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Abstract
Model markets (e.g., Hugging Face) feature a wide variety
of models with unique characteristics and varying levels
of popularity. Serving sporadic and unpredictable requests
in concurrent inference workloads with dedicated GPU in-
stances results in substantial resource waste. While existing
multi-model serving solutions use GPU pooling and server-
less computing to improve resource efficiency, their effective-
ness is limited to supporting at most two or three models per
GPU, which is inadequate for fully utilizing GPU resources.

We propose Aegaeon, a multi-model serving system that
performs model auto-scaling at the token granularity to
achieve effective GPU pooling. Aegaeon schedules multi-
model requests and makes auto-scaling decisions on a per-
token basis to maximize service quality. It reduces auto-
scaling overhead by 97% through component reuse, explicit
memory management, and fine-grained KV cache synchro-
nization. Experiments show that Aegaeon sustains 2–2.5×
higher request arrival rates or 1.5–9× more goodput com-
pared to existing solutions. Aegaeon has been beta deployed
in our model marketplace and currently serves tens of mod-
els. Deployment results show that Aegaeon reduces the num-
ber of GPUs required for serving these models from 1,192 to
213, highlighting an 82% GPU resource saving.

CCS Concepts: • Computer systems organization →
Real-time systems; • Computing methodologies→Nat-
ural language processing; Distributed computing method-
ologies.

Keywords: Multi-Model Serving; Large Language Models;
Serverless Computing; GPU Pooling
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1 Introduction
The rapid advancement of large language models (LLMs) and
their surging adoption in recent years have brought about an
unprecedented variety of models on the market. For example,
Hugging Face [7], the largest model marketplace, currently
hosts over one million models, ranging from proprietary
models [10, 19, 37] trained by large companies to numerous
fine-tuned models tailored for specific domains. As a leading
cloud inference service provider, we face highly concurrent
LLM serving workloads at Alibaba Cloud Model Studio [5],
a model market that handles thousands of different models.
Serving such workloads poses substantial challenges to

resource efficiency due to the prevalence of sporadic model
invocations. As shown in Figure 1(a), the workloads are
heavily skewed, containing a long tail (more than 90%) of
infrequently invoked models. Reserving full GPU instances
for these models leads to allocating 17.7% of our GPUs to
serve only 1.35% of requests (averaging fewer than 0.2 re-
quests per second per GPU). In addition, the “hot” models
(e.g., DeepSeek [19], Llama [30], and Qwen [37]) are prone to
request bursts that can overload their provisioned resources
from time to time, translating to a similar intermittent invo-
cation pattern that requires more reserved GPUs, as depicted
in Figure 1(b). These sporadic requests mark high resource
waste: assuming an ideal scenario, if all requests belonged
to a single model, the typical achievable arrival rate could
be several requests per second per GPU instance [25], trans-
lating to over 10× unexplored space for optimization.
Filling this utilization gap requires us to better saturate

each GPU by enabling it to serve requests from multiple
models. As such, we aim to conduct effective GPU pooling.
By sharing a GPU between as many models as possible with-
out violating the service-level objective (SLO), GPU pooling
promises great reductions in operational expenses (OPEX)
for concurrent LLM serving.

https://doi.org/10.1145/3731569.3764815
https://doi.org/10.1145/3731569.3764815
https://doi.org/10.1145/3731569.3764815
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1.35% of 167.6M requests
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Figure 1. Concurrent LLM serving workloads. (a) CDF of model
invocations. Less-used models (average arrival rate < 1.16) are in
the tail (marked in green). (b) Request rate fluctuation for a top
model (270B, TP=8) on a cluster with over 2K GPUs. Request bursts
may exceed reserved resources (marked in orange).
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(b) Token-level auto-scaling (ours).

Figure 2. Different auto-scaling granularities for sharing one GPU
instance between three models.

Previous work on GPU pooling falls under two main ap-
proaches:multiplexing and auto-scaling. Themultiplexing ap-
proach places multiple model instances (optionally sharded
with model parallelism [41]) on each GPU to allow tempo-
ral [28] or spatial [20] sharing of resources. However, it is
hard-limited to supporting at most two to three models per
GPU due to inadequate GPU memory capacity (e.g., each 80-
GBGPU accommodates only up to two 14Bmodels with FP16
weights). It is far from our target pooling effectiveness. Mean-
while, the auto-scaling approach (e.g., ServerlessLLM [21],
BlitzScale [49] and ParaServe [31] for serverless inference)
shows the potential for more aggressive GPU pooling by
adapting model placement over time and scaling model in-
stances from off-device storage (e.g., host memory, SSDs),
thus overcoming the stringent GPU memory limitation.
However, as per our analysis in §3.1, the effectiveness of

existing auto-scaling solutions remains bounded by the ratio
of active models in the workload (i.e., models with at least
one active request to be served). Unfortunately, the long
execution time of LLM requests renders a large portion of
models active, even when the model invocations are sporadic
(Theorem 3.1). For example, at a total arrival rate of only 3.7
requests per second, 46.55 out of 100 models are active on
average. This reveals a fundamental drawback of existing
solutions: they scale at the request granularity. As illustrated
in Figure 2(a), when all GPU instances are occupied by active
models, the execution of new model requests must wait

for the scaling down of currently active models, which is
executed after the long request service time. Reserving fewer
GPU instances than the number of active models thus results
in substantial head-of-line (HOL) blocking and severe SLO
violations for the waiting models, restricting the pooling
effectiveness to still 100/46.55 < 3 models per GPU.
To overcome the aforementioned limits on GPU pooling

effectiveness, this paper proposes a token-level auto-scaling
solution, Aegaeon. Figure 2(b) demonstrates our approach.
In essence, by preemptively scaling down active models and
scaling up pending models for newly arrived requests in an
SLO-aware manner, Aegaeon alleviates HOL blocking and
achieves truly effective GPU pooling, supporting up to seven
models per GPU (§7). To practically build this solution, we
further address two technical challenges.
Challenge #1: Token-level scheduling. Conducting auto-
scaling at the token level necessitates scheduling policies that
tackle a complex interaction between token-level execution
times and auto-scaling latencies, all while satisfying SLO
requirements. Optimally solving this problem is intractable
in real time, while heuristics can hardly balance the diverse
per-token SLOs and the penalties caused by auto-scaling
latencies for making wrong decisions.

We propose a token-level scheduler to jointly schedule the
processing of requests and auto-scaling decisions. Given that
the first token and subsequent tokens have vastly different
execution times and SLOs, the prefill and decoding phases are
scheduled and served in disaggregation [52]. For the prefill
phase, a grouped first-come-first-serve (FCFS) scheduler is
proposed to minimize the Time-To-First-Token (TTFT) for
each request. For the decoding phase, a weighted round-
robin scheduler minimizes the number of tokens violating
the Time-Between-Tokens (TBT) SLOs.
Challenge #2: Auto-scaling cost optimization. While
auto-scaling acceleration has been widely studied in the lit-
erature [21, 49], in our comprehensive investigations, none of
the existing solutions can support token-level auto-scaling,
which involves a sequence of critical procedures (i.e., KV
cache swap-out, garbage collection, engine reinitialization,
KV cache swap-in, and others) beyond existing considera-
tions. This sequence can take tens of seconds if left unopti-
mized, making the token-level scheme impractical.
Aegaeon presents a series of in-depth optimizations to

achieve efficient token-level auto-scaling. First, we perform
a comprehensive study of the initialization steps of inference
engines, identifying and leveraging opportunities for com-
ponent reuse in engine reinitialization. Second, we conduct
explicit memory management for GPU and host memory,
accelerating model loading via caching and prefetching, and
eliminating fragmentation and garbage collection overhead.
Third, we implement a fine-grained synchronization mecha-
nism for transferring KV cache, allowing for better execution
overlapping and decoupling.
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Evaluation.We conduct thorough experiments to validate
the performance of Aegaeon, showing that it sustains 2–2.5×
higher request arrival rates or 1.5–9× more goodput com-
pared to ServerlessLLM [21] and MuxServe [20], supporting
up to seven models per GPU. Aegaeon has been beta de-
ployed in Alibaba Cloud Model Studio for over three months,
currently serving tens of models that range from 1.8B to
72B parameters. It reduces the number of GPUs required for
serving these models from 1,192 to 213, highlighting an 82%
GPU resource saving.

In summary, we make the following contributions:
• Aegaeon is the first work to reveal the excessive costs
associated with serving concurrent LLM workloads on
the market, supported by comprehensive statistics and
analysis in a production environment (§3).
• Aegaeon is the first model-serving solution for multiple
LLMs that performs token-level auto-scaling, with distinct
scheduling strategies for the prefill and decoding phases
to optimize SLO attainment at the token level (§4).
• Aegaeon is the first study to holistically optimize the pre-
emptive auto-scaling process for LLM inference, reducing
97% of overhead through full-stack optimizations (§5).
• The effectiveness of Aegaeon is validated through real-
world production deployment, demonstrating its ability to
significantly reduce OPEX (§7).

2 Background
In this section, we first describe the basic inference process
of an LLM and its requirements for service quality. Next, we
present the defining characteristics of concurrent inference
workloads, which are now common in production settings.
Finally, we review the literature on existing LLM serving sys-
tems, focusing on their limitations for concurrently serving
multiple LLMs on the market.

2.1 Basic LLM Inference
The inference workflow of an LLM request consists of two
types of token generation jobs: prefill and decoding. In the
prefill phase, a forward pass of the model processes all tokens
in the user prompt, generating one output token. Following
this, each step in the decoding phase processes only the new
token generated in the previous step. This auto-regressive
process continues until the output ends with an EOS token or
reaches a predefined maximum length. During both phases,
intermediate states (referred to as the KV cache [25]) are
generated for every token in each transformer layer, which
are saved and reused in subsequent decoding steps.
SLO definition. Due to their distinct computational charac-
teristics [52], prefill and decoding jobs exhibit diverse execu-
tion times and commonly require two basic metrics for defin-
ing their overall service-level objectives (SLOs): (𝑖) TTFT,
which measures the latency to produce the initial output to-
ken, and (𝑖𝑖) TBT, which gauges the latency to generate each

Request
Arrival

···

Deadline Met Deadline Missed

Token Deadline Token Generation

TTFT
Deadline

TBT
Deadline

Buffered
Output

Figure 3. Overall token generation process of a request. SLO at-
tainment is defined as the percentage of token generation times
that meet their deadlines, i.e., the proportion of the green area.

subsequent token. The step-by-step nature of LLM inference
results in an indirect mapping between the measured metrics
and the perceived user experience. For example, suppose a
significant delay occurs when generating a sequence of to-
kens, as illustrated in Figure 3. A delay before the first token
(i.e., a large TTFT) leads to a noticeable stall for the user,
whereas a delay before the last token (i.e., a single large TBT)
can be masked by buffering the output of previous tokens.

This paper aligns with the evolving perspective in recent
works [13, 29] and quantifies SLOs as the ability to meet
generation deadlines (i.e., the target TTFT and TBT metrics)
on a per-token basis. Specifically, we define SLO attainment
as the percentage of token generation times that meet their
deadlines, which better reflects the end-user experience.

2.2 Concurrent LLM Serving on the Market
Given the popularity and rapid advancement of LLMs, model
markets now host a wide variety of models, giving rise to
concurrent inference requests for different models. In our
production setting, requests made to the same model are
treated as oneworkload, sharing identical SLOs. Each request
arrives with a prompt paired with its target model and is then
processed by GPU instances running dedicated inference
engines [25, 52] for the corresponding models.
Model invocations are unpredictable. We observe signif-
icant sporadic patterns in terms of model invocations within
our concurrent LLM serving workloads. To begin with, as
shown in Figure 1(a), our workloads are heavily skewed, with
94.1% of the models receiving only 1.35% of the requests. As
a result, a remarkable proportion (up to 17.7%) of our GPU in-
stances constantly receive sporadic “cold” model invocations,
causing significant resource wastage.

Furthermore, as shown in Figure 1(b), serving “hot” mod-
els is also burdened by short-term bursty workloads [50].
These bursts overload the reserved resources for “hot” mod-
els, while serving them with extra dedicated GPU instances
causes similar resource wastage.
Beyond single-model serving. Prior studies have proposed
various optimizations for single-model serving [14, 23, 25,
34, 47, 52], many of which are deployed in our production en-
vironment, delivering decent throughput (e.g., up to several
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requests per second (RPS) per GPU). On the one hand, this
highlights the substantial resource waste in concurrent LLM
serving, which is currently achieving less than 0.1 RPS per
GPU. On the other hand, directly applying these solutions is
inadequate. Since the sporadic invocations cannot saturate
any dedicated GPU with one model, we are incentivized to
conduct effective GPU pooling, sharing each GPU between
as many models as possible without violating SLOs.

2.3 Current Solutions
To this end, existing solutions for GPU pooling fall under
two main approaches: multiplexing and auto-scaling.
Multiplexing. This approach requires placing multiple mod-
els (optionally sharded throughmodel parallelism [41] across
devices) on each GPU. Resource sharing is then achieved
through temporal [28] or spatial [20] multiplexing (e.g., via
NVIDIA MPS [8]). The effectiveness of multiplexing for GPU
pooling is hard-limited by GPU memory capacity; e.g., at
most two 14B models with FP16 weights fit on an NVIDIA
A100 GPU with 80GB VRAM. In fact, model parameters in
our workloads average 25.1 GB, meaning that multiplexing
typically supports only two to three models per GPU. This
level of pooling still underutilizes GPU instances.
Auto-scaling.Meanwhile, auto-scaling [21, 31, 35, 49] adapts
the model placement on GPU instances on demand, scaling
down unused models and scaling up requested models by
loading weights from host memory or SSDs. While this ap-
proach is far less constrained by memory limitations (tens of
models can be stored in off-device storage), its effectiveness
is not fully realized due to the coarse granularity of the auto-
scaling actions, i.e., scaling only at the end of requests. In
practice, existing auto-scaling solutions underperform due
to head-of-line (HOL) blocking in aggressive GPU pooling
scenarios, as we elaborate next.

3 Aegaeon Overview
Given a list of 𝑀 models to be served, our goal is to mini-
mize the number of GPU instances 𝑁 required to meet the
SLOs for all models through auto-scaling, thus maximizing
resource usage. The strawman strategy, i.e., no auto-scaling
at all, reserves at least one dedicated instance for each model,
leading to 𝑁 = 𝑂 (𝑀).

3.1 Tradeoff Analysis
To improve upon this, existing auto-scaling solutions allow
for switching the served model on a single GPU instance.
They enable more efficient resource usage by making use of
the idle time on dedicated instances.
Active model count. The effectiveness of these solutions is
captured by the statistic𝑚—the active model count—which
quantifies the number of models that have at least one re-
quest being served at a given time. By utilizing idle GPU
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Figure 4. Active model count over time (𝑀 = 100, 𝜆 = 0.037,
𝑇 = 16.79s). The estimated value is E[𝑚] = 46.55.

time, the system can reliably reserve GPUs for only the ac-
tive models, leading to 𝑁 = 𝑂 (𝑚). The following theorem
characterizes the active model count𝑚 as a random variable:

Theorem 3.1. Suppose the request arrival rate for each model
follows a Poisson process with rate 𝜆, and the average time to
serve a request is 𝑇 . The expected active model count E[𝑚] is
given by:

E[𝑚] = 𝑀 · (1 − 𝑒−𝜆𝑇 ) (1)
Consider the real-world scenario shown in the left part of

Figure 1, where the arrival rate 𝜆 = 0.037 and the average
service time 𝑇 = 16.79s. The expected active model count
is E[𝑚] = 0.4655 · 𝑀 . Figure 4 simulates the active model
count over time with 𝑀 = 100, confirming that the value
fluctuates around E[𝑚] = 46.55. The proof of Theorem 3.1
is provided in Appendix A.1.
This analysis reveals a major drawback of existing auto-

scaling solutions: due to the typically long service time of
LLM requests, the expected active model count E[𝑚] can
be large even when the aggregate arrival rate 𝑀𝜆 is low.
As a result, the achieved pooling efficiency remains on par
with multiplexing: serving𝑀𝜆 = 3.7 requests per second in
total still demands E[𝑚] = 46.55 reserved GPU instances,
corresponding to merely 100/46.55 < 3 models per GPU.
Head-of-line blocking.What limits existing solutions from
achieving effective GPU pooling, in essence, is the fact that
they conduct scaling only at the request granularity. Fig-
ure 2(a) illustrates the strategy in existing systems when con-
currently serving three models on one GPU. Since the prefill
and decoding jobs of different models cannot be batched,
requests for models B and C must wait until the comple-
tion of preceding requests. This leads to severe head-of-line
(HOL) blocking, as the waiting time for fully executing other
LLM requests results in prohibitively long TTFT and SLO
violations for the waiting models.
Our approach. We propose a token-level auto-scaling ap-
proach (Figure 2(b)), Aegaeon, that overcomes the limits on
pooling efficiency found in current solutions. Our strategy
mitigates HOL blocking by preemptively scaling down active
models and scaling up pending models, thus better satisfying
request SLOs. With fine-grained execution control over mul-
tiple requests at the token level, Aegaeon pushes the number
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Figure 5. System overview of Aegaeon.

of reserved instances 𝑁 below E[𝑚], achieving resource ef-
ficiency closer to the single-model serving scenario.

3.2 Challenges
Despite its potential, efficiently implementing the token-level
approach presents two key challenges.
Challenge #1: Scheduling the auto-scaling. The inclu-
sion of token-level auto-scaling complicates an already large
decision space for scheduling requests from different models.
The scheduler must frequently determine the next batch of
generation jobs from many running requests and whether
to scale the models, all while considering the diverse exe-
cution times and deadlines of each token (§2.1) as well as
the auto-scaling overhead. While token-level scheduling has
been studied in single-model serving [44, 50], the scheduling
decision is even more critical in our setting for two reasons.
First, requests from different models cannot be batched to-
gether, resulting in a higher number of smaller batches to
be scheduled. Second, the overhead associated with auto-
scaling magnifies the penalties for incorrect decisions.
Challenge #2: Optimizing auto-scaling costs. Effective
GPU pooling requires performing token-level auto-scaling as
quickly as possible. However, existing optimizations for auto-
scaling speed [21, 31, 49] focus on “fresh” scale-ups, whereas
we face a more complex sequence of successive scale-downs
and scale-ups, which also involves the management of in-
termediate KV cache. If left unoptimized, scaling down and
then scaling up a vLLM [25] instance with a 13B model takes
tens of seconds, risks causing memory fragmentation, and
requires blocking synchronization. This level of overhead
would render the token-level approach impractical.

3.3 System Overview
To address these challenges, we build Aegaeon, a system that
implements the token-level auto-scaling approach to achieve
high GPU utilization for serving concurrent LLM workloads.
Figure 5 shows the architecture of Aegaeon and illustrates
the process of serving multiple models.
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Figure 6. Exemplar token-level schedules on two GPUs. Prefill-
first scheduling (a) and decoding-first scheduling (b) both lead to
SLO violations. Disaggregated scheduling (c) separates prefill and
decoding jobs to enable balanced token generation.

To execute inference requests, Aegaeon first dispatches
them via the proxy layer, which synchronizes the request
metadata with the underlying serving instances via a shared-
memory mechanism (e.g., Redis [11]) to ensure load balanc-
ing and fault tolerance. Aegaeon can dispatch requests for
different models to the same instance, as shown by ①, ②,
and ⑥ in Figure 5. Each instance in Aegaeon contains one
or more GPUs hosted on a physical node, conducting either
prefill or decoding jobs (requiring ③, ⑤, and ⑧ in Figure 5).
Once requests are sent to an instance, Aegaeon schedules
their execution, guided by a token-level scheduler (§4). This
capability makes preemptive auto-scaling a critical opera-
tion, as indicated by ④, ⑦, and ⑨. To accelerate this process,
Aegaeon employs full-stack optimizations (details in §5).

4 Token-Level Scheduling
To balance the auto-scaling overhead and request SLOs at the
token level, Aegaeon schedules both the request execution
and the auto-scaling decisions in unison to maximize request
SLO attainment. Essentially, given a list of requests, a set of
GPU instances, and the target TTFT and TBT, Aegaeon picks
the next batch of token generation jobs (i.e., prefill or one
step of decoding) for each GPU instance, optionally initiat-
ing preemptive auto-scaling if any scheduled job requires a
different model than the currently active one.
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Algorithm 1 Grouped Prefill-Phase Scheduling
Input: Prefill instances I𝑃 .
1: ⊲ Event: On arrival of request 𝑟 :
2: min_load←∞
3: 𝑖∗ ← I𝑃 [0]
4: for all instance 𝑖 in I𝑃 do
5: for all group 𝑔 in 𝑖 .job_queue do
6: if 𝑔.model = 𝑟 .model and 𝑔.size < MAX_GPSIZE then
7: Add 𝑟 to group 𝑔 # Prioritize existing groups
8: return
9: load← Total time to execute all groups in 𝑖′

10: if load < min_load then
11: min_load← load # Pick the least loaded instance
12: 𝑖∗ ← 𝑖

13: Make a group with 𝑟 and append to 𝑖∗ .job_queue
14: ⊲ Event: On selecting a batch for prefill instance 𝑖𝑃 execution:
15: Select one request from the front group of 𝑖𝑃 .job_queue

4.1 Disaggregating Prefill and Decoding
As discussed in §3.2, scheduling at the token level is challeng-
ing due to the auto-scaling overhead. Particularly, we find
that unified scheduling policies—those that schedule both
prefill and decoding jobs on the same GPU instance—are ei-
ther intractable or inefficient for Aegaeon. On the one hand,
optimally formulating and solving the problem as an integer
linear programming (ILP) problem is infeasible in real time
due to its complexity [50]. On the other hand, heuristics that
prioritize one job over the other lead to unpredictable perfor-
mance: prefill-first scheduling tends to harm TBTwhen there
are bursts in request arrivals (Figure 6(a)), while decoding-
first scheduling compromises TTFTwhen request lengths are
exceedingly long (Figure 6(b)). Both phenomena are preva-
lent in real-world inference workloads [43, 45], making uni-
fied scheduling highly workload-sensitive.

Existing work [34, 52] has shown that disaggregating the
prefill and decoding phases is effective in addressing interfer-
ence between these jobs in single-model serving. Following a
similar philosophy, we adopt disaggregated scheduling in Ae-
gaeon as illustrated in Figure 6(c), which achieves balanced
scheduling despite the bursty prefill jobs and long decoding
jobs. Specifically, Aegaeon splits its GPU pool into two parti-
tions: one dedicated to prefill and the other to decoding. At
request arrival, Aegaeon first schedules the prefill execution
using instances from the prefill partition (prefill instances)
and then schedules subsequent decoding jobs using instances
from the decoding partition (decoding instances).

4.2 Prefill-Phase Scheduling
For the prefill phase, we observe that the auto-scaling over-
head is typically comparable to executing a batch of prefill
jobs. For example, scaling up a 13B model (assuming the
FP16/BF16 data type) via PCIe 4.0 takes at least 26GB/32GBps =
0.8125 seconds, while the time for a prefill batch regularly
falls below one second on contemporary GPUs. As such,
frequent auto-scaling would significantly increase TTFT.

Algorithm 2 Batched Decoding-Phase Scheduling
Input: Decoding instances I𝐷 .
1: ⊲ Event: On arrival of request 𝑟 :
2: Dispatch as in Algorithm 1, deriving max batch sizes from the KV cache

capacity on GPU, using work list sizes for load
3: ⊲ Event: Always on decoding instance 𝑖𝐷 :
4: while True do
5: # Start of a round
6: Reorder 𝑖𝐷 .work_list to group batches with the same model
7: Assign time quota 𝑞𝑖 to the 𝑖-th batch in 𝑖𝐷 .work_list
8: n_turn← Number of batches in 𝑖𝐷 .work_list
9: for all index 𝑘 in 1 ∼ n_turn do
10: # Start of a turn
11: Decode the 𝑖-th batch in 𝑖𝐷 .work_list for 𝑞𝑖 seconds

To mitigate this issue, Aegaeon adopts a grouped schedul-
ing policy for prefill jobs, as outlined in Algorithm 1. The key
idea is to group requests for the same model to minimize ex-
cessive preemptive auto-scaling while maintaining a general
FCFS order to avoid starvation. Each prefill instance main-
tains a job queue comprising grouped jobs, where each group
contains nomore thanMAX_GPSIZE jobs of the samemodel.
We set MAX_GPSIZE to 8 in our implementation through a
simple grid search—larger values behave identically because
groups seldom grow past that size, and smaller values can
still cause excessive scaling under high load.

Upon receiving a prefill job, Aegaeon prioritizes adding the
job to an existing group if it fits (lines 6–8). Otherwise, a new
group is created and appended to the least loaded job queue
(lines 10–13), where the load of a job queue is defined as the
total time required to finish all pending groups, including
execution and auto-scaling time. The estimation for both
values is described in Appendix A.2, and a detailed analysis
of auto-scaling time is provided in §5. Jobs are then executed
from the front of the job queue (line 15). Note that we limit
the batch size on prefill instances to one. This is because
the execution time of a prefill batch scales approximately
linearly with the number of prefilled tokens, and smaller
batches reduce overall waiting time without significantly
impacting throughput. Moreoever, this helps eagerly send
requests to the decoding phase and reduce TBT. In addition,
the checks on line 6 use the accumulative size for group 𝑔
(i.e., executing a request on line 15 does not decrease 𝑔.size),
ensuring that we do not deviate from FCFS too much.

4.3 Decoding-Phase Scheduling
The scheduling of decoding jobs in Aegaeon is based on
a unique property of LLM inference: request execution is
iterative, and the stream of output tokens can be buffered
(as discussed in §2.1) to hide user-perceivable stalls. Let 𝑡
denote the time needed for executing a decoding step and 𝑑
denote its deadline (i.e., the target TBT). Intuitively, for every
consecutive 𝑛 decoded steps, the request can tolerate a delay
of 𝑛(𝑑−𝑡) without risking SLO violations. Since 𝑡 is typically
small (e.g., tens of milliseconds) and 𝑑 is relatively loose
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(e.g., 100 ms for a chatbot application), Aegaeon exploits the
earned slack time for auto-scaling and serving other requests.

Aegaeon schedules decoding jobs using a weighted round-
robin scheme, as described in Algorithm 2. Each decoding
instance maintains a rotating work list of decoding batches,
each containing requests for the same model and a time
quota. Newly prefilled requests are dispatched with a similar
mechanism as in Algorithm 1, but the load is calculated with
work list sizes, and batch size limits are derived from the KV
cache capacity on the GPU (line 2). Execution of the work
list is organized in rounds. At the beginning of each round
(lines 5–8), Aegaeon assigns a time quota 𝑞𝑖 to the 𝑖-th batch
according to the following formula:

𝑞𝑖 =
𝑐

𝑛𝑖 · (𝛼 − Σ𝑘 1
𝑛𝑘
)

(2)

where 𝑛𝑘 = 𝑑/𝑡𝑘 , 𝑐 is the sum of auto-scaling overhead for
all models in the work list, and

𝛼 = max( 𝑐

min𝑘 (𝑛𝑘 ) · QMAX
+ Σ𝑘

1
𝑛𝑘

, 0.5) (3)

is the reciprocal of the estimated SLO attainment for the
round. QMAX represents the maximum quota and is empiri-
cally set to 4 seconds. We find Aegaeon to be robust under
alternative settings. Then, Aegaeon reorders the list so that
batches sharing the same model (which may occur if a single
batch requires more KV cache space than is available on the
GPU) are placed adjacently. Lastly, the batches are decoded
in a round-robin fashion (lines 9–11), with batch 𝑖 being
decoded for exactly 𝑞𝑖 time (referred to as a “turn").
The intuition behind these equations is straightforward:

Equation (2) assigns quota to each batch to allow for a buffered
window that equals 1/𝛼 times the total round time. In other
words, batches in the round will consistently achieve an SLO
attainment of min(1, 1/𝛼), and thus we want to minimize 𝛼 .
However, an extremely small 𝛼 is not ideal either, as it leads
to large quota 𝑞𝑖 and causes longer stalls for new decode
batches. Thus, we require 𝛼 ≥ 0.5 in Equation (3) to guaran-
tee a minimum duration for each turn, where the 0.5 bound
allows Aegaeon to pick smaller, more flexible 𝑞𝑖 when SLOs
are confidently satisfied ( 1

𝛼
= 200%).

To see these equations in action, assume the work list
contains three batches, 𝑑 = 0.1, 𝑡𝑖 = 0.025, 𝑐 = 3, and QMAX =

3, all in seconds. Then, 𝑛𝑖 = 4, 𝛼 = 1/4 + 3/4 = 1, and

𝑞𝑖 =
3

4· (1−3/4) = 3. Executing each batch for 3 seconds leads
to 120 tokens decoded, and the round finishes in 12 seconds.
Since outputting 120 tokens at an interval of 0.1 seconds also
takes exactly 12 seconds, all batches will always meet their
token-level deadlines with this schedule.

5 Efficient Preemptive Auto-Scaling
While the token-level scheduler tackles the decision-making
for preemptive auto-scaling, it remains essential for Aegaeon
to actually conduct it with minimal costs. The left side of
Figure 7 characterizes the default process of preemptive auto-
scaling as a lengthy sequence of multiple stages (𝑇0). First,
after the last inference step, the old instance must save all its
KV cache (e.g., offloading it to host memory) due to VRAM re-
strictions. Next, the new instance is spun up, reclaiming the
allocated VRAM with a pass of garbage collection and then
reinitializing the inference engine with new configurations.
Finally, the KV cache for the new jobs1 is brought back before
inference can resume. As mentioned in §3.2, existing solu-
tions only focus on model-loading acceleration without con-
sidering other stages in the entire preemptive auto-scaling
procedure, leading to limited performance gains.

Aegaeon presents a set of techniques for holistically opti-
mizing each of these stages, which we organize into three
aspects: eliminating the engine (re)initialization overhead
(§5.1), reducing memory inefficiencies (§5.2), and decoupling
KV cache transfer with fine-grained synchronization (§5.3).

5.1 (Re)initialization Breakdown and Component
Reuse

As shown on the left side of Figure 7, a remarkable portion of
the scale-up sequence is spent (re)initializing the inference
engine. Indeed, existing LLM inference engines are complex
systems with numerous components, typically optimized for
inference performance rather than initialization speed. The
middle part of Figure 7 shows the composition of a typical
LLM inference engine (vLLM [25]), revealing several key
factors that contribute to this overhead:
• Distributed executor. Inference engines support model
parallelism via distributed executors (e.g., Ray [32] and
NCCL [9]), whose initialization takes tens of seconds.

1Only for decoding instances.
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Table 1. The shape and size of KV cache for different models in
vLLM. Listed values pertain to a single token in 16-bit precision.

Model KV Cache Shape KV Cache Size

Qwen-7B [38] (32, 2, 32, 128) 512 KB
InternLM2.5-7B-chat [26] (32, 2, 8, 128) 128 KB
LLaMA-13B [42] (40, 2, 40, 128) 800 KB
Qwen-72B [38] (80, 2, 64, 128) 2560 KB
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Figure 8. Preemptive scaling with optimizations in §5.1 and §5.2.
(a) w/ component reuse; (b) also w/ explicit memory management.

• Profiling and optimization. Some engines perform pro-
filing and optimization (e.g., deciding the allocation size
for the KV cache), which can take several seconds.
• Model weights loading. Loading model weights (even
when cached in hostmemory) ontoGPUs is time-consuming,
and latency increases with model size. Although modern
PCIe buses offer decent theoretical bandwidth (e.g., 32
GB/s for PCIe 4.0), inference engines often fail to fully
utilize this bandwidth. For example, loading a LLaMA-13B
model (with a TP degree of 2) via PCIe 4.0 takes around
4.6 seconds in our microbenchmark (right side of Figure 7),
achieving only 2.83 GB/s bandwidth.
• KV cache initialization. Inference engines usually pin
CPU memory specifically for KV cache storage to achieve
better performance. However, pinning memory pages in-
troduces several seconds of initialization overhead.
• Other components. Initialization of other components,
such as schedulers, may also contribute to the overhead.
In total, an unoptimized initialization process can take

up to 26.9 seconds for a 13B model. Notably, much of this
latency is not related to loading model weights, requiring
further optimizations unexplored by existing solutions.
Component reuse. We observe that the initialization of
these components, while time-consuming, can be safely
reused across the serving of different models. As such, Ae-
gaeon initializes the inference engine and workers only once
per instance, caching every component except for the model
weights and the KV cache, both of which require model-
specific handling. Additionally, Aegaeon performs relevant
profiling (e.g., for KV cache size) and caches tokenizers be-
forehand. Finally, Aegaeon leverages a pre-allocated memory
pool for storing the KV cache in host memory (detailed in
§5.2), eliminating the need for pinning memory pages during
auto-scaling. In total, component reuse reduces the scale-
up overhead from 𝑇0 (left of Figure 7) to 𝑇1 in Figure 8(a),
removing over 80% of the auto-scaling latency.
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Figure 9. Explicitly managed memory in Aegaeon, with exemplar
memory sizes in brackets. Relevant steps for scaling up a model
and operations on the unified KV cache are also illustrated.

5.2 Explicit Memory Management
Another notable inefficiency unique to preemptive auto-
scaling is memory fragmentation in both device and host
memory (i.e., VRAM and DRAM). On the GPU, the caching
allocators in tensor libraries (e.g., PyTorch [33]) often require
proactive defragmentation (i.e., calling gc.collect() and
then torch.cuda.empty_cache()) to avoid out-of-memory
errors when initializing LLM weights back-to-back on the
same GPU. As for host memory, the wastage comes from
storing the offloaded KV cache for the preempted requests,
which is complicated by the fact that the shape of the KV
cache (dependent on hyperparameters such as the number
of layers, attention heads, etc.) varies across different models,
as shown in Table 1. Naively pre-allocating fixed blocks for
all shapes would lead to significant fragmentation, especially
as we aim to support many models on the same GPU node.
Memory fragmentation poses two critical obstacles to

further optimizing preemptive auto-scaling in Figure 8(a):
(𝑖) VRAM fragmentation, as mentioned, demands a time-
consuming garbage collection stage (several seconds); (𝑖𝑖)
DRAM fragmentation hinders the optimization of model-
loading speed, which also uses host memory [21] as cache
and page-locked staging buffers for model weights. Memory
pressure in DRAM can lead to poor caching efficiency and
increased auto-scaling time.

Aegaeon performs explicit memory management for both
VRAMandDRAM tominimize fragmentation. Figure 9 demon-
strates our approach. In summary, the following optimiza-
tions (on top of component reuse) bring down the auto-
scaling overhead to 𝑇2, as shown in Figure 8(b).
Self-managed VRAM buffer. To reduce VRAM fragmen-
tation, we opt for completely self-managed allocations for
both model weights and KV cache on the GPU. At startup,
Aegaeon requests all the necessary VRAM for weights and
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KV cache as a self-managed buffer in one allocation, leaving
around 10% free memory for tensor libraries to manage acti-
vations and other intermediate results. This buffer operates
with bump allocation; i.e., allocations are made consecutively
by bumping up a pointer, and deallocations can be done in-
stantly by simply resetting that pointer. During each model
scale-up, Aegaeon monkey-patches (step 1 in Figure 9) the
relevant Python classes with custom wrapper classes (e.g.,
overriding the torch.nn.Parameter class after module im-
port), which are backed by allocations from the self-managed
buffer (step 2). Consequently, Aegaeon bypasses the tensor
library’s allocation mechanism and avoids the need for in-
voking garbage collection.
Quick model loading. Aegaeon accelerates model loading
by caching2 the raw tensor chunks from model checkpoints
in a shared host memory region, called the Model Cache.
Moreover, each GPU is associated with a dedicated page-
locked Stage Buffer for staging memory copies between the
device and the host. For the ideal scenario where the scaled-
up model is cached in host memory, Aegaeon directly copies
the weights from the Model Cache onto GPUs via the Stage
Buffer in a multi-threaded, chunked, and pipelined manner
(step 3.a in Figure 9), achieving loading times comparable
to state-of-the-art solutions [21, 31] (under one second, as
shown in the right of Figure 7).

In practice, Aegaeon further reduces this overhead by op-
tionally prefetching the next required model in a separate
CUDA stream (see also Figure 8(b)), guided by the token-
level schedule. If sufficient VRAM is available, the prefetched
model is allocated right after the running model in the self-
managed buffer, and moved to the start of the buffer during
the actual scale-up with a cheap on-device copy (step 3.b in
Figure 9). Note that once this copy finishes, Aegaeon can re-
sume the scale-up normally and may even start prefetching
the next model if possible. Prefetching is particularly effec-
tive for decoding instances: since the time slice for each turn
often completely hides the prefetching overhead, Aegaeon
can achieve near-instant model loading.
Unified KV cache. To address memory fragmentation when
storing KV cache of several different shapes, Aegaeon draws
from classical memory management techniques and adopts
slab allocation to build unified KV caches for every possible
shape. Every KV cache region (i.e., in VRAM or DRAM)
is divided into fixed-size chunks, called slabs. Each slab is
assigned to a shape, serving as a pool of KV cache blocks
for that specific shape. As illustrated in the bottom half of
Figure 9, upon allocation, Aegaeon first uses free blocks
from existing slabs of the same shape. If no free blocks are
available, Aegaeon acquires new slabs for that shape. Upon
deallocation, Aegaeon releases blocks back to their respective
slabs and reclaims slabs that contain no occupied blocks.

2Otherwise, the model is fetched from a remote registry.
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This method strikes a balance between management over-
head and memory fragmentation, customizable with the slab
size. As demonstrated in §7.3, slab allocation leads to efficient
cache memory utilization in real-world workloads.

5.3 Fine-Grained KV Cache Synchronization
To push the preemptive auto-scaling speed to the extreme, we
need to further overlap the KV cache transfer stages in Fig-
ure 8(b) (i.e.,moving KV cache in and out of device memory),
assigning them to separate CUDA streams for asynchronous
execution. However, doing so naively is prone to data races
because of the following inherent data dependencies:
❶ Inference requires the KV cache to be on GPUs.
❷ A new transfer requires the source blocks (as in the unified

KV cache) to finish their last transfer.
❸ A new transfer requires the target blocks to be free from

any past transfers.
The upper right side of Figure 10 illustrates a complex

scenario involving all three dependencies, where a decoding
instance demands the KV cache for a batch (𝑅1, 𝑅2, and 𝑅3)
that is still being offloaded by a prefill instance. As indicated
by the two blue barriers, decoding for 𝑅1 cannot begin before
its KV cache is fully swapped in (rule ❶), and the swapping-
in cannot begin before the prefill instance finishes swapping
out first (rule ❷). Further, when choosing the target blocks
for swapping out to the unified CPU cache, we must avoid
those that are still accessed by ongoing transfers (rule❸). For
example, assume that the request 𝑅𝑦 has been swapped to
another decoding instance, eventually freeing up its blocks
on the CPU. However, its blocks are still avoided when allo-
cating for 𝑅1 since the asynchronous transfer for 𝑅𝑦 may not
have completed yet. In all cases, any violation of the rules
can cause a data race and corrupt the inference results.

To properly overlap the KV cache transfers while respect-
ing these data dependencies, Aegaeon implements fine-grained
synchronization for each transfer without choking the entire
data plane. This is achieved by individually tracking the state
of transfers usingCUDA events, which are API constructs that
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Table 2. CUDA event APIs used in Aegaeon.
API Description

cudaEventRecord(event, stream) Capture the current work in stream into event .
cudaEventQuery(event) Query the completion status of the work captured in event.
cudaStreamWaitEvent(stream, event) Make all future work submitted to stream wait for the work captured in event.
cudaIpcGetEventHandle(handle, event) Get a handle for event for interprocess access.
cudaIpcOpenEventHandle(event, handle) Reconstruct event from an interprocess handle.

can be shared across CUDA streams and enforce specific exe-
cution order withminimal synchronization overhead. Table 2
summarizes the various CUDA event APIs used in Aegaeon.
When initiating a KV cache transfer for a request, Aegaeon
records it (cudaEventRecord) as an event, which can then
be used to query the status of the transfer (cudaEventQuery)
or wait for its completion (cudaStreamWaitEvent). Events
are also passed between instances via interprocess commu-
nication (IPC) for synchronizing different instances.
Overlapping KV cache swap-in.We demonstrate the fine-
grained synchronization in action by walking through the
swap-in process for 𝑅1 in the running example in Figure 10.
First, the prefill instance creates the swap-out event (step
①) and launches a memory copy (step ②). Next, before try-
ing to swap in 𝑅1, the decoding instance first checks for
its transfer event, pausing the swap-in CUDA stream with
cudaStreamWaitEvent (step ③). After that, swap-in pro-
ceeds with the event creation and memory copy (steps ④
and ⑤). As for the actual inference, Aegaeon queries the sta-
tus of each request in the batch with cudaEventQuery (step
⑥) and starts decoding as soon as one of them (𝑅1 in this
case) is fully loaded (step ⑦). Note how the synchronization
affects only necessary streams, making it fine-grained and
efficient when applied to multiple instances.
Overlapping KV cache swap-out. Handling KV cache
swap-out is straightforward in Aegaeon thanks to the unified
GPU caches for different cache shapes (§5.2), which allows
the offloading of KV cache to be conceptually decoupled from
preemptive auto-scaling and thus fully overlapped (see the
left side of Figure 10). However, the aforementioned caveat re-
mains when choosing the target blocks due to rule ❸. In light
of this, Aegaeon collects the relevant CPU blocks and their
corresponding events in dedicated move lists, representing
unsafe sections of the CPU cache that are actively accessed
by memory copies. Allocations in the CPU cache neglect
blocks in the move lists, enforcing rule ❸. Meanwhile, a dae-
mon thread periodically queries (cudaEventQuery) events
in the move lists to reclaim the blocks once the transfers
complete (step ⑧). This design effectively removes the syn-
chronization for rule ❸ from the critical path of auto-scaling,
reducing the overall overhead.

In conclusion, our full-stack optimizations enable highly
efficient preemptive auto-scaling in Aegaeon, reducing la-
tency by up to 97% (from 𝑇0 in Figure 7 to 𝑇3 in Figure 10).

We verify in §7.3 that Aegaeon achieves sub-second scaling
speed with minimal KV cache block transfer overhead.

6 Implementation
Aegaeon is implemented as a distributed LLM serving system.
We implement the scheduler and scaling-efficient inference
engine in 5,700 lines of Python and CUDA/C++ code.
The control plane of Aegaeon is built on asyncio [6],

which ensures concurrency when orchestrating instances.
The data plane uses Ray [32] for data distribution. Aegaeon
uses vLLM [25] as the model execution backend to lever-
age its broad support for LLM architectures and modern
optimizations such as continuous batching [47], FlashAtten-
tion [18], and PagedAttention [25], etc.

7 Evaluation
We evaluate Aegaeon using realistic workloads with diverse
LLMs and application scenarios, showing that Aegaeon con-
sistently outperforms state-of-the-art systems across all se-
tups (§7.2). Additionally, we analyze the effectiveness of our
techniques (§7.3) and explore Aegaeon under alternative se-
tups (§7.4). We conclude by discussing our ongoing efforts
to deploy Aegaeon in production at Alibaba Cloud Model
(§7.5).

7.1 Experimental Setup

Testbed. Our testbed consists of two nodes with 16 GPUs in
total, where each node is equipped with eight NVIDIA H800
80GB GPUs connected via NVLINK, 2TB of DDR5 memory,
and 192 Intel Xeon Platinum 8469C CPUs.
Models. We adopt LLMs from several families, including
Qwen [38], Llama [42], InternLM [26], Yi [12], etc. We pri-
marily select models ranging from 6B to 14B parameters,
representing the majority of models on the market. §7.4 eval-
uates Aegaeon with larger models.
Datasets and workloads. We use ShareGPT [3] as the
main dataset. To represent the various applications sup-
ported by different LLMs, we create two alternative datasets,
ShareGPT-ix2 and ShareGPT-ox2, by scaling the input and
output lengths of ShareGPT by 2×, respectively. We follow
existing approaches to synthesize workloads with scaled
Poisson processes and random sampling from the datasets.
The deployment evaluation (§7.5) includes real workloads.
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Metrics. We report the SLO attainment as defined in §2.1,
setting TTFT to 10s and TBT to 100ms according to our
internal criterion for our online inference service, and also
in alignment with industrial practices [36]. We also include
results in alternative setups with stricter SLOs (down to 2s
TTFT and 20ms TBT).
Baselines.We compare Aegaeon against ServerlessLLM [21]
and MuxServe [20], two state-of-the-art solutions that adopt
auto-scaling or multiplexing for concurrent LLM serving.
In the absence of auto-scaling systems with more advanced
scheduling policies, we extend ServerlessLLM with request-
level Shortest Job First (SJF) scheduling based on oracle in-
formation for output lengths, referred to as ServerlessLLM+.

7.2 End-to-End Performance
This section compares the end-to-end performance of Ae-
gaeon against baselines across various workloads. For all
experiments, we assign six GPUs as prefill instances, and the
remaining ten GPUs as decoding instances.
Limitation of multiplexing. We first note that in every
setup, MuxServe’s placement optimizer refuses to place more
than two models on the same GPU due to insufficient GPU
memory capacity. As a result, MuxServe ends up serving at
most 32 models in all subfigures of Figure 11 and Figure 12,
marking its intrinsic limitation in achieving effective GPU
pooling. Meanwhile, the auto-scaling solutions can support
more models, which we examine next.
Load tolerance. Figure 11 presents the SLO attainment
of Aegaeon under varying numbers of models and request
arrival rates. In (a) and (b), we fix the RPS to 0.1 and 0.5

20 40 60
#Models

0

50

100

SL
O

 A
tta

in
m

en
t (

%
)

20 40 60
#Models

20 40 60
#Models

Aegaeon ServerlessLLM MuxServe

(a) 0.5× SLO (b) 0.3× SLO (c) 0.2× SLO
Figure 13. End-to-end SLO attainment under stricter SLOs.

and increase the number of models in the workloads. In (c),
we fix the number of models to 40 while increasing the per-
model RPS. Vertical lines indicate the maximum goodput
while meeting the 90% overall SLO requirement.

For RPS = 0.1, Aegaeon sustains 2× higher goodput com-
pared to ServerlessLLM. Notably, Aegaeon supports up to
70 models with only 10 decoding instances, effectively serv-
ing seven models per GPU. Meanwhile, ServerlessLLM suffers
from longwaiting times as requests to differentmodels queue
up, leading to low SLO attainment. While ServerlessLLM+
can mitigate this queuing with oracle-guided scheduling, its
performance inevitably degrades with more (active) mod-
els. These results validate that our token-level approach en-
ables significantly better resource utilization compared with
request-level solutions.
For RPS = 0.5, Aegaeon’s advantage is even more pro-

nounced, delivering a 2.5× higher request rate compared to
ServerlessLLM. This is to be expected, as HOL blocking be-
tween models is aggravated when arrival rates increase. We
also note that ServerlessLLM outperforms ServerlessLLM+
in this scenario, as prioritizing shorter requests is not neces-
sarily optimal when it leads to overly frequent auto-scaling,
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Figure 14. Request latency breakdown across
various setups.
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which limits the amount of useful work done by the system.
Lastly, the final subfigure shows that Aegaeon remains ef-
fective over a wide range of arrival rates (0.05 ∼ 0.75), while
the alternatives are quickly penalized by HOL blocking.
Dataset tolerance. Figure 12 further evaluates Aegaeon on
alternative datasets. For longer output lengths, Aegaeon de-
livers up to 2.5× higher goodput compared to ServerlessLLM,
highlighting a greater performance gain due to increased
HOL blocking from longer decoding times. All systems ex-
perience a slight performance drop when increasing input
lengths, while ServerlessLLM and ServerlessLLM+ suffer the
most due to not handling the exacerbated HOL blocking.
Serving stricter SLOs. Figure 13 shows the performance
of Aegaeon with stricter SLOs, where we keep the settings
from Figure 11(a) while reducing the target TTFT and TBT to
0.5×, 0.3×, and 0.2× (down to 2s and 20ms), respectively. In
the first two scenarios, Aegaeon remains advantageous over
both ServerlessLLM and MuxServe, supporting at least 50%
and 12.5% more models, respectively. Indeed, stricter SLOs
reduce slack time and limit GPU pooling opportunities, as
shown in the third (strictest) setup where Aegaeon no longer
outperforms MuxServe. Nonetheless, Aegaeon’s token-level
scheduling still delivers better performance in this case when
compared to request-level auto-scaling (i.e., ServerlessLLM).
In general, we observe that Aegaeon stays robust across

various SLO and dataset configurations, and is thus applica-
ble to awide range of workloads (e.g., chatbots and search rec-
ommendation, where 3s TTFT and 30ms TBT are adequate).
It is also common for cloud model service providers to de-
liberately set their SLOs looser than the inference costs [36]
to accommodate bursty traffic, under which Aegaeon per-
forms well. Meanwhile, the static multiplexing approach has
a place in extremely latency-sensitive scenarios (represented
by Figure 13(c)), as it involves no auto-scaling cost.

7.3 Effectiveness Breakdown
To understand Aegaeon’s effectiveness in more detail, we
conduct a latency breakdown of request execution. In Ae-
gaeon, each request first undergoes prefill waiting (in job
queues) and prefill execution, followed by a cycle of decoding
waiting (in work lists) and decoding execution until comple-
tion. The management of the KV cache may introduce extra
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Figure 17. Left: Serving on a 4×A10 GPU node, setting RPS = 0.1
and increasing the model count. Strict and Loose represent scaling
TBT to 0.5× and 2×, respectively. Right: Serving 72B models with
TP = 4 on an 8×H800 GPU node, setting the model count to 4 and
increasing RPS. Strict and Loose represent scaling TTFT.

latency overhead, which we capture as control overhead
(tracking indices in the unified cache, manipulating events)
and data overhead (explicit waiting time for KV cache trans-
fer). We report the ratio of the total time spent in each stage
and overhead term across all requests to characterize the
overall serving process.
Token-level scheduling. Figure 14 shows the latency break-
down of Aegaeon across various setups using the ShareGPT
dataset. The results highlight two observations: (𝑖) For the
prefill stage, the grouped FCFS scheduler maintains a con-
trolled prefill waiting time as the aggregate arrival rate in-
creases, indicating a good balance between serving and scal-
ing models. (𝑖𝑖) For the decoding stage, the batched round-
robin scheduler achieves concurrent serving of multiple mod-
els by distributing the decoding waiting time throughout the
entire request execution process without violating the SLO.
Auto-scaling speed. Figure 15 shows the CDF of auto-
scaling latencies on the left. For each tested model size, our
efficient auto-scaling achieves near-instantaneous scaling
in about 50% of cases, thanks to model prefetching. In cases
where the scaling overhead is not completely hidden, Ae-
gaeon conducts the preemptive scaling in under one second.
Further, as shown on the right side of Figure 15, Aegaeon’s
fine-grained KV cache synchronization achieves a small per-
request KV cache transfer overhead (less than one second in
total), demonstrating the effectiveness of our optimizations.
Memory fragmentation. Figure 16 illustrates the overall
and per-shape memory fragmentation during serving, cal-
culated as the ratio of unused memory to peak allocated
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Figure 18. GPU utilization before and after deploying Aegaeon, during a 70-hour period.

memory. Thanks to slab allocation, Aegaeon achieves pro-
portional memory utilization across different block shapes,
keeping overall fragmentation below 20%.

7.4 Sensitive Analysis
This section evaluates Aegaeon under alternative hardware
and model setups, verifying that our design generalizes to
different scenarios.
Lower-end hardware.While our token-level auto-scaling
approach is more effective with high-end GPUs (where un-
derutilization is more significant), Aegaeon can also be de-
ployed on less powerful GPU clusters. Figure 17 (left) shows
the SLO attainment of Aegaeon on a 4xA10 GPU node, mea-
sured while serving workloads of 6B and 7Bmodels using the
ShareGPT dataset. We assign two prefill and two decoding
instances and disable model prefetching because the GPU
memory on A10 GPUs (24 GB) cannot accommodate the
weights of two models. The results show that Aegaeon can
still maintain a decent SLO attainment on lower-end hard-
ware, enabling the concurrent serving of multiple models.
Additionally, we report the SLO attainment with TBT set
to 0.5× and 2×, referred to as Strict and Loose, respectively.
Aegaeon can sustain much better goodput in the Loose set-
ting, as the longer TBT tolerates more aggressive resource
sharing without violating SLOs.
Larger models. Aegaeon is capable of serving larger mod-
els via model parallelism. Figure 17 (right) shows the SLO
attainment of Aegaeon on an 8xH800 GPU node serving
72B models using the ShareGPT dataset. We set TP = 4, cor-
responding to two instances—one for prefill and one for
decoding—and also report the SLO attainment with scaled
TTFT. The results demonstrate that Aegaeon can effectively
serve larger models with similar performance gains.

7.5 Production Deployment

Setup. Aegaeon has been in beta deployment in Alibaba
Cloud Model Studio, a cutting-edge AI model service plat-
form that enables API access to a diverse model market-
place for cloud users and application developers. Our cur-
rent deployment runs in a cross-region cluster comprising
213 H20 GPUs, serving twenty-eight 1.8–7B models (TP=1)
and nineteen 32–72B models (TP=4). To support such mixed

parallelism, we host multiple Aegaeon deployments in the
cluster, one for each parallelism configuration. The arrival
rates vary from 0.01 to 1.13, averaging 0.037. These models
were originally served by a total of 1,192 H20 GPUs, high-
lighting an 82% resource saving. To ensure SLO compliance
and enhance user experience, our production deployment
typically utilizes redundant resources that exceed the mini-
mum requirements. This redundancy is necessary to handle
peak loads and provide fault tolerance. As a result, both the
baseline (without Aegaeon) and Aegaeon experience lower
resource utilization compared to the results presented in
previous sections. Nevertheless, the relative performance
improvement achieved with Aegaeon remains significant.
Performance gain. Figure 18 illustrates GPU utilization
before and after deploying Aegaeon during a 70-hour pe-
riod. “Before (low load)” and “Before (high load)” indicate
the GPU utilization of a single instance serving the models
with the lowest and highest load, respectively. In contrast,
“After (Aegaeon)” reflects the GPU utilization recorded post-
deployment of Aegaeon. The results demonstrate that Ae-
gaeon significantly enhances GPU utilization, increasing it
from an average of 13.3%∼33.9% to 48.1%. At the same time,
there are no observable SLO violations or service disruptions
during the monitored period. This improvement shows that
Aegaeon can effectively reduce GPU demand, thereby cut-
ting operational expenses. We have ongoing plans to expand
the deployment of Aegaeon to more instances and larger
clusters for further production use and cost savings.

8 Related Work

LLM inference systems. Significant efforts have beenmade
to optimize LLM inference systems, focusing on reducing
latency and increasing throughput. These optimizations in-
clude scheduling [14, 23, 44, 47], memory management [15,
25, 40], caching [4, 22, 51], and resource efficiency [28, 46],
among others. Aegaeon is both orthogonal and complemen-
tary to these works, as it specifically focuses on concurrently
serving LLMs on the market.
Serverless LLM serving with auto-scaling. The server-
less computing paradigm has been explored for DNN infer-
ence [1, 2, 17, 27, 39, 48, 50] aswell as LLM serving [21, 31, 49],
with a primary focus on optimizing the cold scale-up speed
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for inference services. However, none of these studies have
explored the token-level auto-scaling strategy, which is cru-
cial to Aegaeon’s effectiveness.
Modelmultiplexing. This approach achieves resource shar-
ing through temporal [28] or spatial [20] multiplexing. As
evaluated, Aegaeon outperforms these works in our target
scenario by supporting many more models per GPU. More-
over, Aegaeon can potentially incorporate multiplexing by
dynamically switching colocated models and orchestrating
their execution with our SLO-aware scheduling.
Disaggregating prefill and decoding. The idea of separat-
ing prefill and decoding stages in LLM inference has been
adopted in many recent studies [20, 24, 34, 36, 52]. Built upon
this concept, Aegaeon further investigates distinct schedul-
ing strategies for both stages to fully leverage GPUs in our
multi-model setting.
Leveraging secondary storage. One approach to manag-
ing the intense GPU memory demand in LLM serving is
offloading [7, 16, 40], where parts of the model weights and
KV cache are temporarily transferred to secondary storage,
such as CPU memory or disk. While there are studies that
utilize secondary storage to accelerate model loading [21, 35],
Aegaeon distinguishes itself from these solutions by acknowl-
edging and thoroughly optimizing the new inefficiencies in
the preemptive auto-scaling process.

9 Conclusion
This paper presents Aegaeon, a system that pools GPU re-
sources to concurrently serve numerous LLMs on the market.
By enabling highly efficient auto-scaling at the token level,
Aegaeon achieves 2∼2.5× higher request arrival rates or
1.5∼9× higher goodput compared to alternative solutions.
Aegaeon has been deployed in production serving tens of
models, reducing overall GPU usage by 82%.
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A Appendix
A.1 Active Model Analysis
TheoremA.1. Suppose the request arrival rate for eachmodel
follows a Poisson process with rate 𝜆, and the average time to
serve a request is 𝑇 . The expected active model count E[𝑚] is
given by:

E[𝑚] = 𝑀 · (1 − 𝑒−𝜆𝑇 )
Proof For each model 𝑖 (𝑖 = 1, 2, . . . , 𝑀), define the indicator
random variable 𝑋𝑖 as:

𝑋𝑖 =

{
1 if model 𝑖 is active at a given time,
0 otherwise.

The total number of active models at that time is𝑚 =
∑𝑀

𝑖=1𝑋𝑖 .
By linearity of expectation:

E[𝑚] =
𝑀∑︁
𝑖=1

E[𝑋𝑖 ]

Since request arrivals are independent, E[𝑋𝑖 ] = E[𝑋1] for
all 𝑖 . Therefore:

E[𝑚] = 𝑀 · E[𝑋1]
For a single model, 𝑋1 = 1 if there exists at least one request
in the interval [𝑡−𝑇, 𝑡]. The number of such requests follows
a Poisson distribution with parameter 𝜆𝑇 . Thus:

E[𝑋1] = P(𝑋1 = 1)
= 1 − P(no requests in [𝑡 −𝑇, 𝑡])
= 1 − 𝑒−𝜆𝑇

Substituting back:

E[𝑚] = 𝑀 ·
(
1 − 𝑒−𝜆𝑇

)
This concludes the proof.

A.2 Latency Estimation

Model switching latency. Given the efficient model swith-
cing optimizations in Aegaeon (§5), the switching latency
for a model is reduced to the time required to load the model
weights. As such, we simply estimate it with the model size
divided by the PCIe bandwidth, corrected with a profiled
constant factor 𝛽 (0.625 in our evalutation) to take account
of the PCIe inefficiencies:

𝑇switch =
Model Size

PCIe Bandwidth
· 𝛽 (4)

Token generation latency. To accurately estimate the exe-
cution time of a prefill or decoding step, we fit an analytical
model derived from the required computation and memory
access in each phase using profiled data, and predict the
token generation latency with the model. Our modeling is
adopted from existing works [52]:

𝑇prefill = 𝐶1 · (4𝑡ℎ2 + 2𝑡ℎ𝑚) +𝐶2 ·
3ℎ𝑡2
𝑏
+𝐶3 (5)

Table 1. Symbols used in the latency modeling.

Symbol Meaning

ℎ hidden size of the LLM
𝑚 FFN intermediate size
𝑙𝑘 input length of the 𝑘-th request in the batch
𝑡 number of tokens in the batch (𝑡 =

∑𝐵−1
𝑖=0 𝑙𝑖 )

𝑡2 squared sum of the input lengths (𝑡2 =
∑𝐵−1

𝑖=0 𝑙2
𝑖
)

𝑏 block size in the FlashAttention [18] kernel

𝑇decoding = 𝐶4 · (4ℎ2 + 2ℎ𝑚) +𝐶5 · 3ℎ𝑡 (6)
where 𝐶1, 𝐶2, 𝐶3, 𝐶4, and 𝐶5 are constants derived from pro-
filing and interpolation, and the other symbols are defined
in Table 1. Results show that this modeling achieves an R-
squared score of over 0.9 across all models in our evaluation.
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