telligence (Al), driving rapid growth in demand for cloud-based
Al training and inference, particularly for Large Language Models
(LLMs). The performance of these models heavily relies on Remote
Direct Memory Access (RDMA) [4] to accelerate communication be-
tween computational devices like Graphics Processing Units (GPUs).
Consequently, the performance of RDMA virtualization in the cloud
is on the critical path for effective LLM training and inference.

As one of the largest public cloud providers, Alibaba has been
deploying large-scale RDMA networks and serving massive Al
applications since 2019. However, we have observed that the cur-
rent RDMA solution has inherent limitations in providing high-
performance, stable, and scalable cloud-based Al services:

First, at the host-level, the current RDMA virtualization solution
lacks scalability and is not lightweight. The number of Virtual Func-
tions (VFs) an RDMA Network Interface Card (RNIC) can create is
static; it can only be toggled between zero and a fixed maximum,
making it impossible to dynamically scale the number of VFs to
meet the demand for AI/RDMA service expansion. Additionally,
we use the RunD secure container [20] to provide stronger secu-
rity and isolation for our customers. To ensure the correctness of
RDMA operations for VFs within a secure container, the container
must pin all of its memory in the host memory before initiating
any RDMA operation. This memory-pinning operation introduces
a prohibitive, minute-level start-up delay.

Second, at the PCle-level, the current RDMA solution suffers
from PCle fabric constraints. Al applications leverage GPU Direct
RDMA (GDR) [2] to accelerate communication between GPUs. A VF
using GDR requires the device to be registered in the PCle switch’s
Look-Up Table (LUT). However, the LUT in PCle fabrics is severely
limited in size, allowing only a small number of VFs to enable GDR.
Furthermore, the limited PCle fabric capability of certain server
models forces us to sacrifice non-RDMA traffic performance to
achieve GDR performance.

Third, at the RNIC-level, the current solution fails to provide
stable, high-performance RDMA services. Off-the-shelf solutions
configure hardware steering rules to interconnect VFs in secure
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containers. However, these hardware steering rules do not sup-
port strict isolation between RDMA and non-RDMA traffic. Conse-
quently, the performance of RDMA traffic is often degraded by op-
erations on rules targeting non-RDMA traffic. Moreover, while the
Al computation clusters we have built are designed with substan-
tial network bandwidth and a large number of equivalent network
paths, RDMA cannot utilize these paths uniformly or optimally.

To eliminate the drawbacks of the current RDMA framework
mentioned above, we propose STELLAR, a next-generation RDMA
solution for cloud-based Al training and inference. Aiming to pro-
vide extreme RDMA performance in the cloud, STELLAR fuses the
design philosophies of HyV [26] and MasQ [14], gets rid of SR-IOV,
and introduces the following new designs at the host, PCle, and
NIC levels, respectively:

e Para-Virtualized Direct Memory Access (PVDMA). With
on-demand memory pinning, PVDMA significantly reduces host
memory consumption and greatly mitigates the start-up delay
of secure containers.

e Extended Memory Translation Table (eMTT). STELLAR ex-
tends the Memory Translation Table (MTT) in the RDMA NIC
(RNIC) to record the device type of a memory address. This al-
lows the RNIC to bypass unnecessary consultations of memory
address mappings in the PCle fabric and consistently provide
excellent GDR performance.

o RDMA Packet Spraying. STELLAR introduces a native multi-
path RDMA solution to take full advantage of available equiv-
alent network paths. STELLAR can intelligently spray RDMA
packets across these paths and robustly handle out-of-order
packets.

Without SR-IOV, there is no need to steer RDMA traffic from
containers using hardware flow rules, as VFs are absent. Thus,
STELLAR is inherently free from both the VF scalability problem
and the hardware flow isolation problem.

We have implemented and deployed STELLAR atop an FPGA-
based 400G RNIC in our serverless Al platform for over one year. Ac-
cording to online monitoring statistics, STELLAR reduces container
initialization time by 15X and increases average RDMA throughput
by 1.37%. Furthermore, STELLAR decreases the switch queue length
by 90% and improves the average training speed by 14%.

The remainder of this paper is organized as follows: Section 2
provides background on networking stack virtualization. Section 3
describes the motivation for designing STELLAR and offers insights
into our design. Section 4 gives an overview of the STELLAR solu-
tion, while Sections 5, 6, and 7 illustrate its technical highlights.
Section 8 validates the superiority of STELLAR through comprehen-
sive experimental evaluation. Finally, Section 9 discusses related
topics, and Section 10 concludes the paper.

This work does not raise any ethical issues.

2 BACKGROUND

Virtualization is a critical and fundamental technique for cloud
providers to offer customers secure and isolated environments. In
this section, we briefly explain the key techniques for building a
virtualized, high-performance networking stack.
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Secure Containers. RunD [20] is a lightweight secure container
runtime that achieves the same level of isolation as traditional
virtual machines (VMs). It creates a MicroVM [11] that hosts a
Linux kernel atop a hypervisor layer. Programs running in a secure
container are isolated from other co-hosted tenants, making it a
well-suited runtime for public cloud services.

Memory Mapping Hierarchy. Figure 1(a) illustrates the multi-
layered memory address translation from an application in a RunD
container, through the hypervisor and host OS, to the physical main
memory. An application running within a RunD container uses
Guest Virtual Addresses (GVA). These are translated to Guest Phys-
ical Addresses (GPA) by the guest OS’s page tables (PTs). From the
guest’s perspective, a GPA appears to be a true "physical” address,
although it is still virtualized. The host operating system (Host OS)
then interprets GPAs as Host Virtual Addresses (HVA), which are
in turn translated into Host Physical Addresses (HPA) by standard
page tables within the host OS.

The HVA—HPA mapping is managed and accelerated by the
Memory Management Unit (MMU) in the Root Complex (RC). The
GPA—HPA mapping involves two levels of indirection, which can
slow down applications within the RunD container. Modern CPUs
extend the MMU with Extended Page Tables (EPT) to directly map
GPA to HPA in hardware. To leverage this feature, the hypervisor
registers the container’s memory space with the MMU. During
runtime, the CPU monitors the container’s memory usage and
caches the corresponding GPA-to-HPA mappings in the EPT.

PCle devices can also issue memory accesses to main memory
to perform operations such as RDMA. First, the Host OS allocates a
memory region in the HVA space and determines its corresponding
HPA mapping. The PCle device driver then creates a Device Address
(DA), notifies the device, and programs the Input-Output Memory
Management Unit IOMMU) to map the DA to the HPA. Once setup
is complete, the device can access main memory by sending requests
that target the DA space; the IOMMU then translates these DAs to
HPAs.

PCle Subsystem. Figure 1(b) illustrates the PCIe subsystem’s topol-
ogy and communication workflow. The CPU relies on PCle Base
Address Registers (BARs) to enable communication with PCle de-
vices. Each PCle device has a dedicated Bus-Device-Function (BDF)
identifier. Each BAR defines a memory-mapped region in HPA that
the CPU can directly access. For example, in Figure 1(b), the GPU’s
BAR maps a device memory region to addresses 0x00-0x0F in the
HPA space. When the CPU issues a memory write request targeting
this region ((1)), the PCIe RC and switch forward the request to the
GPU. Conversely, a request targeting a different HPA range, such
as (2), is forwarded to main memory.

One PCle device can communicate with another via PCIe Peer-
to-Peer (P2P) technology. In a P2P transaction, a source PCle device
generates a message targeting the address space registered in the
target PCle device’s BAR. For example, in request (3), the RDMA-
capable NIC (RNIC) sends a request to the GPU by targeting an
address in the GPU’s registered BAR space (i.e., 0x00—-0x0F).

Device-to-main-memory communication follows the same prin-
ciple. For instance, in (4) of Figure 1(b), if the RNIC needs to read
from or write to main memory, it generates a request with an
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Figure 1: (a) Memory mapping hierarchy. (b) PCIe subsystem and CPU addressing. (c) RDMA and GDR workflow.

address within the HPA range mapped to that memory (e.g., 0x20-
O0xFF).

RDMA and GPUDirect RDMA (GDR). Figure 1(c) illustrates the
RDMA and GDR mechanisms in both physical and RunD virtualized
environments. In a physical environment, an application registers
a memory region in the HVA space that the NIC can access, which
can point to either main memory or a GPU (step (1)). The RNIC
driver then retrieves the HVA-to-HPA mapping and writes it into
an RNIC-internal data structure called the Memory Translation
Table (MTT). For example, address 0xD4 may map to 0x20 in main
memory, and 0xFB may map to 0x00 on the GPU. Later, when an
RDMA or GDR request arrives targeting an HVA, the RNIC uses
the MTT to translate the address to the corresponding HPA before
the PCle switch and RC forward the request to its destination.

In a RunD environment, the container’s driver is unaware of
the GPA-to-HPA mapping. Therefore, it writes the GVA-to-GPA
mapping into the MTT (step (3)) and relies on the IOMMU in the
RC for the subsequent GPA-to-HPA translation. The hypervisor
registers this GPA-to-HPA mapping in the IOMMU. When an RDMA
or GDR request with a GVA arrives, the RNIC first queries the
IOMMU’s Address Translation Service (ATS) to resolve the HPA,
which is then returned to the RNIC (step (4)). The RNIC caches this
translation result in its internal Address Translation Cache (ATC)
to avoid the performance bottleneck of subsequent IOMMU queries.
Finally, by checking the MTT and ATC, the RNIC completes the
full GVA—GPA—HPA address translation and issues the request
to the target hardware (step (5)).

3 CURRENT VIRTUALIZATION SOLUTION

In this section, we introduce our state-of-the-art solution for Al
computing clusters in the public cloud, which uses off-the-shelf
technologies. We also share several key challenges we have encoun-
tered in recent years. Figure 2 illustrates the RDMA virtualization
framework.

The host OS runs one or more RunD containers, each equipped
with at least one NIC and one GPU. The NIC inside each container
(e.g., RNIC VF0) is a Virtual Function (VF) created from the RNIC’s
Physical Function (PF) using SR-IOV technology. It has a dedicated
PClIe BDF and BAR space. The PCle devices (e.g., RNIC, GPU) are

Host OS

RunD Container

TCP App. RDMA App. [EEY/

Pinned®
GPA

Network

Figure 2: The current network virtualization framework and
issues we encountered during operation.

assigned to the container using the Virtual Function I/O (VFIO)
driver. VFIO maps the PCle hardware resources (e.g., BARs) from
HPA to the RunD container’s GPA space by configuring the IOMMU
in the RC. Applications inside the container can then access the
device as if running on bare metal, providing optimal RDMA/GDR
performance.

On the PCle fabric, as introduced in Section 2, the IOMMU, ATC,
and the PCle switch’s LUT are configured to enable RDMA and
GDR for RunD containers.

The RNIC leverages its built-in vSwitch to direct traffic between
the RNIC PF and its VFs. This vSwitch is controlled by a Controller
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process in the host OS, which is maintained by our container net-
working team. The Controller maintains a complex VXLAN-based
virtual-to-physical network mapping. Since this mapping’s require-
ments exceed the vSwitch’s capacity, the Controller tracks the active
network connections of each container and dynamically offloads
relevant rules to the vSwitch. For each active connection, the RNIC
randomly chooses one of its two ports to send traffic to the network.
All packets within the same connection have the same header and
follow the same path.

3.1 Experiences and Lessons

Over years of operating our large-scale Al cluster with this vir-
tualization framework, we have experienced problems across all
dimensions of the architecture. Below, we review six representa-
tive problems, with corresponding components marked in Figure 2.
Problems (1) and (2) reveal host-level inflexibility caused by SR-
IOV and the VFIO driver. Problems (3) and (4) stem from hardware
resource and functionality limitations in the PCle fabric. Problems
(5) and (6) are rooted in the tight coupling between the RNIC’s
RDMA and TCP flow steering mechanisms.

(1) VF Inflexibility. The VF solution from our RNIC vendor does
not support dynamic reconfiguration. Specifically, we cannot adjust
the number of enabled VFs from one non-zero value to another
without a full reset. For example, if two VFs are already enabled, we
cannot create an additional VF directly. We must first remove all
existing VFs and then create three new ones. This constraint forces
us to configure the number of VFs on the RNIC only during host
startup. Overprovisioning VFs is not feasible, as each VF claims 63
virtual queues of 5000 MTU messages each, consuming 2.4 GB of
memory in total. Naively increasing the total number of VFs would
create a formidable memory overhead.

(2 Pinned GPA Required by VFIO. We found that the RunD
container start-up time is unexpectedly long, primarily due to MMU
interactions. Normally, VFIO is performant because it configures the
IOMMU to map a PCle device’s BAR from GPA to HPA, allowing
applications to operate the device directly. However, in a RunD
container, this mapping is not static. When the host OS swaps out
HPA memory pages, the GPA-to-HPA mapping changes, causing
the RNIC driver inside the RunD container to behave unpredictably
and crash. The workaround is to configure the MMU in the RC to
pin these memory regions, preventing them from being swapped
out. Since Al applications commonly use RDMA and GDR, the
RunD hypervisor must pin both the memory region marked by the
VF’s BAR and all potential memory regions used by RDMA, which
effectively means all memory inside the RunD container. Pinning a
container with 1.6 TB of memory typically takes 390 seconds, which
significantly delays container start-up.

(3) PCle Switch LUT Capacity Limitation. In our LLM inference
cluster, dense container deployments (over 100 per server) often
result in instances that cannot enable GDR. Our investigation re-
vealed that the issue lies with the PCle switch’s limited capacity.
Each VF has a unique BDF in the PCle subsystem. As introduced
in Section 2, GDR requires registering the VF’s BDF in the PCle
switch. However, on one of our Al cloud server models, each PCle
switch can only accommodate 32 BDFs. The server contains four
RNICs, four PCle switches, and eight GPUs. This means each RNIC
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can enable at most eight VFs, leading to a maximum of 32 VFs per
server, a number far below our deployment density requirements.
While in production, GPU servers often support hundreds of virtual
instances [5, 6].

@ Conflicting PCIe Fabric Settings. A customer reported an
abnormal TCP performance issue on a specific server model. Both
GDR and VFIO rely on PCle ATS and IOMMU functionality. On
this model, we cannot enable PCle ATS when the IOMMU is set
to pt in the host OS kernel. Although we suspect this is related to
CPU or OS kernel settings, the root cause remains unidentified. To
guarantee GDR performance in RunD containers, we enabled ATS
and set the IOMMU to nopt in production. However, this setting
degraded the host OS’s TCP performance because the kernel’s TCP
stack had to use the RNIC’s I/O Virtual Address as the DMA address,
creating a performance bottleneck.

(5) Interference in RNIC Hardware Flow Steering. In our cur-
rent network virtualization framework, TCP and RDMA traffic
traverse the same hardware flow steering pipeline in the RNIC’s
vSwitch. This creates unnecessary interference between the two
traffic types, where incorrect TCP processing logic can negatively
affect RDMA traffic. We share two issues triggered by this interfer-
ence.

First, in one cluster, we found that RDMA traffic experienced
higher-than-normal latency. Analysis revealed the root cause was
the order of entries in the RNIC’s vSwitch. TCP traffic entries were
placed before RDMA entries, causing RDMA packets to experience
a longer hardware lookup time. In this scenario, since all containers
share a set of hardware table entries, the RDMA performance of
one container can be impacted by the TCP traffic of others.

Second, in another example, we found that two VFs on different
RNICs on the same server could not communicate using RDMA.
The problem lay in the coordination between the RNIC driver
and the Controller. When an RDMA connection is established, the
Controller installs a VXLAN encapsulation entry in the vSwitch.
The RNIC driver then looks up its routing table to fill the VXLAN
header’s MAC address field. Because the two VFs belonged to the
same server, the driver found a local forwarding rule and set the
source/destination MAC addresses to zero. However, since the VFs
were on different RNICs, they could only communicate via the ToR
switch. The ToR switch, in turn, treated these packets as corrupt
and discarded them. Here, the driver’s behavior was correct for
kernel protocol stacks but incorrect for the RDMA protocol.

@ Single-Path RDMA Transmission. To support a larger net-
work scale and reduce traffic collisions, we adopted a dual-plane,
rail-optimized [27] network topology. In our topology, both planes
are connected at the core switch to create an "escape" layer for
failure resiliency. In our multi-tenant cluster, we found that the
core switch layer created a serious hash imbalance problem when
the cluster scheduler deployed an LLM training task across multiple
pods. The fundamental reason is that the RNIC does not support
multi-pathing; all RDMA packets from the same connection have
the same header and traverse the same path. A hash imbalance can
easily create network bottlenecks and degrade the performance of
AT tasks.
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Figure 3: Overview of STELLAR design.

3.2 Insights

High-performance transport protocols such as RDMA and GDR
are the cornerstone of Al training and inference. The six examples
above clearly illustrate the mismatch between current RDMA solu-
tions and the demands of public cloud services. The fundamental
issue is that current virtualization solutions depend on the flawless
collaboration of numerous software and hardware components. A
failure or limitation in any single component can compromise the
entire system. This operational experience convinces us that it is
necessary and urgent to design a new high-performance RDMA
framework tailored for Al applications in the public cloud. In sum-
mary, this framework must satisfy the following requirements:

o Agile Virtualization. The RNIC must be able to create and de-
stroy hundreds of virtual devices dynamically, and these virtual
devices must have a fast boot-up time.

e Stable Performance. RDMA and GDR performance must re-
main stable, regardless of the number of virtualized devices or
management events related to non-RDMA traffic.

e Multi-path Support. The RNIC must fully leverage the abun-

dant equivalent paths in the network to achieve better and more
stable RDMA/GDR performance.

4 STELLAR: RDMA FOR THE AI CLOUD

Since 2022, we have been designing and developing STELLAR, the
next-generation RDMA virtualization framework for AI workloads
in the cloud. In STELLAR, RDMA is treated as a first-class citizen.
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STELLAR overcomes the drawbacks of state-of-the-art RDMA virtu-
alization solutions to achieve scalability, stability, and performance
simultaneously. Figure 3 provides an overview of the STELLAR de-
sign.

In a secure container, STELLAR provides two Virtual I/O (vir-
tio) [32] devices to handle RDMA and other traffic separately.
virtio-vStellar takes over all RDMA traffic, while virtio-net
is responsible for the remaining network traffic, such as TCP, User
Datagram Protocol (UDP), and Address Resolution Protocol (ARP).
For the remainder of this paper, we use TCP to represent all non-
RDMA traffic.

For TCP traffic, STELLAR supports off-the-shelf technologies, in-
cluding virtio-net, virtio Data Path Acceleration (vDPA), PCle
Scalable Functions (SFs), and VXLAN tunneling. We chose SFs be-
cause they are more lightweight and flexible than VFs, allowing for
dynamic creation and deletion and thus solving the VF agility issue.
While the virtio/SF/VXLAN solution incurs a performance penalty
of approximately 5% compared to the vfio/VF/VXLAN approach,
its impact is minimal. This is because TCP traffic in distributed
AI/LLM workloads typically serves as control messages, which
have a negligible impact on end-to-end job performance.

For RDMA traffic, we implemented a hybrid virtualization solu-
tion named VSTELLAR. In VSTELLAR, the RDMA control path uses
virtio; control messages (e.g., Queue Pair (QP) creation, query, and
modification; Memory Region (MR) registration) first reach the
container’s virtio driver. The host virtio driver then intercepts these
requests to apply security and virtualization-related functions. The
VSTELLAR data path is implemented through direct memory map-
ping, following the approach of HyV [26] and MasQ [14]. Specifi-
cally, the secure container can directly access the RNIC’s Doorbell
register (vDB), and the RNIC can directly read from and write to the
MRs registered inside the container. This design maintains RDMA
performance without compromising security.

The use of SFs and the VSTELLAR design in STELLAR does not
require additional BDFs in the PCle subsystem. Therefore, all virtual
devices can support GDR communication, which solves both the VF
scalability issue and the LUT capacity limitation. VSTELLAR devices
can be created and destroyed in seconds and consume minimal
hardware resources. Note that the functions described thus far are
similar to those in previous solutions such as HyV and MasQ.

However, three key challenges remain unsolved by these prior
approaches. First, the secure container must still pin all its memory
to guarantee that applications can communicate correctly with
the GPU and NIC, which leads to long container start-up times.
Second, an increase in the number of virtual devices reduces the per-
device ATC allocation, which in turn increases the ATC cache miss
rate and degrades GDR performance. Lastly, the host-side RDMA
virtualization in HyV and MasQ cannot address the performance
issues caused by single-path RDMA transmission.

To address these challenges, STELLAR introduces three novel
solutions:

e On the host, we propose GDR-capable Para-virtualized Direct
Memory Access (PVDMA) to enable on-demand memory pinning
and registration, thereby accelerating container start-up.
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e On the RNIC, we extend the MTT to eMTT (extended MTT) to
access GPU memory directly. The eMTT bypasses the PCle RC
and avoids the ATC cache miss issue.

o In the network, we spray RDMA packets across 128 paths using
an Oblivious Packet Spraying (OPS) algorithm.

Combined, these features allow STELLAR to support up to 64k
virtual devices, create a new VSTELLAR device in 1.5 seconds (match-
ing the performance of MasQ), accelerate container start-up by 30X,
and improve LLM training performance by up to 14%. In the follow-
ing sections, we explain the design and implementation of these
key features in detail.

5 PVDMA: PARAVIRTUALIZED DIRECT
MEMORY ACCESS

Paravirtualization [7] is a virtualization technique that allows the
guest OS to interact directly with the hypervisor to achieve higher
performance and enable custom functionality. We designed a Par-
avirtualized Direct Memory Access (PVDMA) mechanism to enable
on-demand IOMMU address registration and eliminate the upfront
GPA pinning overhead.

The PVDMA workflow is illustrated in Figure 4. Unlike tradi-
tional methods, no memory is pinned during container start-up.
When the virtio-Stellar driver in a RunD container initiates a
DMA operation, PVDMA detects and intercepts the request (stage
1), registers the requested GPA memory region in the hypervisor,
and communicates with the IOMMU to pin the corresponding mem-
ory in HPA (stage 2). Subsequent DMA operations targeting the
same memory region hit the Map Cache and can be executed cor-
rectly, as the pinning protects the memory from page swapping
(stage 3). Since RDMA applications commonly reuse pinned mem-
ory regions, the one-time cost of PVDMA'’s on-demand pinning
does not add noticeable overhead. Furthermore, the Map Cache
lookup is lightweight and incurs only negligible latency. This de-
sign is inspired by vVIOMMU [9] and colOMMU [31] but offers a
more lightweight implementation.

Our dynamic, on-demand PVDMA solution, while avoiding full
GPA pinning, introduces the risk of the GPU accessing NIC memory
unexpectedly. The fundamental reason is that PVDMA creates a
dynamic GPA-to-HPA mapping that can conflict with the MMU’s
existing mappings for device registers. This issue, illustrated in
Figure 5, is triggered by the following sequence of events:
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o Step 1: Registering vDB in the EPT. When an RDMA program starts,
the virtio-Stellar driver performs direct memory mapping
for the VSTELLAR device’s virtual Doorbell (vDB). As shown in
Figure 5a, the RNIC’s physical Doorbell (DB) register in the HPA
BAR space is mapped to the vDB by creating an entry in the
MMU’s EPT.

o Step 2: Registering the Command Queue in the EPT. To allow the
CPU to issue commands to the GPU, the GPU driver allocates
memory for a command queue (Cmd Q). In the case shown in
Figure 5b, it accidentally allocates this memory in a GPA region
adjacent to the vDB.

o Step 3: Registering the Command Queue in the IOMMU. When
the GPU is about to read commands from the Cmd Q via DMA,
PVDMA registers the GPA-to-HPA mapping for this memory
region in the IOMMU, as shown in Figure 5c. PVDMA operates
with a memory granularity of 2 MiB. Unfortunately, this 2 MiB
memory block also covers the vDB.

o Step 4: Incorrect Retention of vDB Mapping. After the RDMA pro-
gram finishes, the EPT mapping for the vDB is released. However,
if the GPU application is still running, an inconsistency arises.
As shown in Figure 5d, because the memory for Cmd Q is still in
use by the GPU, PVDMA does not unmap the 2 MiB block from
the IOMMU, leaving the stale vDB-to-RNIC-DB mapping intact
within the IOMMU page table.

o Step 5: Erroneous Data Access. As shown in Figure 5e, the OS
may later reuse the original vDB memory space to create a new
command queue (Cmd Q’) for the GPU. When PVDMA detects
that the 2 MiB memory region containing Cmd Q’ is already
registered in the IOMMU, it does not update the page table. At
this point, the IOMMU page table incorrectly maps Cmd Q’ to the
physical RNIC DB. Consequently, whenever the GPU attempts a
DMA operation on Cmd Q’, it inadvertently accesses the RNIC
DB, leading to invalid commands and unrecoverable system
€errors.

The key to solving this problem is avoiding memory address
overlap between the MMU-based direct mapping for device regis-
ters and the IOMMU-based mapping for PVDMA. The page size for
the former is 4 KiB (to reduce hardware resource waste for doorbell
registers), while PVDMA’s page size is 2 MiB (to balance Map Cache
size and IOMMU pinning overhead). Resolving this would require
either expanding the doorbell register to 2 MiB or reducing the
PVDMA block size to 4 KiB. Neither option is desirable: a larger
doorbell register would increase each virtual device’s resource con-
sumption, reducing scalability, while a smaller PVDMA block size
would increase IOMMU configuration overhead.

Our solution leverages the shared memory (shm) region feature
of the virtio framework [32]. This feature provides an I/O space for
the virtio device that is distinct from the main physical memory
address space. As shown in Figure 5f, we map the vDB into this I/O
space. Because this I/O space does not overlap with the physical
memory address space used by PVDMA, the conflict is eliminated.
However, since this I/O space is not registered in the IOMMU by
default, the GPU cannot access it via DMA, which poses a challenge
for GPUDirect Async [8]. To support GPUDirect Async, we mod-
ified the RunD hypervisor with a mechanism similar to PVDMA
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Figure 5: A case of PVDMA causing the GPU to access incorrect data.
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that explicitly registers the doorbell’s I/O memory in the GPU’s
IOMMU page table when needed.

Figure 6 shows the impact of PVDMA on RunD container start-
up time. Without PVDMA, the start-up time increases dramatically
with the amount of container memory, as the hypervisor spends
most of its time interacting with the IOMMU to pin the GPA. When
PVDMA is enabled, the boot time remains below 20 seconds in
all cases and is reduced by up to 15X. The slight increase in boot
time (11 seconds) between the 160 GB and 1.6 TB configurations is
attributable to general hypervisor overhead, not VSTELLAR.

6 GDR VIA eMTT

As mentioned in Section 2, the PCle ATC is used to cache IOMMU
translation results to avoid performance degradation from frequent
IOMMU queries. However, the ATC has a limited capacity. Accord-
ing to our experience, an ATC can only cache mappings for tens
of thousands of memory pages. When a cache miss occurs, the
RNIC must issue additional PCle requests to the IOMMU to retrieve
address translation results, leading to performance fluctuations.

Upon further investigation, we realized that the MTT-ATC two-
layer indirection is often unnecessary, as both layers perform mem-
ory address mapping. We can directly cache the final translation
results in the MTT to bypass the ATC miss problem. The MTT,
residing in the RDMA NIC, commonly has orders of magnitude
larger capacity than the PCle ATC. Therefore, we extended the
MTT, naming eMTT, to implement this functionality. The eMTT
not only records the memory mapping but also stores the mem-
ory’s owner (i.e, Main Memory or GPU). STELLAR handles these
two types of DMA operations differently, as illustrated in Figure 7:

For a GDR write operation (GVA=0x20000, key=1), the processing
steps are as follows:

e Step 1: The packet arrives at the RNIC’s RX pipeline. Based on
the GVA-to-HPA mapping in the eMTT, the destination HPA is
set to 0xA000. Since the target memory type is GPU, STELLAR
sets the Address Translation (AT) field of the PCIe TLP to 0b10
(translated) [3].

e Step 2: When the packet arrives at the PCle switch, its AT field of
0b10 causes the switch to route the packet directly to the target
GPU, bypassing the RC.

For an RDMA write operation targeting host memory (GVA=0x1000,
key=0):

e Step 1: The packet arrives at the RNIC’s RX pipeline. Based on
the GVA-to-HPA mapping in the eMTT, the destination HPA is
set to 0xB0000. Since the target memory type is host memory,
STELLAR sets the AT field of the PCIe TLP to 0b@0 (untranslated).

e Step 2: The PCle switch inspects the AT field, sees 0b09, and
routes the packet to the RC.

e Step 3: The IOMMU in the RC performs the final address trans-
lation, and the packet is ultimately routed to host memory.
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Figure 7: An example of Stellar handling GDR traffic.

eMTT Performance. We compared VSTELLAR with a standard
PCle ATS/ATC solution using a Mellanox ConnectX-6 200G RNIC!.
We established 16 connections, each allocated independent GPU
memory resources for transmission and reception. During the test,
the client initiated GDR write operations on the 16 connections in
a round-robin fashion. Each GDR write operation transferred data
from local GPU memory to the server’s GPU memory. The testing
platform was configured with typical virtualization parameters:
IOMMU=nopt, ATS enabled, and PCle switch ACS DT features
turned on. We set the GDR memory page size to 4KB to create a
worst-case scenario for cache performance. The results are shown
in Figure 8.

For message sizes over 2 MB, the CX6’s GDR performance de-
creased from 190 Gbps to 170 Gbps. To confirm that this perfor-
mance drop was due to ATC misses, we used Neohost [25] to ana-
lyze the average latency of all PCle operations on the client-side
CX6. We observed that when the GDR performance of the CX6
decreased, the average PCle latency increased simultaneously. Fur-
thermore, when GDR message sizes exceeded 32 MB, the GDR per-
formance dropped to approximately 150 Gbps. We also analyzed
IOMMU memory access using Intel pcm-iio [15] and found that
it had also increased, indicating that the PCle ATS requests were
further aggravating Input/Output Translation Lookaside Buffer
(IOTLB) misses.

In contrast, VSTELLAR maintained a consistent GDR bandwidth as
the memory size increased, as shown in Figure 8. This demonstrates
that STELLAR’s GDR implementation does not suffer from ATC miss
issues. In summary, compared to the standard ATC-based approach,
our eMTT solution not only improves GDR performance but also
conserves RNIC cache resources.

7 STELLAR MULTI-PATH RDMA

Both industry and academia have proposed many load-balancing
solutions to alleviate in-network hash collisions and congestion.
These solutions can be classified into four categories: traffic engi-
neering (TE), flowlet-based switching, adaptive routing (AR), and
end-to-end multi-pathing. After thorough exploration and experi-
mentation, we concluded that multi-path RDMA outperforms other

!Currently, ATC miss-related key counter information can only be obtained from a
CX6 using Neohost [25]; this functionality is not available on the CX7.
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Figure 8: ATC miss testing result.

approaches for large-scale Al workloads. We further tested a wide
variety of multi-path algorithms and parameters, ultimately deploy-
ing a 128-path Oblivious Packet Spraying algorithm with a short
Retransmission Timeout (RTO) in our production environment. In
this section, we share our analysis of different load-balancing so-
lutions and explain the rationale behind our choices. To the best
of our knowledge, this is the first RDMA multi-pathing solution
designed for large-scale Al workloads to be deployed in production.

7.1 Load-Balancing Approaches

Traffic Engineering. TE solutions utilize a centralized controller
to dynamically optimize routing based on real-time workloads and
network topology. They leverage the regular and persistent com-
munication patterns of LLM training tasks. As Meta has demon-
strated [12], TE can outperform static ECMP and path-pinning
load-balancing solutions.

However, TE is a reactive and general-purpose solution best
suited for single-tenant scenarios. In a public cloud, its benefits
are diminished by dynamic workloads, and it faces scalability chal-
lenges. As uncovered by Meta [12], TE also adds significant software
complexity and management overhead and performs worse when
multiple links fail. Furthermore, TE’s effectiveness is limited by the
low entropy of LLM traffic; it can only redistribute flows but cannot
overcome this fundamental constraint.

Flowlet Switching. Flowlet-based switching [33] is a dynamic
routing solution that detects inter-packet gaps within a flow, splits
the flow into "flowlets," and routes each flowlet to a different next
hop. However, as pointed out by recent studies [21, 30], flowlet-
based solutions are often ineffective for RDMA load balancing due
to RDMA’s bulk traffic patterns. Despite this, we appreciate the
simplicity and compatibility of this approach and plan to enable it
in our older-generation GPU clusters.

Adaptive Routing. Adaptive Routing (AR), or packet spraying, is
a switch-side dynamic multi-pathing algorithm. An AR-enabled
switch dynamically selects an output port for an incoming packet
based on link status. Packets from the same RDMA connection
can then traverse multiple paths to reach the destination RNIC,
which must process the resulting out-of-order packets using tech-
nologies like Direct Packet Placement [19]. AR can achieve both
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Figure 10: AllReduce performance under different background traffic conditions: static and bursty.

coarse-grained load balancing and fine-grained congestion avoid-
ance. However, in our case, an AR solution is inferior to an RNIC-
based multi-path solution. While both approaches aim to distribute
packets evenly and should offer comparable performance gains, AR
introduces a significant challenge for our network monitoring and
diagnostic systems, as packets with identical headers can traverse
multiple different paths in a short time.

Based on the above discussion, we chose to implement RDMA
multi-path load balancing on our in-house RNIC.

7.2 Multi-Path Algorithm Selection

Multi-path transport has long been studied, and many solutions
have been proposed, such as MP-RDMA [21], SMaRTT-REPS [10],
and STrack [17]. These solutions typically optimize for tail latency
under challenging traffic patterns (e.g., skewed distributions, heavy
incasts) using advanced features like per-path windowing, trim-
ming, and SACK. However, for large-scale Al workloads, we identi-
fied different design goals.

Large-scale LLM training jobs inject balanced, regular, high-
volume, and low-entropy traffic into the network [12, 27]. Our
rail-optimized, dual-plane topology provides isolated and abun-
dant paths at the ToR and aggregation layers. These large-scale,
tightly-coupled, long-running training jobs are highly sensitive
to performance fluctuations, and GPU clusters are prone to fail-
ures [13, 27]. The multi-path algorithm’s goal is to strike a balance
between all these factors to minimize communication time. More
specifically, we seek to achieve three targets:

o Distribute elephant flows evenly across all available equivalent
paths.

e Remain resilient to frequent link flapping and failures.

o Be simple to implement in hardware.

We conducted thorough experiments to determine the three key
parameters of the STELLAR multi-path algorithm: the path selection
algorithm, the number of paths, and the failure detection and miti-
gation mechanism. Due to space limitations, we primarily present
the results for the first two parameters.

Methodology. We assessed the performance of mainstream algo-
rithms, including BestRT T, Round Robin (RR) [1], Dynamic Weighted
Round-Robin (DWRR) [16], MPRDMA [22], and Oblivious Packet
Spraying (OBS), using the naive single-path algorithm as our base-
line. Our experiments were conducted in a cluster with an HPN7.0 [27]
topology using servers with 8 GPUs and 4 RNICs each. Each RNIC
has two 200 Gbps ports. The RNIC runs an in-house, window-based
congestion control (CC) algorithm that adjusts based on ECN and
RTT. We kept CC parameters constant across all experiments. We
primarily compare the ToR switch queue length and achievable
bandwidth to evaluate algorithm performance. Our current imple-
mentation relies on a Retransmission Timeout (RTO) of 250 ps to
detect packet loss, a value chosen for our low-latency data center

topology.

Permutation traffic. We selected 30 GPU servers from two net-
work segments and injected permutation RDMA write traffic, creat-
ing 120 flows in total. Each RNIC sent traffic to a random destination.
For each algorithm, we tested both 4-path and 128-path configura-
tions. As illustrated in Figure 9, RR and OBS performed best with
4 paths. With 128 paths, the performance of most algorithms (ex-
cluding BestRTT and Single Path) was similar. The average and
maximum queue depths decreased significantly when using 128
paths, indicating superior load balancing.
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Figure 13: Microbenchmark results for core RDMA write operations, showing latency and throughput.

Static background traffic. We then assessed the algorithms’ ability
to adapt to static background traffic. We initiated two 512-GPU
AllReduce tasks to simulate continuous LLM training jobs and
measured the attainable bandwidth for a third 512-GPU AllReduce
task. Figure 10a shows that with a sufficient number of paths (128),
even simple algorithms like RR and OBS can evenly distribute
traffic and fully utilize the RNIC’s bandwidth (50 GB/s). In contrast,
BestRTT and DWRR tended to activate only a small number of
paths, leading to congestion and suboptimal performance.

Bursty background traffic. To test performance under bursty
background traffic, we ran an AllReduce task that was active for 5
seconds and paused for 5 seconds cyclically. Against this persistent
bursty background, we initiated a 512-GPU task using OBS and
RR with 4 paths and 128 paths. Figure 10b shows the measured
bus bandwidth for the test AllReduce task. Using 128 paths signifi-
cantly mitigated the impact of the bursty traffic. Furthermore, OBS
exhibited stronger resilience than RR, which we believe is because
its pseudo-random nature interacts more favorably with our CC
algorithm.

Link failures. Given that LLM training jobs are large-scale and
long-running, link failures are inevitable. Our operational statistics
show that a 10,000-GPU training task experiences, on average,
one link failure every three days [27]. To evaluate resiliency, we
initiated a 960-GPU AllReduce task and randomly dropped packets
with 1% and 3% probability on a single link. As shown in Figure 11,
with 128 paths, all multi-path algorithms tolerated these failures
well, with almost no observable performance degradation. This is
because distributing traffic over 128 paths effectively reduces the
perceived packet loss rate at the endpoint by a factor of 128, making
the performance loss nearly imperceptible. For complete link or
optical module failures, STELLAR uses a short RTO to retransmit
lost packets on a different path for instant recovery. Over the long

term, the control plane (e.g., BGP) detects the failure and reroutes
traffic, and STELLAR’s CC algorithm then quickly converges to a
new flow-path assignment.

Path quantity. The above analysis shows that the number of paths
has a substantial impact on performance. To further quantify this,
we evaluated the algorithms under varying path counts by measur-
ing the RDMA bandwidth between two RNICs with 16 connections,
using 4, 8, 16, 32, 64, 128, and 256 paths. Figure 12 shows the net-
work imbalance, calculated as the ratio of the difference between
the maximum and minimum load on all ToR uplink ports to the
total port bandwidth. We observed that ideal network balance was
achieved only when the number of paths reached 128. This was
expected, as our network’s 60 aggregation switches [27] mean that
128 paths are sufficient to uniformly cover all possible routes.

In summary, the 128-path OBS algorithm not only simplifies
hardware implementation but also achieves the best performance in
both static and dynamic network environments, while maintaining
resilience to link failures.

8 EVALUATION

8.1 vStellar’s Microbenchmark Performance

We evaluated VSTELLAR’s performance in two aspects. First, we
compared its RDMA benchmark performance in secure containers
against bare-metal performance in regular containers, proving that
the virtualization overhead of VSTELLAR is negligible. Second, we
compared VSTELLAR with traditional GDR solutions that rely on
PCle ATS/ATC, demonstrating that VSTELLAR has superior scalabil-
ity. For these experiments, we used two GPU servers, each equipped
with two Xeon CPUs, four RNICs with two 200 Gbps ports each,
and eight GPUs. The servers ran CentOS 8 with OFED-23.10, and
the IOMMU was configured in nopt mode.
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Figure 16: Performance comparison with SOTA under different cluster scheduling strategies. The x-label represents TP, PP, DP,

and EP, respectively.

Negligible Overhead in RDMA Performance. In this experi-
ment, we used the ‘perftest’ benchmark to quantify the impact
of VSTELLAR virtualization on RDMA bandwidth and latency. To
conduct a precise comparison, we tested message sizes from 2B to
8 MB, increasing by powers of two. The client and server processes
were bound to different physical CPU cores. For the RunD secure
container, virtual CPUs (vCPUs) were also bound to physical cores.
The results, shown in Figures 13a and 13b, indicate that the latency
and throughput of VSTELLAR and bare-metal STELLAR are almost
identical, suggesting that the virtualization overhead is negligible.
In contrast, the competing VF+VxLAN solution on a CX7 RNIC in-
troduces a 7% latency overhead for 8 B packets and a 9% bandwidth
loss for 8 MB messages.

Scalable GDR Performance. In this experiment, we compared
VSTELLAR with both HyV/MasQ and PCle ATS/ATC-based solutions
to demonstrate its superior scalability for GDR. First, we compared
the GDR performance of VSTELLAR and HyV/MasQ. As shown in
Figure 14, the maximum throughput of the HyV/MasQ GDR imple-
mentation is only 141 Gbps, approximately 36% of the maximum
bandwidth of VSTELLAR (393 Gbps). This is because neither HyV
nor MasQ were optimized for GDR, causing related traffic to be
routed through the PCle RC, which severely hampers performance.
Additionally, we compared the GDR performance of VSTELLAR with
that of bare-metal STELLAR. The results, also shown in Figure 14,
confirm that VSTELLAR introduces no discernible overhead for GDR
operations.

8.2 End-to-End LLM Training Performance

We evaluated the end-to-end training performance of large lan-
guage models (LLMs) to compare our proposed STELLAR framework

with a state-of-the-art (SOTA) solution based on the CX7 RNIC.
We conducted two separate experiments to demonstrate the ben-
efits of our multi-path and virtualization technologies. First, we
used regular (non-virtualized) containers to isolate the performance
impact of the different transport-layer multi-pathing technologies.
Second, we compared model training performance in regular versus
secure containers to evaluate the overhead of our virtualization
approach, VSTELLAR. In this case, both container types used the
same underlying STELLAR transport.

Multi-path Transmission. In the first experiment, we evaluated
how the transport layer affected training performance under differ-
ent network congestion scenarios. We used task placement strate-
gies—reranking and random ranking—to control the level of net-
work congestion. Reranking is a cluster scheduling capability that
co-locates communicating GPUs, keeping them physically close.
This significantly reduces cross-switch traffic, thereby lowering
network congestion.

Specifically, we trained models on 1,024 GPUs, with half drawn
from one network segment and half from another. With reranking,
which reflects a large, well-scheduled training job, network conges-
tion was minimal, and thus the performance differences between
transport layers were also minimized. The results in Figure 16a
show that STELLAR consistently outperforms the CX7-based so-
lution, with an average improvement of 0.72%. Conversely, with
random ranking, which simulates a cluster with many small, unco-
ordinated jobs, the locality of network traffic was disrupted, lead-
ing to a significant increase in network congestion. This scenario
highlights the performance differences at the transport layer. As
Figure 16b shows, STELLAR improves training performance by an
average of 6%, with a maximum increase of 14%.
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‘ Framework ‘ Model ‘ Parameters ‘ TP Com. ‘ DP Com. ‘ PP Com.
Megatron Llama-33B | 2,3,148,1,58,8584 4.57% 20.95% 2.65%
Megatron GPT-200B | 4,12,34,1,117,3978 10.88% 1.49% 20.14%

DeepSpeed-Zerol | Llama-2B 1,1,16,1,2,32 N/A 17.3% N/A

DeepSpeed-Zero3 | Llama-13B 1,1,440,1,1,440 N/A 10.5% N/A

Table 1: Parallel strategy and communication ratio of typical
models. Numbers in the Parameters column denotes TP, PP,
DP, Micro-batch Size, Gradient Accumulation, and Global-
batch Size.

Virtualization. In the second experiment, we evaluated the impact
of our virtualization by comparing the training performance of
models running in regular versus secure containers. We used 256
GPUgs, half from one network segment and half from another, and
employed random ranking to create a network-intensive scenario.
As shown in Figure 15, the training performance was nearly identi-
cal in both container types. This result indicates that the proposed
VSTELLAR virtualization layer does not introduce any significant
performance overhead. Considering the flexibility, scalability, and
security advantages brought by VSTELLAR, it is clearly a more suit-
able solution for serverless Al environments.

9 DISCUSSIONS

VSTELLAR’s isolation between VMs. In VSTELLAR, all virtual
devices share the same BDF number in the PCIe subsystem. To
prevent unauthorized access between VMs, VSTELLAR implements
several security mechanisms. First, it assigns standalone registers
on the RNIC to each VM so that one VM cannot access another’s
registers. Second, VSTELLAR leverages the "protection domain" con-
cept from the RDMA specification. In RDMA, a queue pair can only
access a memory region if both belong to the same protection do-
main. VSTELLAR assigns a dedicated protection domain to each VM,
ensuring that cross-domain memory accesses are rejected by the
hardware. Lastly, since all RDMA resource allocation is managed
by the VSTELLAR driver, the driver can enforce additional access
control and isolation policies to further enhance security.

Distributed training and computation/communication over-
lapping. As model sizes increase, the memory of a single GPU
becomes insufficient, making parallel training necessary. Megatron-
LM 3D parallelism [24] and DeepSpeed’s data parallelism [28] are
currently the dominant methods for LLM training. Although using
many GPUs provides more aggregate computing power and mem-
ory, parallel training inevitably introduces communication over-
head. Therefore, reducing this communication overhead is a core
concern. As shown in Table 1, we have collected statistics for several
typical parallel training jobs using Megatron-LM and DeepSpeed.
In these examples, the communication-to-computation ratio ranges
from 10% to 32%. While we employ computation/communication
overlap techniques [18] to hide this latency, this approach does not
negate the need for a high-performance network. First, commu-
nication cannot be completely overlapped in most cases. Second,
implementing effective overlap requires custom adaptations to the
training framework [23, 29]. Given that upper-layer application
logic is still evolving rapidly (e.g., Mixture-of-Experts (MoE) intro-
ducing expert parallelism), these adaptations lag behind. During
this adaptation window, which can last several months, we must
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rely on a high-performance network to ensure the scalability of
parallel training.

Advanced multi-path algorithms. Recent multi-path algorithms
such as SMaRTT-REPS [10] and STrack [17] offer superior per-
formance under challenging traffic patterns. We implemented a
similar path-aware packet spraying algorithm to test its perfor-
mance in our environment. Unfortunately, we did not observe a
significant performance advantage over the simpler OBS algorithm.
The reason is twofold. First, the training framework and collective
communication libraries already inject traffic with regular patterns
(e.g., permutation) into the network. Second, our dual-plane, multi-
rail topology is designed to avoid unnecessary traffic collisions.
According to our operational experience, a high fan-out (128 paths)
combined with a simple multi-path algorithm is sufficient to elimi-
nate most in-network congestion for current workloads. We believe
that in the near future, as training and inference workloads evolve,
more challenging traffic patterns will emerge, and advanced multi-
path algorithms may become necessary.

Per-path CC vs. High-fanout multi-pathing. In STELLAR, all
128 paths share a single congestion control context (CCC); that is,
they are controlled by a single congestion window. An alternative
approach is to assign a separate CCC to each path. This would
greatly reduce the total number of paths STELLAR could support
(from 128 down to 4) due to increased hardware resource consump-
tion, but in exchange, it would enable a more precise, per-path
congestion response. For current Al applications, which generate
highly regular traffic, we believe that a higher fan-out provides
greater benefits by maximizing path diversity, consistent with the
results shown in Figure 12.

10 CONCLUSION

STELLAR represents a significant leap forward in RDMA virtual-
ization and multi-path transmission, specifically tailored for large-
scale, cloud-based Al workloads. By systematically addressing crit-
ical limitations in existing solutions related to scalability, perfor-
mance stability, and resource utilization, STELLAR provides a com-
prehensive new framework for high-performance networking in
the cloud. Our production deployment on large-scale Al clusters
has demonstrated its real-world impact, delivering substantial im-
provements in container start-up time, virtual device scalability,
and end-to-end training efficiency. The key innovations presented
in this paper—PVDMA for agile memory management, eMTT for
scalable GDR, and high-fan-out packet spraying for robust load
balancing—provide a robust foundation for the next generation of
cloud-native Al infrastructure.
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