
SyCCL: Exploiting Symmetry for Efficient Collective
Communication Scheduling

Jiamin Cao†∗, Shangfeng Shi†‡∗, Jiaqi Gao†, Weisen Liu†‡, Yifan Yang†‡, Yichi Xu†, Zhilong Zheng†,
Yu Guan†, Kun Qian†, Ying Liu‡, Mingwei Xu‡, Tianshu Wang†, Ning Wang†, Jianbo Dong†,

Binzhang Fu†, Dennis Cai†, Ennan Zhai†
†Alibaba Cloud ‡Tsinghua University

Abstract

The performance of collective communication schedules is crucial
for the efficiency of machine learning jobs and GPU cluster uti-
lization. Existing open-source collective communication libraries
(such as NCCL and RCCL) rely on fixed schedules and cannot ad-
just to varying topology and model requirements. State-of-the-art
collective schedule synthesizers (such as TECCL and TACCL) uti-
lize Mixed Integer Linear Program for modeling but encounter
search space explosion and scalability challenges. In this paper,
we propose SyCCL, a scalable collective schedule synthesizer that
aims to synthesize near-optimal schedules in tens of minutes for
production-scale machine-learning jobs. SyCCL leverages collec-
tive and topology symmetries to decompose the original collective
communication demand into smaller sub-demands within smaller
topology subsets. SyCCL proposes efficient search strategies to
quickly explore potential sub-demands, synthesizes corresponding
sub-schedules, and integrates these sub-schedules into complete
schedules. Our 32-A100 testbed and production-scale simulation
experiments show that SyCCL improves collective performance
by up to 127% while reducing synthesis time by 2 to 4 orders of
magnitude compared to state-of-the-art efforts.

CCS Concepts

• Networks → Data path algorithms; Data center networks; •
Computing methodologies→Machine learning.

Keywords

Collective Communication, Deep Learning, Communication Sched-
uling

ACM Reference Format:

Jiamin Cao, Shangfeng Shi, Jiaqi Gao, Weisen Liu, Yifan Yang, Yichi Xu,
Zhilong Zheng, Yu Guan, Kun Qian, Ying Liu, Mingwei Xu, Tianshu Wang,
Ning Wang, Jianbo Dong, Binzhang Fu, Dennis Cai, Ennan Zhai. 2025.

∗Both authors contributed equally to this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1524-2/25/09.
https://doi.org/https://doi.org/10.1145/3718958.3750499

SyCCL: Exploiting Symmetry for Efficient Collective Communication Sched-
uling. In ACM SIGCOMM 2025 Conference (ACM SIGCOMM ’25), Septem-
ber 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 18 pages.
https://doi.org/https://doi.org/10.1145/3718958.3750499

1 Introduction

Collective communication libraries (CCLs), such as NCCL [11] and
RCCL [14], implement efficient inter-GPU communication in dis-
tributed machine learning (ML) training and inference. The perfor-
mance of collective communication is critical, as it directly affects
the efficiency of training and inference. For example, [22] reports
that the time spent on collective communication accounts for >30%
of the time when training GPT-22B [16] and LLaMa-7B [35] models.

The performance of collective communication heavily relies on
the communication schedule, which defines the data transfer among
GPUs to satisfy communication demands.

Various factors can impact the performance of collective com-
munication schedules, including the collective itself (e.g., communi-
cation pattern, data size, and participant GPUs) and the inter-GPU
topology (e.g., connectivity, bandwidth, and latency). For example,
for small data sizes (e.g., <10MB), network latency dominates, and
thus schedules that minimize transmission hops perform better.
In contrast, for large sizes (e.g., >1GB), optimizing bandwidth is
essential.

Current CCLs, nevertheless, employ fixed schedules (e.g., ring
and double binary tree [1]) for all collectives and topologies. For
example, NCCL utilizes fixed ring schedules for AllGather, where
each server connects GPUs in local chains and links these chains to
form complete rings. This fixed approach can lead to underutilized
bandwidth for large data sizes and high latency for small sizes.

In practice, there are numerous inter-GPU topologies with
various connections, including intra-server links (e.g., PCIe and
NVLink [13]) and inter-server network links (e.g., Ethernet and
Infiniband). Additionally, ML models [19, 26, 37, 41] and paral-
lelism configurations [20, 25, 34] can vary widely. This leads to
varying collective communication calls, with different data sizes
(from a few bytes to several gigabytes), communication patterns
(e.g., AllReduce and AllGather), and GPU participants with vari-
ous connections. In one of our production clusters, the fixed ring
schedule used by NCCL leads to 10.6% bandwidth wastage for large
sizes and 4× latency increase for small sizes (see §2.1 for details).
To optimize communication performance, synthesizing schedules
tailored to topologies and collectives is critical.

Recent efforts [17, 28, 33] model the schedule synthesis as
a Mixed Integer Linear Program (MILP) problem and employ
solvers to produce a near-optimal schedule automatically. While
these methods outperform fixed schedules, they struggle with

https://doi.org/https://doi.org/10.1145/3718958.3750499
https://doi.org/https://doi.org/10.1145/3718958.3750499

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

larger topologies. For example, TACCL [33] fails to synthesize an
AllGather schedule on a 128-GPU topology within eight hours. To
address scalability issues, TECCL [28] divides the collective into
multiple independent time intervals and applies a greedy heuristic
to solve the schedule for each interval. This approach accelerates
the process but sacrifices accuracy (e.g., 20% performance loss [28]).

This paper presents SyCCL, a scalable collective communication
schedule synthesizer that can propose near-optimal schedules in
minutes for production-scale ML jobs.

We identify that the culprit of the scalability issue in previous so-
lutions is encoding the entire collective and topology into a holistic
formula. While in reality, symmetries commonly exist in the collec-
tive and topology. For example, all GPUs in a collective may send
or receive equal amount of data, and datacenter topologies (e.g.,
Clos [6] and Multi-rail [2]) are also inherently symmetric. Thus,
the optimal plan for one symmetric group can apply to others.

The challenge lies in effectively leveraging these symmetries.
MILP solvers may not efficiently detect complex symmetric struc-
tures. Conversely, directly encoding them as MILP constraints may
further complicate the problem and degrade solver performance.

To address this, SyCCL introduces a key concept called sketch.
A sketch divides the original collective communication demand
into smaller sub-demands across smaller topology subsets (§3).
Each sub-demand can be satisfied using various sub-schedules. The
sub-schedules for these sub-demands together form a complete
schedule. This approach improves scalability by solving smaller
problems individually and combining the results. In addition, by
leveraging topology and collective symmetries, the sub-demands
and sub-schedules across isomorphic subsets are consistent, greatly
reducing the overall search space.

SyCCL’s synthesis consists of two phases. First, SyCCL explores
potential sketches based on the input topology and collective (§4).
SyCCL designs an efficient method to search for sketches and com-
bines the generated sketches to maximize bandwidth usage. Second,
SyCCL employs an MILP modeling approach to synthesize near-
optimal sub-schedules and combines them into complete schedules
(§5). Additionally, SyCCL enhances accuracy through two-step syn-
thesis, and accelerates synthesis using isomorphism and parallelism.

Our 32-A100 experiments show that SyCCL achieves up to 91%
improvement in schedule performance compared to TECCL and
108% improvement compared to NCCL. Our production-scale H800
simulation experiments further show that SyCCL significantly im-
proves schedule performance by up to 127% while decreasing syn-
thesis time by 2 to 4 orders of magnitudes compared to TECCL. In
addition, SyCCL improves end-to-end model training performance
by up to 6.3% on the 32-A100 testbed compared to NCCL (§7).
Ethics. This work does not raise any ethical issues.

2 Background and Motivation

Optimizing collective communication performance is non-trivial.
In this section, we first introduce the background of collective
communication (§2.1). Then we explain the search space explosion
challenge in schedule synthesis (§2.2) and why the state-of-the-art
efforts are not scalable (§2.3).

SendRecv
(One-to-one)

0

AllGather
(All-to-all)

Gather
(All-to-one)

Broadcast
(One-to-all)

1

…

…0

… … ……

1 2
Pre-Communication

Post-Communication

N0 1 2 N…0 1 2 N…GPU

… …

… …

Figure 1: Collectives are categorized into four types: one-to-

one, one-to-all, all-to-one, and all-to-all.

Variable Description
V Set of GPUs.
C Set of chunks.
𝑠 Chunk size
𝐹𝑠 : C → V Mapping each chunk 𝑐 ∈ C to the GPU it is initially on.
𝐹𝑑 : C → P(V) Mapping each chunk 𝑐 ∈ C to the GPUs that demand it. P(V)

denotes the power set of V , i.e., 𝐹𝑑 (𝑐) ⊆ V .
𝑟 ∈ {0, 1} Whether chunks are reduced on destination GPUs.

Table 1: Collective denotations.

2.1 Background: Collective Communication

Large-scale ML training and inference jobs exchange data between
GPUs using collective communication.
Collective communication. As shown in Table 1, a collective
involves multiple GPU participants V and multiple data chunks C
of the same size 𝑠 . Each GPU 𝑣 ∈ V can act as a source, a destination,
or both. We use two mapping functions 𝐹𝑠 and 𝐹𝑑 to denote the
communication patterns. A chunk 𝑐 ∈ C is initially at a source GPU
𝑔 if 𝐹𝑠 (𝑐) = 𝑔, and is required by a destination GPU 𝑔 if 𝑔 ∈ 𝐹𝑑 (𝑐).

Collective communication patterns are classified into four cat-
egories: one-to-one, all-to-one, one-to-all, and all-to-all [23]. (1)
One-to-one (SendRecv) involves a chunk 𝑐 which is initially on
the source 𝑣𝑠 (𝐹𝑠 (𝑐) = 𝑣𝑠), and is demanded by the destination
𝑣𝑑 (𝐹𝑑 (𝑐) = {𝑣𝑑 }). (2) One-to-all involves a source 𝑣𝑠 sending
a chunk to all GPUs (Broadcast), or sending a different chunk
to each other GPU (Scatter). (3) All-to-one (Gather/Reduce) in-
volves a destination 𝑣𝑑 receiving chunks from all GPUs. (4) In
All-to-all, each GPU acts as both a source and a destination. A
GPU may start with one chunk and gather/reduce all chunks
from others (AllGather/AllReduce), or start with |V| chunks and
gather/reduce a chunk from each GPU (Alltoall/ReduceScatter).
Limitations in fixed collective communication schedules. The
performance of collective communication heavily depends on the
schedule, i.e., how chunks are transferred among GPUs. Current
CCLs employ fixed schedules. Figure 2 shows NCCL’s ring schedule
for AllGather, where 8 GPUs within each server are connected
in a chain, and these chains are linked to form a complete ring.
However, fixed ring schedules do not achieve optimal performance
in this case for two reasons. First, they maintain a fixed bandwidth
ratio of 7:1 between intra-server and inter-server links. In our H800
cluster, the intra-server NVLink bandwidth is 180GBps, while each
server scales out with eight 400Gbps NICs, resulting in an actual
ratio of 3.6:1. As a result, the NVLink becomes the bottleneck,
leading to 3.4/7=48.5% of the inter-server network bandwidth being
wasted and an average bandwidth wastage of 48.5%/(3.6+1)=10.6%.
Second, transfers require |V|-1 hops to complete, resulting in high
latency, especially for small sizes where latencymatters. Our testbed
evaluation shows that NCCL’s performance at small sizes can be
4× worse than that of synthesized schedules.

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

NVSwitch
Server 0

NIC

10 2 3 54 6 7

NVSwitch
Server 1

98 10 11 1312 14 15

Ring 2 Ring 1

NVLink: 14 hops, Network: 2 hopsNVLink: 180GBps*8, Network: 400Gbps*8

14

6

10

2

15

7

11

3

12

4

8

0

13

5

9

1

Figure 2: The fixed ring schedule in NCCL performs poorly

on our production cluster.

Given the limitations, it is critical to synthesize optimal schedules
based on network topologies and collectives.

2.2 Search Space for Collective Schedules

The potential schedules for a collective can be massive under a
large-scale GPU cluster. First, a chunk may take different routes to
reach its destinations. Once a GPU receives a chunk, it can send it to
any other GPU, leading to numerous routing possibilities. Second, a
collective may involve multiple chunks. When two chunks are sent
over the same link, their transmission order matters. The possible
ordering combinations for 𝑛 chunks exceed 𝑛!. Third, chunks can
be sliced into smaller pieces, which take different paths to exploit
bandwidth. This further expands the routing and ordering choices.

As the number of GPUs, the chunk sizes, and the topology com-
plexity increase, the search space for schedules explode.

2.3 Limitations of Existing Synthesizers

The state-of-the-art schedule synthesizers [17, 28, 33] model sched-
ule synthesis as a Satisfiability Modulo Theory (SMT) or a Mixed-
Integer Linear Programming (MILP) problem. They encode the
collective, topology, and schedule as constraints, intending to mini-
mize communication time. However, as the scale of networks and
collectives increases, direct encoding of the whole problem faces
the challenge of search space explosion. For example, it takes >24
hours for SCCL [17] to synthesize a 16-GPU AllGather schedule.

To handle this huge search space, TACCL [33] splits schedule
synthesis into three smaller steps: routing, ordering and exact sched-
uling. It also allows users to apply rotational symmetry constraints
to further reduce the search space. However, directly encoding mas-
sive symmetry constraints into the model may further complicate
the MILP formulation and slowdown the solver instead. As a re-
sult, TACCL fails to create an AllGather schedule on a 128-GPU
topology within eight hours [28].

TECCL [28] models schedule synthesis as an MILP problem by
setting a fixed epoch duration and representing the schedule as
discrete events within epochs. Within modern GPU clusters with
various interconnections, TECCL struggles to find an appropriate
epoch duration that can accurately model transmission on inter-
connections with different performances (See Appendix A for more
details). To address scalability issues, TECCL divides communica-
tion into multiple time intervals and solves each separately with
greedy heuristics. As a result, this technique is not globally optimal
(e.g., it can lead to 20% performance loss according to [28]).

On the other hand, new underlying network architectures [12,
30] and optimization techniques [7, 9, 15] are continually emerging.
Researchers frequently adjust model hyper-parameters (e.g., batch
size and parallelisms) to enhance performance. These factors lead
to frequent changes in collective communication calls, highlighting
the necessity for quickly synthesizing effective schedules.

N N N N
Server 0 Server 1 Server 2

SS

L L L L

Server 3

C

NIC

10 2 3 54 6 7 98 10 11 1312 1415

GPU0 N NVSwitch Spine SwitchSLeaf SwitchL Core SwitchC

1 group in Dim 3: {0,…,15}
2 groups in Dim 2: {0,1,4,5,8,9,12,13},
{2,3,6,7,10,11,14,15}
4 groups in Dim 1: {0,4,8,12},
{1,5,9,13}, {2,6,10,14}, {3,7,11,15}
4 groups in Dim 0: {0,1,2,3},
{4,5,6,7}, {8,9,10,11}, {12,13,14,15}

Figure 3: Example of a multi-rail GPU cluster topology. 16

GPUs are distributed across 4 servers.

Variable Description
V Set of GPUs in the topology
V0 Set of GPUs, NICs, and switches in the topology (V ⊆ V0)
E Set of links (E = { (𝑣1, 𝑣2) | 𝑣1, 𝑣2 ∈ V𝑎 })
𝛼𝑒 Latency of link 𝑒 ∈ E
𝛽𝑒 1/𝛽𝑒 is the bandwidth of link 𝑒 ∈ E
D Set of dimensions (D = {0, 1, . . .})
G𝑑 Set of groups in dimension 𝑑 ∈ D
V𝑑,𝑔 Set of GPUs in group 𝑔 ∈ G𝑑 in dimension 𝑑 ∈ D

Table 2: Topology detonations.

3 Insight and Design Overview

We first introduce our insight, i.e., optimal schedules present certain
characteristics (§3.1). We then introduce sketch, which leverages
this insight to filter sub-optimal schedules and reduce search space.
§3.3 presents the system overview.

3.1 Insight

Modern GPU clusters and collectives both exhibit a high degree of
symmetry. Based on this, our key insight is that a well-performing
schedule should incorporate certain symmetrical properties.
Observation 1: Topology symmetry.Modern GPU clusters lever-
age multi-dimensional symmetric networks to connect GPUs. Fig-
ure 3 shows a typical multi-rail topology, where GPUs with the
same intra-server index (e.g., GPUs 0, 4, 8, and 12) are connected
to the same leaf switch. The connections between GPUs fall into
four categories. Within each server, GPUs are connected by an
NVSwitch. Between servers, GPUs are connected through three
tiers of network switches, i.e., leaf, spine, and core. The connections
are symmetric. Specifically, each server has the same number of
GPUs with identical connections, and switches at the same tier
connect the same number of GPUs with identical links.

We formalize the topology in Table 2. We introduce a dimen-

sion to represent a type of inter-GPU connection and denote the
set of dimensions as D. In Figure 3, the four different connections
correspond to four dimensions. Within each dimension 𝑑 ∈ D,
GPUs are organized into groups according to their connectivity.
The set of groups in dimension 𝑑 is denoted as G𝑑 and the set of
GPUs in group 𝑔 ∈ G𝑑 is denoted as V𝑑,𝑔 . Each GPU belongs to
one group at each dimension. If two GPUs are reachable through
direct connection, they are assigned to the same group in the cor-
responding dimension. In Figure 3, dimension 0 (i.e., intra-server
interconnections) contains four groups (i.e., servers). Groups at the
same dimension (e.g., four servers) exhibit isomorphic character-
istics, i.e., their topologies are identical. Given a topology, SyCCL
automatically extracts the dimensions and groups according to con-
nectivity and connection performance. We provide other topology
examples (e.g., Clos) in Appendix B.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

Schedule③

0
3

1
2

8
11

9
10

12 13 14 15

4 5 76

0
3

1
2

12
15

13
14

4
7

5
6

8
11

9
10

Schedule②

12 13 14 15

4 5 76

8 10 119

2 30 1 Schedule①

D0.G2

D0.G3

D0.G0

D0.G1D1.G0

Figure 4: [Insight 1] Schedules 1○ and 2○ comprise consistent

communication across isomorphic groups, while 3○ lacks

this consistency and is sub-optimal.

Observation 2: Collective symmetry. In one-to-all or all-to-one
collectives, all GPUs, except for the source or destination, present
identical communication demands. Furthermore, all-to-all collec-
tives (e.g., AllGather) can be decomposed into isomorphic all-to-
one/one-to-all collectives (e.g., Broadcast), each with independent
chunks of the same size.

Insight: Optimal schedules consist of consistent sub-

schedules across isomorphic GPU groups. Collective commu-
nication can be viewed as comprising identical communication
sub-demands across isomorphic topology subsets (i.e., GPU groups).
Consequently, these groups should exhibit identical sub-schedules
for optimal performance. Otherwise, the load becomes imbalanced
in some groups.

Figure 4 shows three schedules for a 16-GPU Broadcast. In all
cases, GPU 0 broadcasts its chunk to GPUs 4, 8, and 12 through
group 0 in dimension 1 (denoted as D1.G0), and GPUs 0, 4, 8, and 12
broadcast the chunkwithin the servers in dimension 0. Schedules 1○
and 2○ use a single schedule type (ring or tree) across four groups
in dimension 0, while 3○ utilizes two types of schedules, i.e., ring for
groups 1 and 3, and tree for groups 0 and 2. Since the connections
and communication sub-demands are consistent, the optimal sub-
schedules should also be identical. Thus, either the ring or tree is
preferable, making either 1○ or 2○ better than 3○. Therefore, 3○ is
sub-optimal and should be filtered.

3.2 SyCCL Sketch

The above insight indicates what an optimal schedule looks like.
The challenge lies in applying this to synthesize an optimal schedule.
To this end, SyCCL introduces a concept called sketch. As shown
in Figure 5, a sketch divides the collective demand into smaller
sub-demands in different dimensions and time stages. Each sub-
demand can be satisfied by various potential sub-schedules. The
sub-schedules together create the complete schedules to satisfy the
original demand. By utilizing the sketch, synthesizing the optimal
schedule becomes a two-phase process: (1) searching for sketches
(i.e., combinations of sub-demands), (2) for each sketch, determining
the possible sub-schedules for each sub-demand and combining
them into a schedule candidate, ultimately selecting the optimal
schedule from all candidates.

This approach significantly reduces the search space in two ways.
First, since sub-demands across isomorphic groups are consistent,
we can eliminate inferior sketches in phase (1). Second, the optimal
sub-schedules for these consistent sub-demands are also consis-
tent, allowing us to avoid redundant calculations in phase (2). In
addition, the sketch breaks down a complex optimization problem
into multiple smaller ones that are solved in parallel, improving
accuracy and efficiency.

Sketch③ Schedule candidate③
Sketch② Schedule candidate②Demand

0

1,2,3,
4,5,6,
7,8,9,
10,11
,12,1
3,14,
15

Optimal
Schedule

Sketch①

1,2,30

4,8,120

Schedule candidate①

②0
3
1
2① 2 30 1

①0
12

4
8 ② 8 120 4

Dim 0

Dim 1

Stage 0

Sub-demand

4
8
12

5,6,7
9,10,11
13,14,15

Sub-schedule candidates

② 12
15

13
144

7

5
6 8

11

9
10①

12 13 14 15

4 5 76
8 10 119Dim 0

Stage 1

Figure 5: A sketch breaks down the original collective de-

mand into sub-demands. Optimal sub-schedules for all sub-

demands construct an optimal schedule.

all-to-one, one-to-all
Searching for Sketches (§4.1)

Decomposition (§4.3) all-to-all

Topology, Collective

Sketch Exploration (§4)

Generating Sketch
Combinations (§4.2)

Sketch
… … Sketch

Combination

Schedule Synthesis (§5)

Synthesizing the Optimal
Schedule (§5.2)

Sub-
schedules

… Sketch
Combination

Sub-
schedules

Schedule

Synthesizing Sub-Schedules (§5.1,§5.3)
Fast Solving Accurate Solving

Figure 6: SyCCL workflow.

Example. Figure 5 shows an example for synthesizing a 16-GPU
Broadcast schedule in the topology in Figure 3. Sketch 1○ divides
the original demand (i.e., GPU 0 sends its chunk to all other 15
GPUs) into three sub-demands in two stages. In stage 0, GPUs 1, 2,
and 3 receive GPU 0’s chunk from dimension 0, while GPUs 4, 8, and
12 receive it from dimension 1. In stage 1, remaining GPUs obtain
it from dimension 0. Each sub-demand can be met by various sub-
schedules. SyCCL synthesizes the optimal sub-schedule (marked
with a check) for each sub-demand, combines them into schedules,
and selects the best one. The three marked sub-schedules form
schedule 2○ in Figure 4.

3.3 SyCCL Overview

As shown in Figure 6, SyCCL synthesizes the optimal schedule in
two phases. In the first phase, SyCCL explores potential sketches
based on the input collective and topology (§4). For one-to-all and
all-to-one collectives, SyCCL searches for sketches and applies the
insight from §3.1 to eliminate inferior ones (§4.1). Since a single
sketch may not fully utilize the bandwidth, SyCCL combines multi-
ple to maximize bandwidth usage, producing sketch combinations
(§4.2). For all-to-all collectives, which can be decomposed into iso-
morphic one-to-all collectives, SyCCL searches for sketches for one
one-to-all collective, replicates them according to the topology sym-
metry to derive all-to-all sketches, and combines them to optimize
bandwidth (§4.3).

In the second phase, SyCCL synthesizes the optimal schedule
given the generated sketch combinations (§5). SyCCL employs an
MILP solver to generate the optimal sub-schedules for sub-demands
in each combination (§5.1). These sub-schedules are merged into
complete schedules. Then, SyCCL utilizes a schedule simulator to
evaluate the performance of candidate schedules and selects the
one with the best performance (§5.2). Furthermore, SyCCL designs

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Broadcast tree
4 5 63

0

21

Scatter tree
4 5 63

0

21

4 5 63

0

21 +
0 GPU
chunk

Figure 7: A Broadcast schedule is always a tree, while a

Scatter schedule can always be split into trees.

a two-step solving method to improve accuracy and leverages iso-
morphism and parallelism to accelerate synthesis (§5.3).

4 Sketch Exploration

This section describes how SyCCL efficiently explores sketches
based on the insight in §3.1. We begin with all-to-one and one-to-
all collectives, while one-to-one is a specific case of one-to-all and
is not discussed separately. First, we focus on scenarios where a
chunk cannot be split and must follow a single path. We design an
efficient sketch search method (§4.1). Next, we address real-world
scenarios where chunks can be split and sent via multiple paths to
optimize bandwidth usage. We convert each generated sketch into
a combination of sketches, with each sketch handling part of the
chunk (§4.2). Finally, we adapt the sketch exploration method to
all-to-all collectives (§4.3).

4.1 Searching for Sketches

In this section, we first analyze the communication for one-to-all
and all-to-one collectives. We show that their schedules follow a
tree structure. Based on this, our sketch search method starts from
a source GPU and explores potential paths (combinations of sub-
demands) to reach other GPUs along a tree. Given the numerous
possible combinations, we design efficient pruning strategies to
reduce the search space.

Tree structure for schedules. We focus on one-to-all collectives
(i.e., Broadcast and Scatter) as all-to-one collectives (Reduce and
Gather) are their inverses. When handling a single, indivisible
chunk, both Broadcast and Scatter schedules can be represented
with trees, where each GPU has only one predecessor. As shown
in Figure 7, in a Broadcast schedule, a chunk is sent along a tree,
with each GPU receiving it from a single predecessor. To prevent
bandwidth waste, a GPU should not receive the same chunk more
than once, confirming that the Broadcast schedule is indeed a tree.
In Scatter, |V𝑔 | chunks are sent from the root, with each node
retaining its desired chunk and distributing others to its succes-
sors. Although a GPU may have several predecessors, the overall
schedule can still be seen as a collection of trees.

Sketch definition. Sketch 1○ in Figure 5 shows a sketch example.
A sketch, as detailed in Table 3, breaks down collective commu-
nication into 𝐾 stages. A stage 𝑘 comprises communication sub-
demands R𝑘,𝑑,𝑔 for each dimension 𝑑 and group 𝑔. A sub-demand
R𝑘,𝑑,𝑔 signifies that the destination GPUsV𝑟

𝑘,𝑑,𝑔
expect to receive

chunks from source GPUs V𝑠
𝑘,𝑑,𝑔

. Since the schedules follow a tree
structure, each GPU 𝑣 either starts as a source (i.e., 𝑣 ∈ V𝑠

0,𝑑,𝑔) or
acts as a destination only once (i.e., 𝑣 ∈ V𝑟

𝑘,𝑑,𝑔
). All sub-demands

Variable Description
𝐾 A sketch consists of 𝐾 stages (𝐾 ∈ Z+)
V𝑠
𝑘,𝑑,𝑔

The set of GPUs in group 𝑔 and dimension 𝑑 which act as sources to
send chunks at stage 𝑘 (V𝑠

𝑘,𝑑,𝑔
⊆ V𝑑,𝑔)

V𝑟
𝑘,𝑑,𝑔

The set of GPUs in group𝑔 and dimension𝑑 which act as destinations
to receive chunks at stage 𝑘 (V𝑟

𝑘,𝑑,𝑔
⊆ V𝑑,𝑔)

R𝑘,𝑑,𝑔 The communication sub-demand in group𝑔 in dimension𝑑 (R𝑘,𝑑,𝑔 =

V𝑠
𝑘,𝑑,𝑔

→ V𝑟
𝑘,𝑑,𝑔

)

Table 3: Sketch denotations.

Stage k=0 Stage k=1
R0,0,0 = {0} → {1, 2, 3},
R0,1,0 = {0} → {4, 8, 12}

R1,0,1 = {4} → {5, 6, 7}, R1,0,2 = {8} →
{9, 10, 11}, R1,0,3 = {12} → {13, 14, 15}

Table 4: Sketch variables corresponding to Figure 5.

construct a complete demand, i.e., ∪𝑑,𝑔V𝑠
0,𝑑,𝑔

⋃∪𝑘,𝑑,𝑔V𝑑
𝑘,𝑑,𝑔

= V .
Table 4 shows the variables for sketch 1○.

A sketch can be represented as a graph structure, with each node
representing a GPU. For example, sketch 1○ in Figure 8 is the graph
representation of sketch 1○ in Figure 5. An edge from a source
GPU 𝑣1 ∈ V𝑠

𝑘,𝑑,𝑔
to a corresponding destination GPU 𝑣2 ∈ V𝑟

𝑘,𝑑,𝑔

indicates that 𝑣2 requires chunks from 𝑣1. If both are destinations
in the same sub-demand (i.e., 𝑣1, 𝑣2 ∈ V𝑟

𝑘,𝑑,𝑔
), they are connected

by a dashed line to indicate potential communication. In Figure 8,
GPUs 1, 2, and 3 require chunks from GPU 0 (solid line) and may
receive chunks from each other (dashed line). The solid and dashed
edges together represent potential communication in each group,
with edge weights indicating link performance.
Enumeration-based sketch searching. To explore potential
sketches, we systematically enumerate possible communication
sub-demands at each stage. SyCCL introduces two variables: D𝑘 ,
representing the dimensions involved in communication at stage
𝑘 , and G𝑑,𝑘 which specifies the groups that participate in commu-
nication in dimension 𝑘 ∈ D𝑘 . The search process follows three
steps for each stage: (1) Enumerate possible dimensions D𝑘 ⊆ D
for communication, (2) For each D𝑘 , enumerate groups G𝑑,𝑘 ⊆ G𝑑
in each dimension 𝑑 ∈ D𝑘 , and (3) For each G𝑑,𝑘 , enumerate source
GPUsV𝑠

𝑘,𝑑,𝑔
and their corresponding destinationsV𝑟

𝑘,𝑑,𝑔
for each

group 𝑔 ∈ G𝑑,𝑘 . A GPU can only act as a source if it has received
chunks, and may act as a destination only once.
Pruning based on symmetry insights.Numerous possible combi-
nations of sub-demands correspond to various ways of partitioning
the original communication demand. However, the insight from §3.1
indicates that isomorphic groups yield consistent sub-schedules,
allowing us to develop pruning strategies to eliminate sub-optimal
and redundant sketches.

Pruning #1: Removing redundant sketches through isomorphism
detection. Many sketches are isomorphic due to topology symmetry.
For example, sketches 2○ and 3○ in Figure 8 can be transformed
into one another by swapping GPUs 9-11 with GPUs 13-15, while
sketch 1○ is not isomorphic to them. Isomorphic sketches result in
schedules with identical performance, leading to redundant solving
efforts. SyCCL filters out isomorphic sketches to accelerate the
solving process, defining two sketches as isomorphic if a one-to-
one mapping exists between their GPU sets: 𝐻 : V → V .

Pruning #2: Enforcing consistency across groups and stages.
Based on the insight from §3.1, isomorphic groups present con-
sistent sub-schedules. While the solver will eventually determine

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

Sketch②Sketch① Sketch③

0

124
82

31

75
6

119
10

13 15
14

0

124
8

75
6

119
10

13 15
14

2
31

0

84
122

31

75
6

1513
14

9 11
10

Dimension 1Dimension 0

Figure 8: Example of pruning #1. Sketches 2○ and 3○ are

isomorphic to each other, while sketch 1○ is not.

specific sub-schedules, we can proactively identify sub-demands
likely to violate this principle. SyCCL utilizes the ratio of destina-
tion GPUs to source GPUs within each group (i.e., |V𝑟

𝑑,𝑘,𝑔
|/|V𝑠

𝑑,𝑘,𝑔
|)

to reflect the sub-demand per group. A sketch is deemed consis-
tent if this ratio remains uniform across isomorphic groups, while
groups not communicating or in the final are excluded. Figure 9
shows three examples of a seven-server GPU cluster. Due to space
limitations, the topology is shown in Figure 19 in Appendix B.
Sketches 4○ and 5○ display consistent sub-demands across groups
in both dimensions 0 and 1. In contrast, sketch 3○ shows varying
ratios in dimension 1 (i.e., GPUs 1, 6, and 16 correspond to 1, 3, and
2 destination GPUs, respectively).

Pruning #3: Limiting the number of relays for Scatter. In a
Scatter tree, a GPU with 𝑛 descendants receives 𝑛 redundant
chunks from its predecessor , adding to communication overload.
To reduce this issue, SyCCL restricts the maximum number of
transfer hops from the root GPU to any other GPU to a parameter
𝑋 . In practice, 𝑋 is set to |D| − 1, ensuring that each dimension is
passed along at most once.

4.2 Generating Sketch Combinations

Each sketch generated in §4.1 represents the transmission of a
single chunk and utilizes only part of the available bandwidth. In
practice, chunks can be split and sent through different paths. This
section introduces how to generate sketch combinations to optimize
bandwidth usage.

A sketch combination M consists of pairs of sketches and their
associated chunk size ratios. Each pair ⟨𝑆𝑖 , 𝑡𝑖 ⟩ indicates that sketch
𝑆𝑖 transmits a fraction 𝑡𝑖 of a chunk, ensuring that the total trans-
mitted fraction equals one (i.e.,

∑
𝑡𝑖 = 1). The performance of each

combination is evaluated only after determining the schedule (§5),
prompting SyCCL to generate all possible sketch combinations.

For small chunk sizes, a single sketch suffices, so SyCCL outputs
each sketch individually as a combination. For larger sizes, SyCCL
creates combinations to maximize bandwidth usage. In Figure 5
example, each sketch from 1○ to 3○ can create its own combination,
while together they form other combinations. Since it is difficult to
classify chunk sizes as small or large, SyCCL generates both types
of combinations for all chunk sizes. We first discuss the issue of
bandwidth under-utilization in sketches and then introduce how
SyCCL produces combinations for large chunk sizes.
Bandwidth under-utilization in a single sketch. For a sketch,
SyCCL calculates its workload𝑤𝑑,𝑔 for group 𝑔 in dimension 𝑑 (de-
noted as G𝑔.D𝑑) as follows. For Broadcast, it is the total number of
destination GPUs across all relevant sub-demands

∑
𝑘∈K |V𝑟

𝑘,𝑑,𝑔
|.

For Scatter, it is
∑
𝑘∈K,𝑣∈V𝑟

𝑘,𝑑,𝑔
(𝑓 (𝑣) + 1), where 𝑓 (𝑣) represents

the number of descendants for GPU 𝑣 . The total workload for di-
mension 𝑑 is𝑤𝑑 =

∑
𝑔∈G𝑑

𝑤𝑑,𝑔 .

Sketch⑥

2 3

0
1

7 4

5
6

9 11

10

8
15 13

14

12
19 17

18

16

22 23

20
21

25 26

24
27

Sketch④

2 3

0

1

7 4

5

6

15 13

14

12
16 17

18

19

11 10

9

8

21 22

20

23
25 26

24

27

Dimension 0

Sketch⑤

0

8 124 16 20 24

13

19

1 95 2117 25

3 117 2315 27

18

2 106 2214 26

Dimension 1

Dimension 0 Dimension 1

Dimension 0

3,2,3,2,3 6,1,6,1,6,1,6 3,1,3,3,3,2,3Per-stage ratios:

Figure 9: Example of pruning #2. Sketches 4○ and 5○ present

consistent communication across isomorphic groups, while

sketch 6○ does not and should be filtered.

1 2

0

3

4
5 6

7

15 13

12

14
18 17

16

19

9
8 10

11

20 22

21

23
24 26

25

27

Sketch④1

1 3

0

2

7
5 4

6

14 13

15

12
16 17

19

18

8
11 9

10

21 22

20

23
25 26

24

27

Sketch④2

2 3

0

1

6
7 4

5

15 13

14

12
16 17

18

19

11
8 10

9

21 22

23

20
25 26

27

24

Sketch④3

𝐶! = ④,0.25	 , ④", 0.25 , ④#, 0.25 , ④$, 0.25
Figure 10: Replicating sketch 4○ to derive a four-sketch com-

bination to balance workload in dimension 1.

The bandwidth under-utilization is essentially caused by two
types of imbalanced workload. First, when two groups in the same
dimension have different workloads, the group with smaller work-
load experiences bandwidth under-utilization. For example, in
sketch 4○ in Figure 9, the workload in groups 0, 1, and 2 in di-
mension 1 is identical, while group 3 remains idle and is under-
utilized. Second, when the workloads of two dimensions do not
align with their actual bandwidths, bandwidth under-utilization
also happens. For example, sketch 1○ has a workload ratio of 12:3
across dimensions 0 and 1. If the actual ratio differs, it can lead to
one dimension becoming a bottleneck while the other experiences
bandwidth wastage.

To address the bandwidth under-utilization issue, SyCCL cre-
ates sketch combinations to balance workload across groups and
dimensions in the following two steps.
Step 1: replicating sketches to balanceworkload across groups.

For each sketch generated in §4, SyCCL replicates it to form a combi-
nation that balances the workload across groups in each dimension.
This process utilizes a mapping strategy that allocates sub-demands
to underutilized groups.

Mapping-based replication mechanism. SyCCL treats the replica-
tion as a mapping of GPUs and groups. Each group and GPU in
the original sketch is mapped to its counterpart in the replicated
sketch, thereby forming two one-to-one mappings (i.e., 𝐹 : V → V
for GPUs and 𝐻𝑑 : G𝑑 → G𝑑 for groups). The objective is to uti-
lize groups with lower workload in the original sketch to balance
workload.

Specifically, Starting from stage 0, at each stage 𝑘 , SyCCL decides
the mappings for source GPUs, groups, and destination GPUs for
each sub-demand R𝑘,𝑑,𝑔 . At stage 0, each source GPU maps to itself,
as it is still a source in the replica. In later stages, each source GPU
is a destination at previous stages, therefore its mapping should be
already established. From the existing mapping, the mapping for

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

group𝑔 containing a source GPU can be determined, i.e.,𝑔 is mapped
to the group that contains the mapped source GPUs in dimension
𝑑 . Next, SyCCL decides the mappings of destination GPUs. There
are various mapping options. SyCCL prioritizes destinations that
will become sources in the next stage, as their mappings impact the
group mapping and overall workload. For each GPU that will be a
source in the next stage, SyCCL maps it to a GPU from the group
with the least workload in the same dimension. If a GPU is not a
source, it can be mapped to any GPU in the mapped group. This
process continues in subsequent stages, ultimately resulting in a
replicated sketch.

For each sketch generated in §4.1 (denoted as 𝑆0), SyCCL repli-
cates it to produce sketches 𝑆1, 𝑆2, These sketches share the
same fraction 𝑡 . SyCCL repeats the replication process until the over-
all workload is balanced and creates a combination 𝐶 = {⟨𝑆 𝑗 , 𝑡⟩},
where 0 ≤ 𝑗 < |𝐶 | and 𝑡 = 1

|𝐶 | .
Example. Figure 10 illustrates the replication of sketch 4○, whose

workload is imbalanced in both dimensions 0 and 1. SyCCL repli-
cates this sketch three times, yielding sketches 4○1, 4○2,and 4○3,
which together achieve workload balance. Take the replication for
sketch 4○1 as an example. The process begins with GPU 0, which
acts as a source in D0.G0, SyCCL first maps GPU 0 and group D0.G0
to themselves. Next, when deciding the mappings for GPUs 1, 2,
and 3, GPU 1 is prioritized since it will be a source in D1.G1 at stage
1. Since group 3 has the lightest workload in dimension 1, SyCCL
maps D1.G1 to D1.G3, resulting in GPU 1 being mapped to GPU 3
in sketch 4○1. For GPUs 2 and 3, they are then mapped to the re-
maining GPUs in D0.G0, i.e., GPUs 1 and 2. For GPUs 5 and 9, which
act as sources in D0.G1 and D0.G2, respectively, SyCCL evaluates
the current workload with the replicated sketch into consideration,
and finds that both groups have the lightest workload, so both are
mapped to themselves. The process continues in a similar manner
for later mappings, with additional details omitted for brevity.

Step 2: integrating sketch combinations to balance workload

across dimensions. In this step, SyCCL takes the sketch combina-
tions obtained in step 1 as input sketches, and integrates them to
produce new sketch combinations to achieve balanced workload
across dimensions. With |D| dimensions, this process involves solv-
ing a linear problem with |D| variables, requiring |D| sketches as
input.

Chunk allocation mechanism. For each |D|-sketch candidate,
SyCCL calculates the ratio of the chunk each sketch transmits,
denoted as 𝑡𝑖 for the 𝑖𝑡ℎ sketch. This allocation aims to achieve
balanced workload across dimensions. If no suitable allocation is
found, the candidate is deemed invalid. Ultimately, SyCCL outputs
all valid sketch combinations.

Specifically, given a |D|-sketch candidate, we calculate the work-
load for dimension 𝑑 for each sketch, denoted as 𝑤𝑖,𝑑 for the 𝑖𝑡ℎ
sketch. Then the total workload proportion for dimension 𝑑 is given
by𝑤𝑑 =

∑
𝑖 (𝑡𝑖 ∗𝑤𝑖,𝑑)/

∑
𝑖,𝑑 (𝑡𝑖 ∗𝑤𝑖,𝑑). Assuming the bandwidth pro-

portion for dimension 𝑑 relative to the topology capacity is 𝑢𝑑 , the
𝑡𝑖 values should satisfy that 𝑤𝑑 = 𝑢𝑑 , i.e., bandwidth across all
dimensions is fully utilized.

Example. Consider two dimensions (0 and 1) and two sketches
(4○ and 5○). In step 1 we replicate sketch 4○ and derive a sketch com-
bination𝐶4 consisting of four sketches. Each sketch in𝐶4 transmits

1

135
9

46
7

810
11

14 12
15

3
02

4

08
12

119
10

1513
14

1 3
2

6
75

1

02
3

146
10

157
11

4 12
8

9
135

4

75
6

19
14

210
14

11 3
15

12
08

(2) Replicate

(2) Replicate

(3) Integrate
Sketch①

0

124
8

75
6

119
10

13 15
14

2
31

Sketch⑦

0

31
2

115
9

146
10

7 15
11

8
124

(1) Search

…

…

Figure 11: Example of generating AllGather sketches. SyCCL
first generates two distinct sketches (1○ and 7○), with pref-

erential link occupation to Dimension 0 (red line) and Di-

mension 1 (green line), respectively. SyCCL then replicates

both sketches to achieve comprehensive coverage across all

groups within each dimension. Third, SyCCL decides data

volumes transmitted through each sketch according to cross-

dimensional bandwidth ratios.

1/4 of the chunk. Similarly, we replicate sketch 5○ to form combi-
nation 𝐶5 consisting of seven sketches, with each transmitting 1/7
of the chunk. The bandwidth ratios for dimensions 0 and 1 used by
𝐶4 and 𝐶5 are 21:6 and 3:24, respectively. Assume that the actual
link capacity for both dimensions is 4:5. In this case, both 𝐶4 and
𝐶5 transmits half of the chunk. Then we combine all 11 sketches
from both 𝐶4 and 𝐶5. In this final combination, each sketch in 𝐶4
transmits 1/8 of the chunk, while each sketch in 𝐶5 transmits 1/14
of the chunk.

4.3 Extending to All-To-All Collectives

An 𝑁 -GPU all-to-all collective consists of 𝑁 isomorphic one-to-all
or all-to-one collectives. Specifically, AllGather, Alltoall, and
ReduceScatter are broken down into Broadcasts, Scatters, and
Reduces, respectively.

Figure 11 shows how to generate sketch combinations for these
collectives. SyCCL first searches for sketches for a single decom-
posed collective, as described in §4.1. For each sketch searched
(i.e., sketches 1○ and 7○ in the figure), SyCCL replicates it to create
corresponding sketches for the other 𝑁 − 1 decomposed collectives,
resulting in an 𝑁 -sketch combination. This replication process is
similar to step 1 in §4.2, with the key distinction that the source
GPU is mapped to different GPUs. The 𝑁 -sketch combination en-
sures an even workload distribution in each dimension. Finally,
SyCCL integrates the two 𝑁 -sketch combinations like step 2 in §4.2
to generate the final sketch combinations.

While AllReduce can be split into Reduce collectives, these col-
lectives share data chunks and are not independent. Instead, SyCCL
treats AllReduce as ReduceScatter followed by AllGather. As a
result, synthesizing an AllReduce schedule is equivalent to syn-
thesizing separate ReduceScatter and AllGather schedules and
concatenating them.

5 Schedule Synthesis

This section introduces how SyCCL synthesizes the complete sched-
ule based on the sketch combinations generated in §4. First, SyCCL
synthesizes optimal sub-schedules inside each sketch combination

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

through MILP modeling (§5.1). SyCCL then integrates these sub-
schedules into complete schedules. Since each sketch combination
leads to an individual optimal schedule, SyCCL selects the best one
among them (§5.2). In §5.3, SyCCL introduces two optimizations to
accelerate the synthesis process while maintaining accuracy.

5.1 Synthesizing Sub-Schedules

This section introduces how SyCCL synthesizes optimal sub-
schedules inside each sketch combination in §4.2.

Each sketch combination consists ofmultiple sub-demands across
different time stages andGPU groups. Each sub-demand can be satis-
fied by different sub-schedules with various performance. For exam-
ple, in Figure 5, each sub-demand has two potential sub-schedules
(i.e., 1○ and 2○). SyCCL merges the sub-demands from the same
GPU group at the same stage, as they are expected to occur simulta-
neously and may compete for bandwidth. Then SyCCL synthesizes
an optimal sub-schedule (marked with a check in Figure 5) for each
merged sub-demand through MILP modeling as follows.

First, SyCCL models each merged sub-demand as a MILP prob-
lem, following the establishedmodeling technique fromTECCL [28].
This method divides time into equal intervals, i.e., epochs. Each
transmission must occupy an integer number of epochs, allowing
us to use integer variables to depict the communication process.
SyCCL adopts the 𝛼-𝛽 transmission model [24]. Specifically, trans-
mitting a chunk 𝑐 with size 𝑠 over a link 𝑙 requires a total time
of 𝛼 + 𝛽 ∗ 𝑠 for the chunk to reach its destination, and the link
requires a time of 𝛽 ∗ 𝑠 before it can handle the next chunk. Then,
SyCCL utilizes a MILP solver to calculate the minimum number of
epochs required to satisfy the sub-demand and generate the optimal
sub-schedule.

Since TECCL has provided a detailed description of the modeling
and solving, we only summarize the key components and put the
details in Appendix A.1. Compared with TECCL, which addresses
the complete collective demand within a complete topology, SyCCL
improves scalability by focusing on smaller sub-demands within
smaller topology subsets, thereby minimizing the problem size.

5.2 Synthesizing the Optimal Schedule

Once optimal sub-schedules are synthesized, SyCCL merges them
into a complete schedule. For example, the sub-schedules 2○ and 1○
at stage 0, and 2○ at stage 1 in Figure 5 are merged into a complete
schedule (i.e., schedule 2○ in Figure 4). Each sketch combination
corresponds to a unique output schedule. SyCCL then evaluates the
performance of all generated schedules and selects the best one.

A straightforward approach to evaluate the schedule perfor-
mance is simply adding up the duration of each stage. This can
lead to inaccuracies, as the communication across stages are not
independent. For example, as shown in Figure 12(a), the three sub-
schedules take 5𝜏 , 4𝜏 , 5𝜏 , respectively. Directly adding the time
required in both stages results in a total time of 10𝜏 . However, the
communication at stage 1 does not need to wait for stage 0 to finish.
Specifically, GPUs 4, 8, and 12 can begin communication immedi-
ately upon receiving a chunk from stage 0, leading to a smaller
completion time (9𝜏), as shown in Figure 12(b).

To accurately assess schedule performance, SyCCL implements
a fine-grained schedule simulator based on ASTRA-sim [3]. The

5𝜏

5𝜏

Stage 0

Stage 1

0 → 1
0 → 2
0 → 3

0 → 4
0 → 8
0 → 12

4 → 5
4 → 6
4 → 7

12 → 13
12 → 14
12 → 15

8 → 9
8 → 10
8 → 11

②

②

①
4𝜏

(a) A naive evaluation method

0 → 1
0 → 2
0 → 3

0 → 4
0 → 8
0 → 12
4 → 5
4 → 6
4 → 7

12 → 13
12 → 14
12 → 15

8 → 9
8 → 10
8 → 11

9𝜏
②

②

①

(b) SyCCL

Figure 12: SyCCL predicts schedule performance by simulat-

ing transmission events.

simulator adopts the same transmission model (i.e., 𝛼-𝛽 model)
as the solver. The simulator scans the communication events in
chronological order and starts from events from the source GPUs. A
transmission event can beginwhen the source GPU has obtained the
chunk and the previous events on the link have been completed. For
each event, the simulator directly computes its finish time with the
𝛼-𝛽 model. Once all events are finished, the simulator outputs the
completion time as the performance of the schedule. Because every
event is processed exactly once, the simulator’s time-complexity is
O(E), where E is the number of communication events.

In the CCL transport implementation, a chunk is usually divided
into smaller blocks during transmission in order to pipeline across
multiple hops. The number of communication events is equal to
the number of transmissions in the schedule times the number
of blocks for the chunk size. Under such scenario, our simulator
based on analytical modeling has negligible time usage compared
to schedule synthesis.

5.3 Accelerating Synthesis

SyCCL faces two scalability challenges. First, MILP solvers must
balance accuracy (i.e., the performance of the synthesized schedule)
and efficiency (i.e., the speed of synthesis). For example, the TECCL
solver employs epoch duration 𝜏 for modeling. A larger 𝜏 leads
to faster but less accurate schedule synthesis (see Appendix A.2
for more details). While SyCCL greatly reduces the problem size
by focusing on individual GPU groups, we still face the scalability
challenge. For example, [30] introduces a GPU cluster with a sin-
gle switch connecting 128 GPUs. In such cases, SyCCL still faces
the accuracy-efficiency trade-off. Second, each sketch combination
contains numerous sub-demands. Solving all of them one by one is
time-consuming.

Two-step synthesis to maintain accuracy. To address the first
challenge, SyCCL designs a two-step synthesis method, accelerating
synthesis while maintaining accuracy. First, SyCCL employs coarse-
grained solving (e.g., using larger 𝜏) to quickly generate schedules
for all sketch combinations. SyCCL then filters out those with worse
performance (i.e., perform worse than the best by more than 𝑅1)
and retain no more than 𝑅2 top candidates. Second, SyCCL employs
fine-grained solving (e.g., using smaller 𝜏) to the selected candidates
to achieve accurate synthesis.

Additionally, we found that the value of 𝜏 needs careful selection
(e.g., it should be a multiplier of the product of link bandwidth
parameter 𝛽 and the chunk size 𝑠) to satisfy link performance con-
straints. We introduce an auxiliary variable 𝐸, which automatically
determines the appropriate 𝜏 value, with larger 𝐸 leading to larger

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

8 Spine Switches

2 Leaf Switches

4 Servers

2×200Gbps

4×200Gbps
8×200Gbps

8×200Gbps

…

Intra-pod

Cross-pod

NVLink

(a) A100, Clos

4×400Gbps
8 Leaf Switches …

8×400Gbps
64 Servers NVLink

Same-rail

(b) H800, Rail

Figure 13: GPU cluster topologies used in evaluation.

𝜏 . Due to space limitations, further details are provided in Appen-
dix §A.3.

This two-step synthesis approach does not rely on specific mod-
eling and solving methods. Even with more advanced methods, a
trade-off between accuracy and efficiency persists, with parameters
like 𝜏 and 𝐸 to adjust this balance.
Utilizing isomorphism and parallelism to accelerate synthe-

sis. To address the second challenge, SyCCL leverages isomorphism
and parallelism to accelerate synthesis. Many sub-demands exhibit
isomorphic properties. For example, a one-to-all sketch may com-
prise multiple groups with isomorphic sub-demands, while all-to-all
sketches are generated by replicating a one-to-all sketch, leading
to a massive number of isomorphic sub-demands. Consequently,
we can generate schedules for isomorphic sub-demands by solving
only one of them and mapping the solution to others. Before em-
ploying the solver for each sub-demand, we collect all sub-demands,
analyze isomorphism between sub-demands in the same dimension,
and partition them into isomorphic classes. Demands in the same
class can be mapped to each other via appropriate GPU mappings.
This way, schedules generated for these demands can be derived
from each other based on the same GPU mapping. Furthermore,
since the numerous demands are independent. SyCCL solves them
in parallel to accelerate synthesis.

6 Implementation

The implementation of SyCCL consists of three components. First,
the network profiler measures the link parameters 𝛼 and 𝛽 by test-
ing various chunk sizes for links in each dimension, like TECCL [28]
and TACCL [33]. Second, the schedule synthesizer, which consists
of 7K lines of C++ code, implement the core logic of SyCCL contain-
ing sketch exploration, MILP based schedule synthesis and simula-
tion. Third, the schedule executor converts synthesized schedules
into XML files with varying runtime parameters like the CCL trans-
port and the number of communication channels used. The XML is
injected into MSCCL-executor [10] via a lightweight XML parser.
MSCCL-executor directly executes the XML without modifying
any CUDA kernel or memory management path. We open-sourced
the code of SyCCL at https://github.com/aliyun/symccl.

7 Evaluation

We evaluated the accuracy (i.e., performance of synthesized sched-
ules) and efficiency (i.e., synthesis time) of SyCCL under various
real topologies, collective types, and data sizes. We compared the
results with the state-of-the-art synthesizer TECCL [28] and the
open-source NCCL [11]. To validate the effectiveness of SyCCL’s
design, we evaluated how different pruning and optimization strate-
gies impact both accuracy and efficiency. Additionally, we evaluate
the end-to-end performance when training different models (e.g.,

GPT-6.7B [16] and Llama3-8B [35]) with different parallelism mech-
anisms.

7.1 Setup

Topology.We utilized two topologies from our production clusters.
Figure 13(a) is an A100 cluster consisting of 4 servers. Each server
is equipped with 8 Nvidia A800 GPUs and 4x200Gbps RDMA NICs.
The servers connect through a two-layer Clos network, where every
two servers are connected to one ToR switch. Figure 13(b) is an
H800 cluster made up of 64 servers. Each server is equipped with 8
Nvidia H800 GPUs and 8x400Gbps RDMA NICs. The servers are
interconnected via a multi-rail network (i.e., GPUs with the same
ID are connected to the same switch). In both clusters, GPUs within
the same server are also connected to NVSwitches via NVLinks. In
the following experiments, the A100-related tests were conducted
on a real testbed, while the H800-related tests utilized parameters
measured from a real-world cluster and were executed through
simulation.
Synthesis. We run the schedule synthesis process for both SyCCL
and TECCL on a server with 192-core Intel Xeon Platinum 8469C
CPU and 1TB memory.

For TECCL, we initially use the parameter settings provided
in the examples of their open-source codebase, selecting the best
output among different parameters for each case. We set a timeout
of 10 hours total for solving. For larger caseswhere these parameters
leads to timeout, we manually tune the epoch duration 𝜏 to ensure
a solution can be found. We start with a large epoch duration 𝜏
which ensures that a feasible solution can be found within the time
limit. Then we gradually decrease 𝜏 to improve synthesis precision
until either (1) no feasible solution can be found or (2) 𝜏 is smaller
than a threshold 𝜏𝑚𝑖𝑛 specified by TECCL, i.e., 𝛽 ∗ 𝑠 of the fastest
link, and output the result.

For SyCCL, we employ a two-step deterministic synthesis process
as described in §5.3. We set 𝐸1 = 3.0 and 𝐸2 = 0.5 to automatically
derive the epoch duration 𝜏 in both steps and 𝑅1 = 20%, 𝑅2 = 8. For
the 512 H800 case, we set 𝐸2 = 1.0. This configuration successfully
solved all cases within 4 hours.
Metric. We take Bus Bandwidth (busbw. [4]) as the metric to mea-
sure the performance of collective schedules. Busbw. reflects the
extent to which the overall bandwidth is utilized.

7.2 Schedule Performance

We compared the performance of schedules synthesized by SyCCL,
TECCL, and NCCL for different collective types (AllGather,
Alltoall, and ReduceScatter) over a range of data sizes (1KB
to 4GB) and different topology scales (from a single server with 8
GPUs to 64 servers with 512 GPUs).
AllGather and ReduceScatter on A100 topology. We first
evaluated AllGather and ReduceScatter performance of SyCCL,
TECCL, and NCCL on the A100 testbed. As shown in Figures 14(a)
and 14(b), SyCCL outperforms TECCL and NCCL for AllGather
under both 16-GPU and 32-GPU topologies. Under the 16-GPU
topology, for data sizes ≤1MB, SyCCL improves busbw. by 0.43×-
0.81× compared to NCCL, and 0.37×-0.86× compared to TECCL.
Both SyCCL and TECCL demonstrate much better performance

https://github.com/aliyun/symccl

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

40

80

120

160

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

0

1

2

3

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(a) AllGather on 16 A100 GPUs

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

30

60

90

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

0

1

2

3

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(b) AllGather on 32 A100 GPUs

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

40

80

120

160

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

0

1

2

3

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(c) ReduceScatter on 16 A100 GPUs

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

8

16

24

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

0

1

2

3

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(d) AlltoAll on 16 A100 GPUs

Figure 14: Schedule performance on A100 topology.

for smaller data sizes compared to NCCL. This is because that
NCCL’s fixed ring or tree schedules contain excessive hops, which
is inefficient for smaller sizes, where link latency (𝛼) dominates.

For data sizes >1MB, SyCCL achieves 0.17×-1.08× improvement
over NCCL and up to 0.36× improvement over TECCL. We observe
that the 16-GPU ring schedules in NCCL utilize a fixed ratio of 7:1
for NVLink and network bandwidths, resulting in a bottleneck for
network bandwidth and redundancy in nvlink bandwidth. In con-
trast, SyCCL alleviates the bottleneck by minimizing the network
bandwidth used, utilizing a bandwidth ratio of 14:1.

As the number of GPUs increases from 16 to 32, TECCL struggles
to generate a competitive schedule. Due to the increase of MILP
model size, TECCL sacrifices accuracy in order to meet the time
limit. In contrast, SyCCL achieves up to 1.04× improvement over
NCCL and 0.20×-0.88× over TECCL.

For ReduceScatter, the gain of SyCCL compared to NCCL is
slightly smaller than that observed in AllGather. We believe this
is due to NCCL’s more efficient coordination between communi-
cation and reduction, which is tailored to its static schedules. In
contrast, MSCCL’s runtime, designed to support flexible schedules,
does not incorporate such tailored optimizations for a given sched-
ule. Therefore, although SyCCL’s schedules benefit from higher
bandwidth utilization and lower latency, these advantages can be
diminished by a sub-optimal runtime implementation, especially
for smaller sizes. This showcases the importance of deeper runtime
optimization to complement schedule optimization [40] and fully
realize performance gains.

Alltoall onA100 topology. Figure 14(d) shows 16-GPU Alltoall
performance. Compared to NCCL, SyCCL increases busbw by up
to 0.71×.

The schedule performance of SyCCL is similar to that of TECCL
for Alltoall because this collective decomposes into many inde-
pendent point-to-point transfers that offer limited room for sched-
ule reordering. On the relatively small, non-oversubscribed topolo-
gies in our testbed, NCCL’s built-in schedule already utilizes all links
efficiently, and TECCL’s LP formulation [28] finds a near-optimal
solution.

AllGather on H800 topology. Figure 15(a) and Figure 15(b) show
the AllGather performance under larger topologies (64 GPUs and
512 GPUs) through simulation. TECCL timed out for 512 GPUs
and produced no valid output. As the number of GPUs increases,
the data in AllGather becomes more fragmented and the link la-
tency dominates. For example, with a total size of 1GB distributed
across 512 GPUs, each GPU only handles 2MB. Thus the 511 hops
in NCCL’s Ring schedule severely limit the performance. Instead,
SyCCL synthesized a two-dimension schedule, by allowing each
source GPU to first broadcast along one dimension (e.g., NVLink)
then letting each GPU broadcast all their data received from the
first dimension to other dimensions (e.g., rail between servers). This
strategy results in significantly better performance for smaller sizes.
At larger sizes, SyCCL’s sketches utilize bandwidth more efficiently
than NCCL’s fixed schedules.

As a result, SyCCL achieves up to 1.27× improvement compared
to TECCL for 64 GPUs, and has significant improvement over NCCL
for 512 GPUs.

Alltoall on simulated H800 topology. Figure 15(c) shows the
Alltoall performance under 64 H800 GPUs. The NCCL PXN
Alltoall schedule is near-optimal in H800 topologies. Because
of uncertainties of the solver and precision issues in the LP model,
SyCCL perform slightly worse than NCCL. In contrast, TECCL
models the whole collective communication and faces more severe

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

60

120

180

240

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

100

101

102

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(a) AllGather on 64 H800 GPUs

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

60

120

180

240

B
us

bw
. (

G
B

ps
) NCCL

SyCCL

100

101

102

103

Sp
ee

du
p

(x
)

Over NCCL No speedup

(b) AllGather on 512 H800 GPUs (TECCL timed out with no solution output)

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

25

50

75

B
us

bw
. (

G
B

ps
) TECCL

NCCL
SyCCL

0

2

4

6

Sp
ee

du
p

(x
)

Over NCCL Over TECCL No speedup

(c) AlltoAll on 64 H800 GPUs
Figure 15: Schedule performance on H800 topology.

precision issues. As a result, SyCCL improves performance by up
to 0.69× compared to TECCL.

7.3 Synthesis Time

SyCCL vs. TECCL. Figure 16(a) shows the synthesis time for
SyCCL and TECCL to synthesize an AllGather schedule on 16 and
32 A100 GPUs. For various data sizes, SyCCL requires only 0.3s-2.6s
for 16 GPUs and 6.2s-19.1s for 32 GPUs, while TECCL requires
4.4min-49.5min and 3.8min-8.7h, respectively. SyCCL accelerates
synthesis by 2 to 3 magnitudes compared to TECCL. We summarize
the synthesis time in various scenarios in Table 5. For configuration
with up to 64 GPUs, SyCCL requires at most 29.8s, while TECCL
can take up to 18h. In various cases, SyCCL reduces synthesis time
by 915× to 17286× compared to TECCL.

While SyCCL significantly reduces schedule generation time
by leveraging symmetry, extremely large-scale scenarios (e.g., 512
H800 GPUs) can still incur notable synthesis time, i.e., 37min. Profil-
ing shows that this residual cost stems almost entirely from invok-
ing TECCL to solve schedules within each symmetric GPU group;
the sketch-exploration phase itself scales sub-second. Hence the
bottleneck lies in the TECCL solver, not in SyCCL ’s core algorithm,
and future work on faster intra-group solvers would improve both
systems orthogonally.

1K 4K 16K 64K
256K1M 4M 16M64M

256M1G 4G
Data Size (B)

10−2

101

104

107

Sy
nt

he
si

s T
im

e
(s

)

TECCL-32GPU
TECCL-16GPU

SymCCL-32GPU
SymCCL-16GPU

(a) Synthesis time of SyCCL vs. TECCL

1K 4K 16
K

64
K

25
6K 1M 4M 16

M
64

M
25

6M 1G 4G

Data Size (B)

0

20

40

60

80

Sy
nt

he
si

s T
im

e
(s

)

combine
search

solve1
solve2

Alltoall
AllGather

(b) Synthesis time breakdown for SyCCL (32GPU)

TECCL 1 2 4 8 16 32 64 128 192
Number of Parallel Instances in SymCCL

100

102

104
Sy

nt
he

si
s T

im
e

(s
)

1M 16M 1G

(c) Synthesis time with different numbers of threads

Figure 16: Synthesis time of SyCCL and TECCL on A100

topology.

Scenario Min/Max/Mean Time (s) SpeedupTECCL SyCCL
16 A100, AG 266/2972/1193 0.3/4.3/0.8 1554×
16 A100, A2A 1042/26206/15759 1.4/8.3/3.6 4321×
32 A100, AG 226/31293/8200.2 6.7/18.6/9.0 915×
64 H800, AG 1225/67615/28200 0.4/10.8/1.6 17286×
64 H800, A2A 3698/59044/29371 1.3/29.8/5.7 5135×
512 H800, AG Time Out 85.5/14146/2246 N/A

Table 5: Synthesis time (s) of SyCCL and TECCL. AG/A2A
stands for AllGather/Alltoall.

Synthesis time breakdown of SyCCL.We profile the time spent
on each step of the SyCCL synthesis process, including sketch
search, sketch combining, and schedule synthesis in two steps. As
shown in Figure 16(b), the majority of the synthesis time is attrib-
uted to schedule synthesis. The time needed for sketch search and
combination generation remains steady regardless of the data size,
as these steps are not affected by it. However, schedule synthe-
sis time increases with larger data sizes due to the need for more
complex schedules to effectively utilize bandwidth.
Effect of parallelism in SyCCL. SyCCL employs multiple paral-
lel instances to solve sub-demands and run schedule simulations
simultaneously. In contrast, TECCL relies on a single instance to
address a large-scale problem, resulting in limited scalability. For

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

1K 4K 16K 64K
256K 1M 4M 16M64M

256M 1G 4G

Data Size (B)

104

106

Sy
nt

he
si

s T
im

e
(s

)

w/o #1, w/o #2
w/o #1 ,w/ #2
w/ #1, w/o #2
w/ #1, w/ #2

0

100

200

300

B
us

bw
 (G

B
ps

)w/o #1, w/o #2
w/o #1, w/ #2

w/ #1, w/o #2
w/ #1, w/ #2

(a) With and without Pruning #1 and #2 in §4.1

1K 4K 16K 64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

104

106

Sy
nt

he
si

s T
im

e
(s

)

3-stage
5-stage
10-stage

0

50

B
us

bw
 (G

B
ps

)3-stage 5-stage 10-stage

(b) With and without Pruning #3 in §4.1

1K 4K 16K 64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

10−2

10−1

100

M
ax

 S
ol

ve
 T

im
e

(s
)

0.1 0.2 1

0

100

200

B
us

bw
 (G

B
ps

)0.1 0.2 1

(c) Various 𝐸2 value in §5.1

Figure 17: Impact of synthesizing policy on synthesis time

and schedule performance.

both SyCCL and TECCL, we enable the built-in multi-thread op-
timization of MILP solver, which allows multiple threads to run
within a single instance to accelerate solving. We compare the time
it takes by SyCCL with different numbers of instances against the
time taken by TECCL. As shown in Figure 16(c), with more parallel
instances, SyCCL significantly reduces synthesis time.

7.4 Impact of Varying Synthesizing Policy

To evaluate the effectiveness of each part of SyCCL’s design, we
conducted a microbenchmark to compare the results of enabling
and disabling each part of design. We scaled down the H800 server
from 8 GPUs to 4 GPUs and utilized 6 servers, while maintaining
the same topology. This allowed us to evaluate SyCCL in a smaller
yet complex setup.
Effect of pruning strategies in sketch exploration. To measure
the impact of pruning strategies in §4.1, we compare the synthesis
time and performance of synthesized schedules with and without
the application of these pruning strategies. Figure 17(a) illustrates
that the redundancy remover and consistency enforcement strate-
gies can significantly reduce the synthesis time by 20.8% to 48.1%,
with minimal impact on the performance of the synthesized sched-
ules. Figure 17(b) shows that setting Alltoall stage to ≤ 3 in the

Model NCCL TECCL SyCCL vs NCCL vs TECCL
GPT3-6.7B, DP16 672.4 653.0 630.0 6.3% 3.5%
GPT3-6.7B, TP16 200.0 197.7 192.5 3.8% 2.6%
GPT3-6.7B, TP32 219.4 216.5 209.7 4.4% 3.1%
Llama3-8B, DP16 1195.4 1153.8 1135.4 5.0% 1.6%
Llama3-8B, TP16 433.9 422.2 412.6 4.9% 2.3%
Llama3-8B, TP32 854.9 887.4 851.5 0.4% 4.0%

Table 6: End-to-end training iteration time (ms) and speedup

with NCCL, TECCL, and SyCCL.

current topology does not affect the final schedule performance.
Additionally, this adjustment can significantly reduce synthesis
time, e.g., saving 95% to 97% compared to allowing 10 stages.
Effect of epoch duration 𝜏 setting in schedule synthesis. Fig-
ure 17(c) shows that how changing 𝐸2 (i.e., 𝐸 value during step-2
synthesis) affects synthesis time and schedule performance. We
employ the maximum solve time across demands, instead of the
total synthesis time, to demonstrate epoch duration’s impact on the
solver while solving a single demand. We can see that 𝐸2 = 0.2 is an
appropriate value. Using a larger 𝐸2 (e.g., 1) leads to a decrease in
schedule performance, while using a smaller 𝐸2 (e.g., 0.1) will result
in longer solving times without any performance improvement.

7.5 End-to-end Performance

We evaluate SyCCL on distributed training of two models, i.e., GPT-
6.7B [16] and Llama3-8B [35] on the A100 testbed. The evaluation
considers two parallel configurations: data parallelism (DP) with a
distributed optimizer and tensor parallelism (TP). First, we trace the
specific collective communication primitive calls and record their
associated data sizes. In both configurations, ReduceScatter and
AllGather are the primary collective communication operations.
Based on the collected primitives and data sizes, we synthesize com-
munication schedules using TECCL and SyCCL. We then compare
the end-to-end training performance of the synthesized schedules
with NCCL configured with its default configurations (i.e.,NCCL au-
tomatically determines schedules and parameters). We use training
iteration time as the metric for evaluating end-to-end performance.
As shown in Table 6, SyCCL achieves up to 6.3% performance im-
provement over NCCL and up to 4.0% improvement over TECCL
under various configurations.

8 Discussions and limitations

Optimality of synthesized schedules. Although the introduc-
tion of sketch significantly enhances the speed and accuracy of
SyCCL compared to previous efforts, SyCCL does not ensure that
the synthesized schedules are optimal. This limitation arises be-
cause SyCCL employs MILP modeling to solve each decomposed
sub-demand, like previous efforts, and this modeling inherently
does not ensure optimality. On one hand, there is a trade-off be-
tween accuracy and efficiency in modeling, and increased scale
tends to reduce accuracy. On the other hand, the complexity of
real-world networks (e.g., congestion control and jitter) means that
theoretical models cannot fully capture all aspects of reality. Despite
these limitations, SyCCL is not restricted to any specific modeling
techniques. As more advanced and accurate solvers are developed
in the future, SyCCL can incorporate them to enhance accuracy.

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Furthermore, SyCCL employs carefully-designed pruning strate-
gies to discard non-viable sketches early to reduce search space.
Throughout §7.4 we empirically showed that our domain-specific
pruning rules do not degrade the performance of the schedules gen-
erated. Nevertheless, pruning inherently embodies a speed–accuracy
trade-off: by discarding a subset of candidate sketches early, we
shorten the synthesis time from hours to minutes, but we also
concede the possibility that an unseen sketch could marginally
outperform the retained search space. Therefore, SyCCL exposes
user-configurable pruning strategies to balance synthesis time and
solution quality. One may even disable pruning to exhaustively
enumerate all sketches, at the cost of higher synthesis overhead.
Comparison to expert-optimized schedules. The state-of-the-
art approach for collective scheduling in large clusters is for domain
experts to manually design communication schedules based on
their understanding of the workload and the topology. To achieve
optimal performance, in-depth optimizations such as GPU kernel
co-design and network tuning are usually performed based on the
schedule. SyCCL aims to aid this process by providing insights
during the schedule designing stage. We compare the performance
of SyCCL’s schedule and expert-optimized schedules in Appendix C
and showcase how SyCCL can guide the process.
Adaptability to asymmetric collective workloads. Some ML
models, such as Mixture of Experts (MOE) [26], use asymmetric
collectives, such as Alltoall(v) and AllGather(v), where different
GPUs may send or receive data of varying sizes. As a result, the
collective symmetry does not hold and SyCCL encounters scala-
bility challenges like existing synthesizers. For these highly irreg-
ular and dynamic collective patterns, we believe heuristic-based
schedule synthesis is more appropriate than relying on symmetry-
aware modeling. Nevertheless, SyCCL can still aid those scenarios
by providing a base solution for a symmetric sub-demand in the
original collective, or generating sketches without the symmetric
constraints. Exploring such heuristic based approaches is left for
future work.
Adaptability to heterogeneous clusters. Some studies [21, 36]
propose to train ML models using heterogeneous GPUs with asym-
metric topologies. For efficient training, these clusters should retain
some symmetry. For example, identical GPUs are placed together
and connected to the same switches, resulting in a topology which
combines symmetric sub-topologies. In this context, SyCCL can
further categorize groups in each dimension to reduce search space.
Groups within the same category exhibit similar communication
behavior. However, when asymmetry increases—such as when the
same dimension must be further divided into multiple categories,
each with its own set of similar groups—the topology effectively
becomes more heterogeneous and higher-dimensional. In highly
irregular or unstructured networks that resist such decomposition,
the advantages of SyCCL diminish as its core assumption of ex-
ploitable symmetry breaks down. We plan to explore methods to
extend SyCCL to these more general cases in future work.
Adaptability to dynamic network environments.When net-
work conditions fluctuate (e.g., due to hardware failures or variable
bandwidth in shared clusters), SyCCL can regenerate communica-
tion schedules if such changes are infrequent and timing constraints
are relaxed. However, in more dynamic environments—such as

multi-tenant clusters with frequent topology changes or degraded
links—SyCCL may be less effective, as discussed above. These sce-
narios often lead to asymmetric and unpredictable communication
patterns, limiting the applicability of symmetry-based schedule
synthesis.

Independence from specific GPU architectures. Our synthe-
sizing approach is not tied to any specific GPU architectures, e.g.,
AMD and NVIDIA. This is because the GPU-related factors are
already included in the link performance parameters (i.e., 𝛼 and 𝛽).
While our experiments utilized NVIDIA A100 and H800 GPUs, the
results obtained are broadly applicable, irrespective of the hardware
specifics.

9 Related Work

In this section, we introduce related work on collective communi-
cation performance optimization.

Collective schedule optimization. Current research on collec-
tive schedule optimization can be divided into three categories.
First, open-source CCLs (e.g., NCCL [11], RCCL [14], Gloo [8], and
HCCL [5]) implement common collective schedules (e.g., Ring and
Tree) and allow for tuning among schedules during runtime. Sec-
ond, the specific optimizers like Blink [38] and Themis [32] focus
on optimizing schedules for specific network topologies or collec-
tives. These two types of work are limited to specific scenarios
and cannot adapt to diverse network architectures and models.
Third, synthesizers like SCCL [17], TACCL [33], and TECCL [28]
automatically synthesize schedules for various network topologies,
collective types, and data sizes by encoding the collective communi-
cation process. As network size and complexity increase, they face
the challenge of an exploding search space and fail to scale. SyCCL
is also a synthesizer that addresses this challenge by leveraging
topology and collective symmetry.

Multi-collective scheduling. Some research [18, 27, 29, 31, 39, 42]
focuses on how to schedule multiple collectives occurring simul-
taneously or co-optimize computation and communication in a
network to optimize the overall performance. SyCCL is comple-
mentary to these works.

10 Conclusion

This paper presents SyCCL, a scalable collective communication
scheduler synthesizer that automatically synthesizes schedules for
production-scale ML jobs. SyCCL leverages topology and collective
symmetries to divide large communication demand into smaller
sub-demands, and combines a schedule solver and a schedule simu-
lator to synthesize schedules efficiently and accurately. Evaluation
results show that SyCCL improves schedule performance by up to
127% while reducing synthesis time by 2 to 4 orders of magnitude
compared to state-of-the-art methods.

Acknowledgements

We thank our shepherd, Minjia Zhang, and the anonymous review-
ers for their insightful comments. Ennan Zhai is the corresponding
author.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

References

[1] Double binary tree, 2019. https://developer.nvidia.com/blog/massively-scale-
deep-learning-training-nccl-2-4/.

[2] Multi-rail topology, 2022. https://developer.nvidia.com/blog/doubling-all2all-
performance-with-nvidia-collective-communication-library-2-12/.

[3] Astra-sim 2.0, 2024. https://github.com/astra-sim/astra-sim.
[4] Bus bandwith computation, 2024. https://github.com/NVIDIA/nccl-tests/blob/

master/doc/PERFORMANCE.md.
[5] cann-hccl, 2024. https://gitee.com/ascend/cann-hccl.
[6] Clos network, 2024. https://en.wikipedia.org/wiki/Clos_network.
[7] Deepspeed, 2024. https://github.com/microsoft/DeepSpeed.
[8] Gloo, 2024. https://github.com/facebookincubator/gloo.
[9] Megatron-lm, 2024. https://github.com/NVIDIA/Megatron-LM/.
[10] Msccl-executor-nccl, 2024. https://github.com/Azure/msccl-executor-nccl.
[11] Nccl, 2024. https://github.com/NVIDIA/nccl.
[12] Nvidia gb200 nvl72, 2024. https://www.nvidia.com/en-us/data-center/gb200-

nvl72/.
[13] Nvlink and nvlink switch, 2024. https://www.nvidia.com/en-us/data-center/

nvlink/.
[14] rccl, 2024. https://github.com/ROCm/rccl.
[15] vllm, 2024. https://github.com/vllm-project/vllm.
[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[17] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz,
Jacob Nelson, and Olli Saarikivi. Synthesizing optimal collective algorithms. In
Jaejin Lee and Erez Petrank, editors, PPoPP ’21: 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Virtual Event, Republic of Korea,
February 27- March 3, 2021, pages 62–75. ACM, 2021.

[18] Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong Xiao, Jianbo Dong, Binzhang
Fu, Dennis Cai, and Ennan Zhai. Crux: Gpu-efficient communication scheduling
for deep learning training. In Proceedings of the ACM SIGCOMM 2024 Conference,
ACM SIGCOMM 2024, Sydney, NSW, Australia, August 4-8, 2024, pages 1–15. ACM,
2024.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association
for Computational Linguistics, 2019.

[21] Yifan Ding, Nicholas Botzer, and TimWeninger. Hetseq: Distributed GPU training
on heterogeneous infrastructure. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 15432–
15438. AAAI Press, 2021.

[22] Jianbo Dong, Bin Luo, Jun Zhang, Pengcheng Zhang, Fei Feng, Yikai Zhu, Ang Liu,
Zian Chen, Yi Shi, Hairong Jiao, Gang Lu, Yu Guan, Ennan Zhai, Wencong Xiao,
Hanyu Zhao, Man Yuan, Siran Yang, Xiang Li, Jiamang Wang, Rui Men, Jianwei
Zhang, Huang Zhong, Dennis Cai, Yuan Xie, and Binzhang Fu. Boosting large-
scale parallel training efficiency with C4: A communication-driven approach.
CoRR, abs/2406.04594, 2024.

[23] William D. Gropp, Ewing L. Lusk, and Anthony Skjellum. Using MPI - Portable
Parallel Programming with the Message-Passing Interface, 3rd Edition. Scientific
and engineering computation. MIT Press, 2014.

[24] Roger W. Hockney. The communication challenge for MPP: intel paragon and
meiko CS-2. Parallel Comput., 20(3):389–398, 1994.

[25] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 103–112,

2019.
[26] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.

Adaptive mixtures of local experts. Neural Comput., 3(1):79–87, 1991.
[27] Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus: A unified distributed train-

ing framework for sparse mixture-of-experts models. In Henning Schulzrinne,
Vishal Misra, Eddie Kohler, and David A. Maltz, editors, Proceedings of the ACM
SIGCOMM 2023 Conference, ACM SIGCOMM 2023, New York, NY, USA, 10-14
September 2023, pages 486–498. ACM, 2023.

[28] Xuting Liu, Behnaz Arzani, Siva Kesava Reddy Kakarla, Liangyu Zhao, Vincent
Liu, Miguel Castro, Srikanth Kandula, and Luke Marshall. Rethinking machine
learning collective communication as a multi-commodity flow problem. In
Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM 2024, Sydney,
NSW, Australia, August 4-8, 2024, pages 16–37. ACM, 2024.

[29] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya Akella.
Better together: Jointly optimizing ML collective scheduling and execution plan-
ning using SYNDICATE. In Mahesh Balakrishnan and Manya Ghobadi, editors,
20th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023, pages 809–824. USENIX Association, 2023.

[30] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan, Binzhang
Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng Wang, Pengcheng
Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao, Ennan Zhai, and Dennis Cai.
Alibaba HPN: A data center network for large language model training. In
Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM 2024, Sydney,
NSW, Australia, August 4-8, 2024, pages 691–706. ACM, 2024.

[31] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. CASSINI: network-
aware job scheduling in machine learning clusters. In Laurent Vanbever and Irene
Zhang, editors, 21st USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2024, Santa Clara, CA, April 15-17, 2024. USENIX Association,
2024.

[32] Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan, and
Tushar Krishna. Themis: a network bandwidth-aware collective scheduling policy
for distributed training of DL models. In Valentina Salapura, Mohamed Zahran,
Fred Chong, and Lingjia Tang, editors, ISCA ’22: The 49th Annual International
Symposium on Computer Architecture, New York, New York, USA, June 18 - 22,
2022, pages 581–596. ACM, 2022.

[33] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan Musu-
vathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi. TACCL: guiding collec-
tive algorithm synthesis using communication sketches. In Mahesh Balakrishnan
and Manya Ghobadi, editors, 20th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2023, Boston, MA, April 17-19, 2023, pages 593–612.
USENIX Association, 2023.

[34] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,
Geoffrey E. Hinton, and Jeff Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. Llama: Open and efficient foundation language models. CoRR, abs/2302.13971,
2023.

[36] Taegeon Um, Byungsoo Oh, Minyoung Kang, Woo-Yeon Lee, Goeun Kim,
Dongseob Kim, Youngtaek Kim, Mohd Muzzammil, and Myeongjae Jeon. Metis:
Fast automatic distributed training on heterogeneous gpus. In Saurabh Bagchi
and Yiying Zhang, editors, Proceedings of the 2024 USENIX Annual Technical Con-
ference, USENIX ATC 2024, Santa Clara, CA, USA, July 10-12, 2024, pages 563–578.
USENIX Association, 2024.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008,
2017.

[38] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,
Nikhil R. Devanur, and Ion Stoica. Blink: Fast and generic collectives for dis-
tributed ML. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze,
editors, Proceedings of the Third Conference on Machine Learning and Systems,
MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

[39] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao
Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. Topoopt: Co-
optimizing network topology and parallelization strategy for distributed training
jobs. In Mahesh Balakrishnan and Manya Ghobadi, editors, 20th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2023, Boston, MA,
April 17-19, 2023, pages 739–767. USENIX Association, 2023.

[40] Guanbin Xu, Zhihao Le, Yinhe Chen, Zhiqi Lin, Zewen Jin, Youshan Miao, and
Cheng Li. {AutoCCL}: Automated collective communication tuning for acceler-
ating distributed and parallel {DNN} training. In 22nd USENIX Symposium on

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/
https://github.com/astra-sim/astra-sim
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://gitee.com/ascend/cann-hccl
https://en.wikipedia.org/wiki/Clos_network
https://github.com/microsoft/DeepSpeed
https://github.com/facebookincubator/gloo
https://github.com/NVIDIA/Megatron-LM/
https://github.com/Azure/msccl-executor-nccl
https://github.com/NVIDIA/nccl
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://github.com/ROCm/rccl
https://github.com/vllm-project/vllm

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Networked Systems Design and Implementation (NSDI 25), pages 667–683, 2025.
[41] Shiqing Zhang, Yijiao Yang, Chen Chen, Xingnan Zhang, Qingming Leng, and

Xiaoming Zhao. Deep learning-based multimodal emotion recognition from
audio, visual, and text modalities: A systematic review of recent advancements
and future prospects. Expert Syst. Appl., 237(Part C):121692, 2024.

[42] Liangyu Zhao, Siddharth Pal, Tapan Chugh, Weiyang Wang, Prithwish Basu,
Joud Khoury, and Arvind Krishnamurthy. Optimal direct-connect topologies for
collective communications. CoRR, abs/2202.03356, 2022.

APPENDIX

Appendices are supportingmaterial that has not been peer-reviewed.

A MILP Modeling and Solving

SyCCL synthesizes sub-schedules through MILP modeling, like
TECCL [28]. Since TECCL has provided a detailed description of
this modeling, we briefly summarize the key components in this
section.

A.1 Solving and modeling details

SyCCL uses an MILP formulation to encode the initial status (i.e.,
which GPUs hold which chunks) and the collective communication
demand (i.e., which GPUs require which chunks), the topology, and
the transmission process.

Time is divided into equal intervals, called epochs, all with a
fixed duration denoted as 𝜏 . Each communication event (i.e., sending
a chunk over a link) must fit into an integer number of epochs.
As shown in Figure 18, a chunk is transmitted over a link at the
beginning of an epoch. The transmission satisfies: (1) the bandwidth
constraint, i.e., a link transmits at most a volume of 𝜏

𝛽
within an

epoch, where 𝛽 is the reciprocal of the link’s bandwidth, and (2) the
latency constraint, the total transfer time 𝑡 for a chunk of size 𝑠 over
a link is calculated as 𝛼 + 𝛽 · 𝑠 , where 𝛼 is a constant transmission
delay. The chunk can reach the destination and be sent over the
next link only after ⌈ 𝑡𝜏 ⌉ epochs.

We then apply the MILP solver to find a solution that minimizes
the total number of epochs required to satisfy the demand. Finally,
we obtain a schedule which includes the start epoch and end epoch
of each communication event (i.e., a GPU sends a data chunk to
another GPU).

A.2 Epoch duration 𝜏 : a knob to balance the

search efficiency and accuracy

In the MILP modeling, the setting of the 𝜏 value is crucial, which is
essentially a knob to balance the search efficiency and accuracy.

A larger 𝜏 reduces the time required to solve the problem but
at the expense of decreased accuracy. Specifically, the number of
MILP variables increases linearly with the number of epochs. A
larger 𝜏 means fewer epochs, simplifying the problem by reducing
the number of variables involved, which in turn can speed up solv-
ing times. However, a larger 𝜏 also leads to more communication
events to occur simultaneously within an epoch without any sched-
uling, which negatively affects accuracy. Previous efforts encode
the whole collective and topology into an MILP problem. In such
cases, neither a large nor small 𝜏 successfully achieves an balance
between accuracy and efficiency.

To address this issue, SyCCL introduces a two-step synthesis
approach (§5.3), which first exploits coarse-grained solving for
quick synthesis and selects the candidates with better performance,
and then exploits fine-grained solving for accurate synthesis.

A.3 Determining 𝜏 automatically

The multi-dimensional network complicates the selection of an
appropriate 𝜏 value. On the one hand, 𝜏 should satisfy the bandwidth
constraint for each link type. As shown in Figure 18(a), 𝜏 should

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

𝜏 =
8
3 ∗ (𝛽 ∗ 𝑠)

𝜏2 ∗ 𝛽 ∗ 𝑠

𝜏 =
1
2 ∗ (𝛽 ∗ 𝑠)

𝜏 = 2 ∗ (𝛽 ∗ 𝑠)

Link 1

Link 3

Link 2

Link 4

Chunk 2Chunk 1

(a) Bandwidth constraint: 𝜏 should be a multiplier of 𝛽 ∗ 𝑠

𝜏 =
4
3 ∗ (𝛼 + 𝛽 ∗ 𝑠)

𝜏𝛼 + 𝛽 ∗ 𝑠

𝜏 =
1
2 ∗ (𝛼 + 𝛽 ∗ 𝑠)

𝜏 = 1 ∗ (𝛼 + 𝛽 ∗ 𝑠)

Link 1
Link 2
Link 3
Link 4

Epoch Chunk

(b) Latency constraint: 𝜏 should be a multiplier of 𝛼 + 𝛽 ∗ 𝑠
Figure 18: Epoch duration 𝜏 should a multiplier of 𝛼 + 𝛽 ∗ 𝑠
and 𝛽 ∗ 𝑠. Otherwise, the total epoch time does not equal the

actual time needed for chunk transmission.

be a multiplier of 𝛽 ∗ 𝑠 , i.e., 𝜏 = 𝑟 ∗ 𝛽 ∗ 𝑠 , where either 𝑟 or 1/𝑟 is
an integer. This ensures that the the link’s total capacity within
an epoch equals to the volume of 𝑟 chunks (𝑟 = 2) or 1/𝑟 epochs
are required to transmit one chunk (𝑟 = 1

2). If 𝑟 = 8/3, which is
not either an integer or a fraction, the actual transmission time
does not equal the total time of the occupied epochs, leading to
inaccurate modeling. On the other hand, 𝜏 should satisfy the latency
constraint for each link type. As shown in Figure 18(b), 𝜏 should
also be a multiplier of 𝛼 + 𝛽 ∗ 𝑠 . Under topologies with different
link types having different characteristics, it is difficult for existing
synthesizers to determine a suitable 𝜏 to satisfy the bandwidth
and latency constraints for accurate modeling, while keeping 𝜏 big
enough to prevent a large model size.

SyCCL reduces inaccuracies caused by dealing with multiple link
types as each sub-demand in SyCCL exists in a single GPU group,
which only involves a single link type. However, the chosen 𝜏 must
still satisfy both bandwidth and latency constraints for that link
type.

To address this, SyCCL introduces an auxiliary variable 𝐸 to
adjust the trade-off between accuracy and efficiency. A larger 𝐸
means better efficiency, while a smaller 𝐸 improves accuracy. Based
on the selected 𝐸 value, SyCCL automatically determines the op-
timal 𝜏 value which satisfy both constraints. Specifically, SyCCL
prioritizes the bandwidth constraint by setting 𝜏 = 𝑟 ∗ 𝛽 ∗ 𝑠 , where
𝑟 is a parameter which will be determined later, and either 𝑟 or 1

𝑟
is an integer. To address the latency constraint, SyCCL defines a
function 𝑓 (𝑟) = 𝛼+(𝛽∗𝑠)

𝑟∗𝛽∗𝑠 , with ⌈𝑓 (𝑟)⌉ representing the number of
epochs required to transmit a single chunk. The goal is to mini-
mize 𝑔(𝑟) = ⌈𝑓 (𝑟)⌉ − 𝑓 (𝑟) to meet the latency constraint. SyCCL
fine-tunes the trade-off between accuracy and efficiency by setting
⌈𝑓 (𝑟)⌉ = 𝐸, where 𝐸 is a adjustable parameter and finding 𝑟 which
minimizes 𝑔(𝑟).

B Other GPU cluster topology examples

Figure 19 shows a larger multi-rail topology cluster, consisting of
seven 4-GPU servers connected to four leaf switches. GPUs with the
same intra-server index are connected to the same leaf switch. For
example, GPUs 0, 4, 8, . . . are connected to the first leaf switch. This

NICGPU0 N NVSwitch Spine SwitchSLeaf SwitchL Core SwitchC

1 group in Dim 2: {0,1,…,27}
4 groups in Dim 1: {0,4,…,24}, {1,5,…,25}, {2,6,…26}, {3,7,…,27}
7 groups in Dim 0: {0,1,2,3}, {4,5,6,7}, {8,9,10,11}, {12,13,14,15}, …

N
Server 0

10 2 3

N
Server 1

54 6 7

N
Server 2

98 1011

N
Server 3

1312 1415

N
Server 4

1716 1819

N
Server 5

2120 2223

N
Server 6

2524 2627

S

L L L L

Figure 19: Example of a larger multi-rail topology.

SS
C

NICGPU0 N NVSwitch Spine SwitchSLeaf SwitchL Core SwitchC

1 group in Dim 3: {0,1,…,31}
2 groups in Dim 2: {0,1,…,15}, {16,16,…,31}
4 groups in Dim 1: {0,1,…,7}, {8,9,…,15}, {16,17,…23}, {24,25,…,31}
8 groups in Dim 0: {0,1,2,3}, {4,5,6,7}, {8,9,10,11}, {12,13,14,15}, …

L

N
Server 0

10 2 3

N
Server 1

54 6 7

L

N
Server 2

98 1011

N
Server 3

1312 1415

L

N
Server 4

1716 1819

N
Server 5

2120 2223

L

N
Server 6

2524 2627

N
Server 7

2928 3031

Figure 20: Example of a Clos topology.

topology is organized into three dimensions. Dimension 0 contains
seven GPU groups corresponding to the seven servers. Dimension
1 contains four GPU groups, where each groups includes GPUs
connected to the same switch. Dimension 2 contains a single group
that encompasses all GPUs connected through a spine switch.

Figure 20 shows a Clos topology, which consists of eight 4-GPU
servers. In this topology, each pair of servers connects to the same
leaf switch, and each pair of leaf switches connect to the same spine
switch. Additionally, two spine switches connect to a core switch.
This topology includes four dimensions. Dimension 0 contains eight
GPU groups corresponding to eight servers. Dimension 1 contains
four GPU groups, each including GPUs connected to the same leaf
switch. Dimension 2 contains two groups, and each group consists
of GPUs connected to the same spine switch. Dimension 3 contains
one group that includes all GPUs connected by a single core switch.

C Comparison to expert-optimized schedules

A common approach for collective scheduling in large clusters is
for domain experts to manually design communication schedules
based on their understanding of the workload and the topology.
After designing the collective schedule, they often implement it
at the GPU kernel level, coupled with in-depth optimizations like
network tuning. Since SyCCL focuses on optimizing the schedule
itself, we compare results only at the schedule level. Nevertheless,
compared to other MILP based methods where the complex sched-
ules generated by the solver may not be easily understandable, we
expect SyCCL’s high-level sketches to be readable by users and
capable of being further implemented and optimized manually for
extreme performance.

We use AllGather as an example here. We generate three com-
monly used schedules: ring schedule, direct schedule, and hierar-
chical schedule. For the ring schedule, we try to utilize all available
bandwidth in the topology by using multiple rings to cover all

SyCCL : Exploiting Symmetry for Efficient Collective Communication Scheduling SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

inter-machine links. Direct schedule sends all data chunks directly
to other GPUs in order. Hierarchical schedule decomposes the orig-
inal AllGather into multiple smaller ones performed inside each
topology group. We implement the hierarchical schedule inside
one collective kernel, instead of using multiple collective calls, to
achieve the best performance. The transmission order of each sched-
ule is carefully designed to avoid contention. For each collective size,
we collect the best performance among all hand-crafted schedules
and compare it with SyCCL’s output.

Figure 21(a) shows that SyCCL’s performance is similar to that
of hand-crafted schedules on the 16-A100 testbed. Upon inspection,
we found that SyCCL uses the same hierarchical schedule as the
hand-crafted schedules for large data sizes, and the same direct
schedule for smaller data sizes.

Figure 21(b) shows that SyCCL outperforms hand-crafted sched-
ules on the 64-H800 testbed for larger data sizes. This improve-
ment is attribute to the bandwidth ratio between inter-machine and
inter-machine links in the 64-H800 testbed not aligning well with
the hand-crafted hierarchical schedule. In contrast, SyCCL utilizes
sketch combination and alternative sketches to almost perfectly
match the bandwidth ratio, resulting in a higher utilization.

We also found out that the best sketch combinations in the 64-
H800 testbed mainly utilizes an alternative hierarchical AllGather
schedule. The conventional hierarchical AllGather schedule in-
volves sending every chunk to all GPUs in the same rail first, fol-
lowed by sending the chunk to all other GPUs in the same machine,
or vice versa. SyCCL utilized an sketch where a chunk is first sent
to one other GPU in the same machine. Then, the two GPUs send
the chunk to other GPUs in the same rail. Finally, the two GPUs
holding the chunk in each machine send it to other GPUs in the
same machine, with each GPU issuing three sends.

As this sketch matches the bandwidth ratio of our H800 testbed
well, even without sketch combination, we tried to additionally
hand-craft such schedules. Figure 22(a) shows that after incorporat-
ing this hand-crafted schedule, we achieve comparable performance
to SyCCL for large sizes. This approach provides the advantage
of a more structured schedule with a guarantee of no contention,
compared to potentially complex and inaccurate schedules gener-
ated by the MILP solver, which could explain SyCCL’s performance
degradation in some cases. We expect such workflow of optimiz-
ing the best sketch combinations being the best practice of using
SyCCL.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Jiamin Cao et al.

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

60

120

180
B

us
bw

. (
G

B
ps

) Crafted
NCCL
SyCCL

0

1

2

3

Sp
ee

du
p

(x
)

Over NCCL Over Crafted No speedup

(a) AllGather on 16 A100 GPUs

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

60

120

180

240

B
us

bw
. (

G
B

ps
) Crafted

NCCL
SyCCL

100

101

102

Sp
ee

du
p

(x
)

Over NCCL Over Crafted No speedup

(b) AllGather on 64 H800 GPUs

Figure 21: Hand-crafted schedule performance on A100 and H800 topologies.

1K 4K 16K64K
256K1M 4M 16M64M

256M1G 4G

Data Size (B)

0

60

120

180

240

B
us

bw
. (

G
B

ps
) Improved

NCCL
SyCCL

100

101

102

Sp
ee

du
p

(x
)

Over NCCL Over Improved No speedup

(a) AllGather on 64 H800 GPUs

Figure 22: Improved hand-crafted schedule performance on H800 topology.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background: Collective Communication
	2.2 Search Space for Collective Schedules
	2.3 Limitations of Existing Synthesizers

	3 Insight and Design Overview
	3.1 Insight
	3.2 SyCCL Sketch
	3.3 SyCCL Overview

	4 Sketch Exploration
	4.1 Searching for Sketches
	4.2 Generating Sketch Combinations
	4.3 Extending to All-To-All Collectives

	5 Schedule Synthesis
	5.1 Synthesizing Sub-Schedules
	5.2 Synthesizing the Optimal Schedule
	5.3 Accelerating Synthesis

	6 Implementation
	7 Evaluation
	7.1 Setup
	7.2 Schedule Performance
	7.3 Synthesis Time
	7.4 Impact of Varying Synthesizing Policy
	7.5 End-to-end Performance

	8 Discussions and limitations
	9 Related Work
	10 Conclusion
	References
	A MILP Modeling and Solving
	A.1 Solving and modeling details
	A.2 Epoch duration : a knob to balance the search efficiency and accuracy
	A.3 Determining automatically

	B Other GPU cluster topology examples
	C Comparison to expert-optimized schedules

