
Meissa: Scalable Network Testing for
Programmable Data Planes

Naiqian Zheng

Peking University

Mengqi Liu

Alibaba Group

Ennan Zhai

Alibaba Group

Hongqiang Harry Liu

Alibaba Group

Yifan Li

Alibaba Group

Kaicheng Yang

Peking University

Xuanzhe Liu

Peking University

Xin Jin

Peking University

ABSTRACT
Ensuring the correctness of programmable data planes is important.

Testing offers comprehensive correctness checking, including de-

tecting both code bugs and non-code bugs. However, scalability is

a key challenge for testing production-scale data planes to achieve

high coverage. This paper presents Meissa, a scalable network test-

ing system for programmable data planes with full path coverage.

The core of Meissa is a domain-specific code summary technique

that simplifies the control flow graph of a data plane program

for scalable testing without sacrificing coverage. Code summary

decomposes a data plane program into individual pipelines, and

summarizes each pipeline with a succinct representation. We for-

mally prove that Meissa with code summary achieves 100% path
coverage. We use both open-source and production-scale data plane

programs to evaluate Meissa. The evaluation shows that (𝑖) Meissa

is able to test production-scale data plane programs that cannot

be supported by state-of-the-art efforts, and (𝑖𝑖) besides P4 code
bugs, Meissa is able to not only identify known non-code bugs,

but also detect previously-unknown non-code bugs. We also share

in this paper several real cases tested by Meissa in a production

programmable data plane.

CCS CONCEPTS
• Software and its engineering → Formal language defini-
tions; • Networks→ Programmable networks.

KEYWORDS
Formal Methods; Programmable Switches; P4 Testing

ACM Reference Format:
Naiqian Zheng, Mengqi Liu, Ennan Zhai, Hongqiang Harry Liu, Yifan Li,

Kaicheng Yang, Xuanzhe Liu, and Xin Jin. 2022. Meissa: Scalable Network

Testing for Programmable Data Planes. In ACM SIGCOMM 2022 Conference
(SIGCOMM ’22), August 22–26, 2022, Amsterdam, Netherlands. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3544216.3544247

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08. . . $15.00

https://doi.org/10.1145/3544216.3544247

1 INTRODUCTION
Bugs are detrimental to the performance, functionality, and reliabil-

ity of production networks. Data plane programs used in production

networks are highly complex. They compose many different match-

action tables to implement a variety of functionalities with complex

control flows. Despite the success of recent P4 program verification

efforts [27, 56, 76, 79], program verification is fundamentally lim-

ited to code bugs, and cannot detect non-code bugs caused by the

underlying target or toolchain.

Testing [19, 24, 53, 65, 72, 81, 87] offers comprehensive correct-

ness checking, including detecting both code bugs and non-code

bugs. The basic idea of testing is to generate input-output test cases

for a given implementation, and then execute the implementation

with each input to check if the actual output matches the desired

output. In the context of testing network data planes, input-output

test cases are generated in terms of input-output test packets. Input

packets are injected into the switch and the output packets are

captured to check whether they match the desired ones. Compared

to program verification, because testing executes compiled data

plane programs with test cases on actual hardware targets, it can

detect non-code bugs in addition to code bugs.

Scalability is, however, a key challenge when applying testing

to large-scale programs. To thoroughly test a program, it is desir-

able to generate a test case to cover every execution path. But the

number of possible paths grows exponentially with the size of a

program, which is widely known as the path explosion problem

in the literature of software testing [20, 51, 75, 83, 84]. With re-

gard to our problem, the advancements in research and practice

of programmable networks have significantly increased the com-

plexity of data plane programs. Modern data plane programs used

in production networks span multiple pipelines and even multi-

ple switches (§2), which are beyond the reach of standard testing

techniques. As a concrete example, a data plane program used in

our production networks has O(10
4
) lines of P4 code and O(10

197
)

possible paths. While existing work has applied testing to data

planes [18, 28, 61, 68], they are not scalable to large data plane

programs due to path explosion (§5).

In this paper, we present Meissa, a scalable network testing sys-

tem for programmable data planes with full path coverage. Meissa

scales to large multi-switch multi-pipeline data plane programs,

which enables network developers and operators to test complex

data plane programs used in real-world networks. More impor-

tantly, Meissa achieves so without sacrificing coverage. Meissa is a

https://doi.org/10.1145/3544216.3544247
https://doi.org/10.1145/3544216.3544247

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

rigorous approach that provides 100% path coverage guarantees,

and is able to identify both code bugs and non-code bugs.

The core of Meissa is a domain-specific technique which we

name code summary to simplify the control flow graph (CFG) of

a data plane program for scalable testing without sacrificing cov-

erage. Code summary exploits the structure of large multi-switch

multi-pipeline data plane programs to decompose a data plane

program into individual pipelines. It summarizes the CFG of each

pipeline with a succinct representation, which significantly reduces

the number of paths in each pipeline and addresses the path ex-

plosion problem for testing multi-switch multi-pipeline programs.

The summarization is based on the observation that, only a small

fraction of the paths in the CFG derived from a data plane pro-

gram are valid (i.e., the end of a path can be reached by a packet)

and thus need to be covered. At a high level, the summarization

removes invalid paths, and compactly encodes each valid path with

its constraints and variable values.

Code summary leverages twomechanisms—intra-pipeline redun-

dancy elimination and inter-pipeline public pre-condition filtering—

that combine local and global information to summarize the CFG

of a pipeline. Intra-pipeline redundancy elimination analyzes the

CFG of an individual pipeline, and removes invalid paths stemming

from the code logic of the pipeline itself. Inter-pipeline public pre-

condition filtering analyzes the paths from the entry point of the

program to the target pipeline, and identifies the common condi-

tions shared by these paths, which we call public pre-conditions

of the target pipeline. Then Meissa filters the paths in the target

pipeline that cannot be satisfied under the public pre-conditions.

Code summary does not affect the code coverage properties. We

formally prove that Meissa with code summary achieves 100% path

coverage (§3.4).

We note that similar ideas like code summary have been pro-

posed [33, 67] to generate test cases for general-purpose imperative

languages. However, they are mainly targeted at programs featur-

ing function calls and object-oriented programming, where the

vertical composition of components renders it hard to simplify

lower-layer library functions. In comparison, this paper focuses on

programmable data planes, where components follow a pipelined

layout both logically and on the implementation level. More specif-

ically, we observe that engineers tend to design the data plane

such that packets belonging to the same workload follow similar

sequences of table execution, and hit the same entries in most tables.

Meissa leverages this horizontal composition of components and

adopts novel domain-specific techniques to significantly simplify

each individual pipeline before generating test cases for the entire

program.

We have implemented Meissa and used it in production. We

use both open-source and production-scale data plane programs

to evaluate Meissa. The evaluation shows that (𝑖) Meissa is able to

test production-scale data plane programs that cannot be supported

by state-of-the-art efforts, and (𝑖𝑖) besides P4 code bugs, Meissa

is able to not only identify known non-code bugs, but also detect

previously-unknown non-code bugs. We also share our deployment

experience with several real cases tested by Meissa in a production

programmable data plane, including checksum fail-to-update, bf-

p4c backend bug C (setValid), and misuse of optimization pragmas.

Finally, there is a common sentiment that while testing is more

comprehensive in terms of the types of bugs it can detect, it is

generally considered to have less coverage than verification. In this

paper, we show that in the context of programmable data planes,

testing is able to achieve full path coverage by the design of our

domain-specific code summary technique. We further implement

a practical system, perform an extensive evaluation, and deploy

Meissa in production to demonstrate this point.

2 MOTIVATION
2.1 Testing Data Plane Programs
Bugs affect the performance and functionality of production net-

works, and even turn down the entire network. Finding bugs is

critical for the development process of data plane programs. De-

spite the success of recent data plane program verification sys-

tems [27, 56, 76, 79], they are fundamentally limited to code bugs.

Non-code bugs cannot be detected by verification efforts. Ruffy et
al. [68] reported 59 bugs from P4C, 5 bugs from BMv2, and 32 bugs

from bf-p4c. Issues caused by the underlying target or toolchain

(e.g., compiler and driver API) are especially frustrating and difficult

to debug. For example, in a real service failure event occurred in

our production network, the operators observed incorrect parsing

results in the data plane led to memory fault in the control plane,

making the entire gateway load balancing service (implemented in

P4) down. Sadly, the P4 program running on this failed gateway has

been carefully verified. In many-hour analysis and troubleshooting,

the operators localized the problem with the vendor’s help—it was

caused by a bug in the P4 compiler. Because of incomprehensive

bug checking, verification does not check whether the program hits

a compiler bug.

Testing data plane programs. In order to comprehensively guar-

antee the correctness of programmable data planes, we decided

to build a testing system. In principle, testing techniques gener-

ate input-output test cases for a given implementation and tests

whether the implementation can pass them. In the context of pro-

grammable data planes, the inputs and outputs are packets, and

testing a data plane program is to inject input packets to a switch

and test whether the output packets match the desired behaviors.

Manually generating test cases for a production-scale data plane

is not practical. A typical automatic program test case generation

approach is to construct a CFG and then enumerate the paths in the

CFG [8, 18, 61]. For each path, symbolic execution can be used to

traverse the path and check whether the path is valid, i.e., whether
the end of the path can be reached by an input. For a valid path,

symbolic execution can be used to generate a test case template,
which specifies the pattern of inputs that can trigger this path and

the pattern of outputs at the end of the path. One or more input-

output test cases can be generated based on the template for a

path.

2.2 Key Challenge: Scalability
Scalability is a key challenge for testing data plane programs. Real-

world data plane programs implement a wide variety of features and

protocols [7, 46, 59, 62, 95]. Innovations in networking are continu-

ously producing new features and protocols [15, 52, 55, 101, 102].

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

switch 0

gateway.p4
ingress 0

gateway.p4
egress 0

switch.p4
ingress 1

switch.p4
egress 1

switch 1

gateway.p4
ingress 0

gateway.p4
egress 0

switch.p4
ingress 1

switch.p4
egress 1

flow A flow B

Figure 1: An examplemulti-switchmulti-pipeline data plane.

Data plane programs do not simply contain a single forwarding

table with longest-prefix matching. Instead, each feature or pro-

tocol includes one or more match-action tables, and a data plane

program uses a complex control flow to compose many features

and protocols that controls which set of tables is used to process

an arrival packet and in which order.

In addition, modern switching ASICs have multiple ingress and

egress pipelines connected by a traffic manager, which allows users

to develop increasingly complex data plane programs. When a

packet leaves an ingress pipeline, it can be sent to any egress

pipeline via the traffic manager, and when it leaves an egress

pipeline, it can go back to one of the ingress pipelines via internal

loopback. A production data plane program can compose multiple

pipelines together to implement more functionalities and utilize

more hardware resources. For example, Figure 1 shows two multi-

pipeline switches for a production edge network scenario. Each

switch has two ingress pipelines and two egress pipelines. Ingress

pipeline 0 and egress pipeline 0 implement custom gateway func-

tionalities for encapsulation, decapsulation and statistics. Ingress

pipeline 1 and egress pipeline 1 implement standard switch func-

tionalities [7]. The packets of flow A are processed by multiple

pipelines in switch 0, following a path ingress 0 → egress 1 →
ingress 1 → egress 0. The scale of such a multi-pipe data plane

program is in the order of O(1K) to O(10K) lines of P4 code (§5). It

is challengable to test these complex data plane programs.

Evenworse, production networks deploymulti-switch data plane

programs, where the functionalities of a data plane can span mul-

tiple pipelines across multiple switches. Multi-switch data planes

are deployed due to operational needs for reliability and perfor-

mance and the constraints of hardware resources of a single switch.

In Figure 1, the two switches form a multi-switch multi-pipeline

data plane for our production edge network. The traffic is split

between the two switches, which increases the total bandwidth.

While flow A is only processed by switch 0, flow B is processed by

both switches. The packets of flow B traverses a path with ingress 0

→ egress 0 in switch 0 and then ingress 0→ egress 1→ ingress 1→
egress 0 in switch 1. The two switches serve as the backup of each

other, which improves the reliability of the service. Multi-switch

data planes further increase the complexity of the program. A pro-

duction multi-switch data plane program used in our production

networks contains more than 20K lines of P4 code (§5). Several solu-

tions have been proposed for testing data plane programs [8, 18, 61].

They follow the general approach described in §2.1. They analyze

a given program to generate test cases to cover execution paths of

the program. They cannot scale to multi-switch multi-pipeline data

plane programs (§5).

LPITable
Entry

Control Flow Graph
Section 3.1

Code Summary
Section 3.3

Test Generation
Section 3.2

 Test Case
Template

Test Driver
Section 4

Test
Report

Meissa

Meissa Frontend
Section 4

Figure 2: An overview of Meissa architecture.

field_id ::= (’pkt.’ | ’hdr.’) string Header field name

aop ::= ’+’ | ’-’ | ’&’ | ’|’ Arithmetic operators

aexp ::= field_id Header field variable

| int Concrete value

| aexp aop aexp Arithmetic operations

bop ::= ’&&’ | ’||’ | ’~’ Boolean operators

cop ::= ’==’ | ’!=’ | ’>’ | ’<’ Comparison operators

bexp ::= ’True’

| ’False’

| aexp cop aexp aexp comparison

| bexp bop bexp bexp composition

stmt ::= field_id ’←’ aexp Action

| assume bexp Predicate

V ::= {𝑣0, ..., 𝑣𝑛} Set of vertices

𝑠𝑢𝑐𝑐 ∈ V→ 2
𝑉

Succ function

𝑐𝑜𝑑𝑒 ∈ V→ stmt Associated stmt

G ::= (𝑉 , 𝑣0, 𝑠𝑢𝑐𝑐, 𝑐𝑜𝑑𝑒) CFG

path ::= 𝜖 Empty path

| v :: path Path concatenation

Figure 3: Syntax of the CFG.

3 MEISSA DESIGN
Meissa overview. Figure 2 presents an overview for Meissa’s work-

flow. Developers express their high-level intents with LPI (Language

for programmable network Intent) [79]. LPI is a state-of-the-art

declarative specification language used to describe interesting prop-

erties of programmable data planes. Meissa takes (𝑖) a specification
expressed in LPI, (𝑖𝑖) a data plane program in P4, and (𝑖𝑖𝑖) a ta-

ble rule set as inputs, and encodes them into a control flow graph

(§3.1) by the frontend (§4). Then, our domain-specific code summary
(§3.3) technique simplifies the control flow graph. After that, our

test case generation framework (§3.2) produces test case templates

with 100% path coverage. Finally, our test driver (§4) injects test

packets to the switches under test, and compares the actual output

packets with the expected ones. Meissa reports passed and failed

test cases to the developer as the testing result. We formally prove

that Meissa achieves 100% path coverage (§3.4).

3.1 Control Flow Graph (CFG)
Meissa converts a data plane program to an intermediate repre-

sentation for test case generation. The intermediate representation

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

⟨𝑎𝑒𝑥𝑝1, 𝑠⟩ → 𝑣1 ⟨𝑎𝑒𝑥𝑝2, 𝑠⟩ → 𝑣2

⟨𝑎𝑒𝑥𝑝1 𝑎𝑜𝑝 𝑎𝑒𝑥𝑝2; 𝑠⟩ → 𝑣1 𝑎𝑜𝑝 𝑣2

Arithmetic expr

⟨𝑏𝑒𝑥𝑝1, 𝑠⟩ → 𝑏1 ⟨𝑏𝑒𝑥𝑝2, 𝑠⟩ → 𝑏2

⟨𝑏𝑒𝑥𝑝1 𝑏𝑜𝑝 𝑏𝑒𝑥𝑝2; 𝑠⟩ → 𝑏1 𝑏𝑜𝑝 𝑏2

Boolean expr

⟨𝑎𝑒𝑥𝑝1, 𝑠1⟩ → 𝑣𝑎𝑙

⟨𝑖𝑑1 ← 𝑎𝑒𝑥𝑝1; 𝑠1⟩ → 𝑠1 [𝑖𝑑1 ← 𝑣𝑎𝑙] Action stmt

⟨𝑏𝑒𝑥𝑝1, 𝑠⟩ → 𝑇𝑟𝑢𝑒

⟨𝑎𝑠𝑠𝑢𝑚𝑒 𝑏𝑒𝑥𝑝1; 𝑠⟩ → 𝑠
Predicate stmt

⟨𝑐𝑜𝑑𝑒 (𝑣), 𝑠1⟩ → 𝑠2

⟨𝑣 :: 𝑝𝑎𝑡ℎ; 𝑠1⟩ → ⟨𝑝𝑎𝑡ℎ; 𝑠2⟩
Sequential evaluation

Figure 4: Evaluating statements along a path.

represents a data plane program as a control flow graph (CFG).

Figure 3 shows the syntax of the CFG. A CFG 𝐺 contains a set of

nodes V and a special entry point 𝑣0, where 𝑣0 ∈ 𝑉 . Each node 𝑣

has 0, 1, or multiple successors, denoted by 𝑠𝑢𝑐𝑐 (𝑣). Each node 𝑣 is

associated with a statement 𝑠𝑡𝑚𝑡 (𝑣). A statement operates on a set

of header variables (𝑓 𝑖𝑒𝑙𝑑_𝑖𝑑), which represents a particular slice of

data in the packet. A special variable is used to specify the sequence

of headers present in the packet, which we omit in Figure 3 for

brevity.

There are two types of nodes in the graph, depending on the type

of the associated statement. One type is predicate, and the other

is action. A predicate node represents constraints on the packet

header, e.g., 𝑒𝑡ℎ𝑒𝑟𝑇𝑦𝑝𝑒 == 0𝑥0800 (it is an IPv4 packet). Predicate
nodes correspond to the branching statements (e.g., if-else state-
ments) in the control block and the match fields in the match-action

table rules in a P4 program. An action node represents operations

on the packet header, e.g., 𝑑𝑠𝑡𝐼𝑃 ← 192.168.0.1 (assign 192.168.0.1

to destination IP). Action nodes correspond to the action fields in

the match-action table rules in the program.

Note that the CFG generated from a P4 program is acyclic, since

we can always unroll recursive structures because the depth of

recursion is bounded. This entails that all possible transitions in

the CFG are of finite length.

Definition 1 (Possible path in a CFG). A possible path 𝜋 in a

CFG 𝐺 (𝑉 , 𝑣0, 𝑠𝑢𝑐𝑐, 𝑐𝑜𝑑𝑒) consists of a sequence of vertices 𝑣𝜋0
{

𝑣𝜋1
, ...,{ 𝑣𝜋𝑘

, such that each step in the path follows the 𝑠𝑢𝑐𝑐

relation,

∀𝑖 < 𝑘, 𝑣𝜋𝑖
∈ 𝑉 ∧ 𝑣𝜋𝑖+1 ∈ 𝑠𝑢𝑐𝑐 (𝑣𝜋𝑖

)
and the path spans from 𝑣0 to an ending vertex

𝑣𝜋0
= 𝑣0 ∧ 𝑠𝑢𝑐𝑐 (𝑣𝜋𝑘

) = ∅.
Π(𝐺) denotes the set of all possible paths in G.

Concrete execution in the CFG: valid path. We use 𝑠 to denote

a concrete execution state, which is a mapping from header field

variables to their corresponding concrete values

𝑠 ∈ 𝑓 𝑖𝑒𝑙𝑑_𝑖𝑑 → 𝑖𝑛𝑡 .

Figure 4 depicts the evaluation rules along a path. The evaluation

of an action statement results in an updated state. The predicate

statement is simply skipped if its condition evaluates to true. Oth-

erwise, there is no valid rule for evaluating a false predicate, i.e.,

dstIP ==
10.1.1.1

dstIP←
192.168.0.1

srcPort ==
443

srcPort ==
80

dstIP ==
127.1.*.*

(b) Invalid. (c) Invalid.(a) Valid.

Predicate node Action node

egressPort←
5

Figure 5: Examples of valid and invalid paths.

the execution does not make sense if the guarding condition is

not met. Finally, the evaluation along a path consists of sequential

evaluation of the corresponding statement of each node.

Definition 2 (Valid path in a CFG). A valid path in a CFG,𝐺(𝑉 , 𝑣0,

𝑠𝑢𝑐𝑐 , 𝑐𝑜𝑑𝑒), is a possible path 𝜋 , such that there exists a concrete

initial state that evaluates along this path

𝑣𝑎𝑙𝑖𝑑_𝑝𝑎𝑡ℎ(𝜋,𝐺) ≡
(
𝜋 ∈ Π(𝐺) ∧ ∃𝑠1, 𝑠2, ⟨𝜋 ; 𝑠1⟩ → 𝑠2

)
3.2 Basic Test Case Generation Framework
Meissa employs symbolic execution [50] to analyze the CFG and

generate test cases. The basic idea amounts to enumerating all

possible paths in the CFG. For each path,Meissa evaluates the effects

of its execution using symbolic values and checks whether the

conjunction of all guard conditions is satisfiable or not, i.e., whether
the path is valid or not. Meissa generates a test case template to

produce input packets that execute along each valid path. Figure 5

demonstrates (non-exhaustively) different path patterns and their

satisfiability.

• Figure 5(a) is a valid path, e.g., when 𝑑𝑠𝑡𝐼𝑃 is 127.1.2.3, the condi-

tion evaluates to True. This pattern can be seen in the execution

of a table, where the action is performed after key matches.

• Figure 5(b) is an invalid path because 𝑑𝑠𝑡𝐼𝑃 == 10.1.1.1 evaluates

to False after assigning 192.168.0.1 to 𝑑𝑠𝑡𝐼𝑃 . This is a common

pattern where a table matches on keys that are modified by a

previous action.

• Figure 5(c) is an invalid path because 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 == 80∧𝑠𝑟𝑐𝑃𝑜𝑟𝑡 ==
443 cannot hold. This pattern is common among adjacent branch-

ing conditions or tables.

Meissa uses depth-first search (DFS) to enumerate all possible

paths in the CFG. Notice that the choice of enumeration methods

(DFS, breadth-first search, etc.) is orthogonal to the design of Meissa.

Symbolic execution in the CFG. During the symbolic execution

along a possible path, Meissa maintains two stacks, the value stack

𝑉 and the condition stack 𝐶 . 𝑉 maps each header field to either

a concrete value or a symbolic arithmetic expression, and 𝐶 is a

boolean expression representing constraints on symbolic variables.

𝑉 ∈ 𝑓 𝑖𝑒𝑙𝑑_𝑖𝑑 → 𝑎𝑒𝑥𝑝

𝐶 := 𝑏𝑒𝑥𝑝

Figure 6 depicts how the above two variables are updated along

a possible path. Here, ⟦𝑉⟧𝑎 denotes the result of substituting all

variables in expression 𝑎 with values defined by𝑉 . For action state-

ments, Meissa updates 𝑉 to record the variable’s current value. For

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

⟦𝑉⟧𝑖𝑑 → 𝑉 (𝑖𝑑) Subst-var

⟦𝑉⟧𝑣𝑎𝑙 → 𝑣𝑎𝑙 Subst-int

⟦𝑉⟧𝑎1 → 𝑎′
1
⟦𝑉⟧𝑎2 → 𝑎′

2

⟦𝑉⟧(𝑎1 𝑜𝑝 𝑎2) → 𝑎′
1
𝑜𝑝 𝑎′

2

Subst-aexp

......

⟦𝑉⟧𝑎1 → 𝑎′
1

𝑉 ′ ≡ 𝑉 [𝑖𝑑1 ← 𝑎′
1
]

⟨𝑖𝑑1 ← 𝑎1; (𝑉 ,𝐶)⟩ → (𝑉 ′,𝐶) Sym. action

⟦𝑉⟧𝑏1 → 𝑏 ′
1

𝑆𝐴𝑇 (𝐶 ∧ 𝑏 ′
1
)

⟨𝑎𝑠𝑠𝑢𝑚𝑒 𝑏1; (𝑉 ,𝐶)⟩ → (𝑉 ,𝐶 && 𝑏 ′
1
) Sym. predicate

⟨𝑐𝑜𝑑𝑒 (𝑣), (𝑉1,𝐶1)⟩ → (𝑉2,𝐶2)
⟨𝑣 :: 𝑝𝑎𝑡ℎ; (𝑉1,𝐶1)⟩ → ⟨𝑝𝑎𝑡ℎ; (𝑉2,𝐶2)⟩

Sequential sym. eval

Figure 6: Symbolic evaluation along a possible path.

Algorithm 1 Basic Test Case Generation with DFS

– 𝐶: condition stack

– 𝑉 : value stack

1: function DFS(node)

2: if 𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 == PREDICATE then
3: C.update(node)

4: if 𝑍3.𝑠𝑜𝑙𝑣𝑒 (𝐶,𝑉) == SATISFIABLE then
5: if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 == 𝑛𝑢𝑙𝑙 then
6: GenerateTestCaseTemplate()

7: else
8: for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9: DFS(child)

10: C.restore()

11: else if 𝑛𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 == ACTION then
12: V.update(node)

13: if 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 == 𝑛𝑢𝑙𝑙 then
14: GenerateTestCaseTemplate()

15: else
16: for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
17: DFS(child)

18: V.restore()

predicate statements, Meissa simply accumulates the guard condi-

tion in 𝐶 . SAT(𝐶 ∧ 𝑏 ′
1
) is an early termination technique which we

explain later.

Validity checking of a path is done by feeding the accumulated

guard conditions to an SMT solver (e.g., Z3). If they are satisfiable, a
test case template is generated for this particular path. For example,

the test case template for Figure 5(a) is 𝑑𝑠𝑡𝐼𝑃 = 127.1. ∗ .∗, meaning

all inputs satisfying this prefix will execute along the exact path.

Path pruning with early termination. As shown in the Sym.

Predicate rule in Figure 6, Meissa adopts early termination [61]

to prune the paths and reduce the search space. For example, if a

previous predicate restricts the packet to IPv4, causing a further

predicate hdr.ipv6.isValid() to never satisfy, then there is no

need to continue the enumeration since the prefix is already invalid.

Algorithm 1 shows the pseudocode of the basic test case gen-

eration with DFS and early termination. For each node, based on

Design: Code Summary 1

3

dstIP ==
1.1.1.1

egressPort ←
1

dstIP ==
1.1.1.2

egressPort ←
2

dstIP ==
1.1.1.100

egressPort ←
100

dstMAC ←
0x00000001

dstMAC ←
0x00000002

dstMAC ←
0x00000064

table
ipv4_host

table
mac_agent

egressPort
== 1

egressPort
== 2

egressPort
== 100

(a) 10000 paths before code summary.

dstIP ==
1.1.1.1

egressPort ←
1

dstIP ==
1.1.1.2

egressPort ←
2

dstIP ==
1.1.1.100

egressPort ←
100

dstMAC ←
0x00000001

dstMAC ←
0x00000002

dstMAC ←
0x00000064

summarized
CFG

(b) 100 path after code summary.

Figure 7: Intra-pipeline redundancy elimination.

whether the node type is a predicate or action (line 2 and 11),

Meissa updates the condition stack𝐶 or value stack𝑉 , respectively

(line 3 and 12). When the search reaches a leaf node of the graph,

Meissa generates a test case template (line 5-6 and 13-14). Other-

wise, Meissa visits each child node of the current node (line 7-9 and

15-17). Early termination is implemented by checking the satisfia-

bility at each predicate node in the DFS and only proceeds if the

path is satisfiable (line 4). Finally, Meissa restores the stacks and

backtracks to other branches (line 10 and 18).

A potential drawback of early termination is that it may result

in more calls to the SMT solver, and thus more overhead. This

concern is addressed by adopting incremental solving, supported by

state-of-the-art SMT solvers [12, 26], which allows users to push

(save) and pop (restore) conditions. Meissa pushes an additional

constraint into the SMT solver on a predicate node, and pops

when it backtracks. The solver reuses intermediate results from

previous invocations since most constraints stay the same.

3.3 Code Summary
The basic test case generation frameworkworks for a single pipeline.

However, production-scale data plane programs often consist of

multiple switches with multiple pipelines. The composition of

pipelines compounds the complexity of the search space exponen-

tially, rendering its test case generation intractable. We develop a

domain-specific code summary technique to address this scalability

issue.

Key ideas. At a high level, code summary decomposes a data

plane program to individual pipelines, and summarizes the CFG of

each pipeline with a succinct representation to address the path

explosion problem. For each pipeline, Meissa significantly reduces

its number of possible paths by pruning (non-exhaustively) invalid

ones, such that the composition of pipelines becomes tractable.

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

proto ==
TCP

proto ==
UDP

public pre-condition: proto == TCP

proto ==
TCP

public pre-condition: proto == TCP

Code
Summary

Figure 8: Inter-pipeline pre-condition filtering.

Overall, code summary reduces the time complexity of test case

generation from 𝑂 (𝑛𝑘) to 𝑂 (𝑘𝑛), where 𝑘 denotes the number of

pipelines and 𝑛 denotes the number of possible paths within each

pipeline. A detailed analysis is in Appendix A.

Code summary leverages two mechanisms to summarize the

CFG of each pipe, which are intra-pipeline redundancy elimina-

tion and inter-pipeline public pre-condition filtering. (𝑖) Intra-
pipeline redundancy elimination analyzes the CFG of an individual

pipeline, and eliminates invalid paths that stem from the code logic

of the pipeline itself. Consider a pipeline with a table 𝑖𝑝𝑣4_ℎ𝑜𝑠𝑡

followed by a table𝑚𝑎𝑐_𝑎𝑔𝑒𝑛𝑡 . As shown in Figure 7a, 𝑖𝑝𝑣4_ℎ𝑜𝑠𝑡

sets 𝑒𝑔𝑟𝑒𝑠𝑠𝑃𝑜𝑟𝑡 according to 𝑑𝑠𝑡𝐼𝑃 , and𝑚𝑎𝑐_𝑎𝑔𝑒𝑛𝑡 sets 𝑑𝑠𝑡𝑀𝐴𝐶 ac-

cording to 𝑒𝑔𝑟𝑒𝑠𝑠𝑃𝑜𝑟𝑡 . There are 100 rules in each of the two tables,

resulting in 10,000 possible paths in total. However, only 100 paths

are valid, because after assigning 𝑒𝑔𝑟𝑒𝑠𝑠𝑃𝑜𝑟𝑡 in 𝑖𝑝𝑣4_ℎ𝑜𝑠𝑡 , only one

rule in 𝑚𝑎𝑐_𝑎𝑔𝑒𝑛𝑡 can be matched. Figure 7b is the summarized

CFG of this example which reduces the paths from 𝑛 = 10, 000 to

𝑚 = 100. (𝑖𝑖) Inter-pipeline public pre-condition filtering analyzes

all paths from the entry point of the program to a given pipeline,

and identifies public pre-conditions that all paths have in common.

Then, it uses the public pre-conditions to prune paths in the given

pipeline. Figure 8 shows an example where 𝑝𝑟𝑜𝑡𝑜 == 𝑇𝐶𝑃 is a pub-

lic pre-condition for all paths to the pipeline. Since the predicate

𝑝𝑟𝑜𝑡𝑜 == 𝑈𝐷𝑃 can never satisfy, all paths following this node are

discarded. Together, the two techniques leverage both local and

global information to reduce the overall search space.

Algorithm. Algorithm 2 shows the pseudocode of test case gener-

ation with code summary. Since we retain information about the

entry and exit of each pipeline, the algorithm first identifies each

pipeline in the CFG, performs topological sort on them (line 2),

and sets the order for subsequent processing (line 3-23). This en-

sures that a pipeline is summarized if and only if all its predecessor

pipelines are already summarized.

To summarize a pipeline, the algorithm first computes its public

pre-conditions (line 4-7). It gathers all valid paths from the entry

point of the CFG to that of the pipeline (line 5). Because of the

topological sorting, all pipelines along the path are already sum-

marized to reduce the search overhead. Then it merges all valid

paths to produce a new pair of value stack 𝑉 and condition stack𝐶

(line 6-7). The intuition is to compute what all these paths entail in

common, such that this new state encapsulates all possible states

before the merging. Finally, it uses the above public pre-condition

as the initial state to perform symbolic execution within the target

pipeline, collecting all valid paths in 𝑝𝑎𝑡ℎ𝑠 (line 8-9).

The algorithm summarizes the pipeline by compactly encoding

the valid paths (line 10-23). The encoding of a valid path contains

(𝑖) the guard constraints for entering this path, and (𝑖𝑖) the overall
effects of executing this path. Computation of the guard constraints

is trivial. It is a conjunction of all boolean constraints collected

along this path (line 14-15), represented by a predicate node. On

the other hand, even though obtaining the overall execution effects

through symbolic execution is straightforward, encoding them

using a group of action nodes is tricky. For example, assume that

the symbolic execution along a path results in a final value stack

𝑉 ′, where

𝑉 ′(𝑠𝑟𝑐𝑃𝑜𝑟𝑡) = 10000

𝑉 ′(𝑑𝑠𝑡𝑃𝑜𝑟𝑡) = 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 + 1

Naively encoding it as two assignment statements does not work,

since it results in assigning 10001 to 𝑑𝑠𝑡𝑃𝑜𝑟𝑡 . This is because 𝑉 ′

represents simultaneous updates to multiple variables, while the

assignment statements in a CFG lack this kind of atomicity. In-

stead, Meissa introduces auxiliary variables to address this issue.

The above example is encoded as the following statements, where

@𝑠𝑟𝑐𝑃𝑜𝑟𝑡 denotes the value of 𝑠𝑟𝑐𝑃𝑜𝑟𝑡 at the entry of this pipeline.

@𝑠𝑟𝑐𝑃𝑜𝑟𝑡 ← 𝑠𝑟𝑐𝑃𝑜𝑟𝑡

𝑠𝑟𝑐𝑃𝑜𝑟𝑡 ← 10000

𝑑𝑠𝑡𝑃𝑜𝑟𝑡 ← @𝑠𝑟𝑐𝑃𝑜𝑟𝑡 + 1

Concatenating the guard constraints with the overall effects

concludes the encoding of one valid path.

After all pipelines are summarized and replaced, the algorithm

performs a DFS from the entry point of the CFG using Algorithm 1

to generate test case templates.

3.4 Code Coverage Guarantee
An important notion in software testing is code coverage [10],

which is a measure of how well a given program is tested. There

are several metrics for coverage, including path coverage, branch

coverage, statement coverage and method coverage. We focus on

path coverage because it is the strongest metric among them and

is widely-used to thoroughly test programs in practice. Once we

achieve 100% path coverage, we get 100% coverage in other metrics

as well. We formally prove that Meissa achieves 100% path coverage.

Definition 3 (Full path coverage). A test case generation frame-

work generates a group of inputs for a given CFG G, denoted by a

group of constraints {𝛽0, 𝛽1, ..., 𝛽𝑚}. Such generation is full-path-

coverage if and only if it covers every valid path in G, i.e.,
∀𝜋, 𝑣𝑎𝑙𝑖𝑑_𝑝𝑎𝑡ℎ(𝜋,𝐺) =⇒(

∃𝑘,∀𝑠, 𝛽𝑘 (𝑠) =⇒ ∃𝑠 ′, ⟨𝜋 ; 𝑠⟩ → 𝑠 ′
)

Basic framework achieves 100% path coverage. As a baseline,
the basic test generation framework (naive DFS) achieves full path

coverage. Appendix B formally proves this theorem. In addition

to full path coverage, the basic framework also guarantees that

each path condition it collects corresponds to a distinct path, such

that generating test cases for all path conditions guarantees a full

coverage test.

Code summary achieves full path coverage. Code summary

is an optimization on top of the basic framework that avoids re-

dundant DFS searching within individual pipelines. The intuition

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Algorithm 2 Test Case Generation with Code Summary

1: // Summarize CFG
2: 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 ← 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡 (𝐶𝐹𝐺)
3: for 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 ∈ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 do
4: // Compute public pre-conditions
5: 𝑝𝑎𝑡ℎ𝑠 ← get paths from 𝐶𝐹𝐺.𝑒𝑛𝑡𝑟𝑦 to 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒.𝑒𝑛𝑡𝑟𝑦

6: 𝐶 ← ∩𝑝∈𝑝𝑎𝑡ℎ𝑠𝑝.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
7: 𝑉 ← ∩𝑝∈𝑝𝑎𝑡ℎ𝑠𝑝.𝑣𝑎𝑙𝑢𝑒𝑠
8: // Find paths in the pipeline
9: 𝑝𝑎𝑡ℎ𝑠 ← get paths in 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 with 𝐶 and 𝑉

10: // Summarize the pipeline
11: 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒.𝑐𝑙𝑒𝑎𝑟 ()
12: for 𝑝𝑎𝑡ℎ ∈ 𝑝𝑎𝑡ℎ𝑠 do
13: Initialize 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ

14: 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ.𝑎𝑝𝑝𝑒𝑛𝑑 (
15: 𝑛𝑒𝑤 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑁𝑜𝑑𝑒 (𝐴𝑁𝐷 (𝑝𝑎𝑡ℎ.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)))
16: for 𝑣𝑎𝑟 ∈ 𝑝𝑎𝑡ℎ.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 do
17: if 𝑣𝑎𝑟 changes value on 𝑝𝑎𝑡ℎ then
18: 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ.𝑎𝑝𝑝𝑒𝑛𝑑 (
19: 𝑛𝑒𝑤 𝐴𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 (@𝑣𝑎𝑟, 𝑣𝑎𝑟))
20: for 𝑣𝑎𝑟 ∈ 𝑝𝑎𝑡ℎ.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 do
21: if 𝑣𝑎𝑟 .𝑣𝑎𝑙𝑢𝑒 symbolic changed then
22: 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑊 𝑖𝑡ℎ𝐼𝑛𝑖𝑡 (𝑣𝑎𝑟 .𝑣𝑎𝑙𝑢𝑒)
23: 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ.𝑎𝑝𝑝𝑒𝑛𝑑 (
24: 𝑛𝑒𝑤 𝐴𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 (𝑣𝑎𝑟, 𝑣𝑎𝑟 .𝑣𝑎𝑙𝑢𝑒))
25: 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒.𝑎𝑑𝑑 (𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒𝑑𝑃𝑎𝑡ℎ)
26: // Generate test cases on summarized CFG
27: DFS(CFG.entry)

is that, despite that the summary operation prunes possible paths

within each pipeline, it preserves all valid ones such that the set of

valid paths does not change.

Assume that the switch consists of n pipelines, denoted in topo-

logical order as 𝑝𝑝𝑙1, 𝑝𝑝𝑙2, ..., 𝑝𝑝𝑙𝑛 . Each pipeline is a single-entry

single-exit subgraph in the CFG G. Pipelines are ordered such that

there is no possible path from 𝑝𝑝𝑙 𝑗 to 𝑝𝑝𝑙𝑖 if 𝑗 > 𝑖 , and Algorithm 2

summarizes each of them following this topological order. We prove

the following loop invariant.

Definition 4 (Summarizing k pipelines preserves all valid paths).
We denote the original CFG and the CFG after summarizing k

pipelines as 𝐺0 and 𝐺𝑘 , respectively. For each valid path 𝜋0 in 𝐺0

with path condition C and final symbolic state V, there must exist a

unique valid path in 𝐺𝑘 which satisfies the same path condition.

𝐼𝑁𝑉 (𝐺0,𝐺𝑘) ≡
∀𝜋0, 𝑣𝑎𝑙𝑖𝑑_𝑝𝑎𝑡ℎ (𝜋0,𝐺0) ∧

(
∀𝑠,𝐶 (𝑠) =⇒ ⟨𝜋0; 𝑠 ⟩ → ⟦𝑉 ⟧𝑠

)
=⇒

∃!𝜋𝑘 , 𝑣𝑎𝑙𝑖𝑑_𝑝𝑎𝑡ℎ (𝜋𝑘 ,𝐺𝑘) ∧
(
∀𝑠,𝐶 (𝑠) =⇒ ⟨𝜋𝑘 ; 𝑠 ⟩ → ⟦𝑉 ⟧𝑠

)
Assume that such invariant holds for 𝐼𝑁𝑉 (𝐺0,𝐺𝑘). We prove

that summarizing one more pipeline, 𝑝𝑝𝑙𝑘+1, preserves the invari-
ant, i.e., 𝐼𝑁𝑉 (𝐺0,𝐺𝑘+1) holds. In particular, we focus on the valid

path 𝜋0 ∈ Π(𝐺0) and 𝜋𝑘 ∈ Π(𝐺𝑘), and prove the existence of a

corresponding valid path 𝜋𝑘+1 ∈ Π(𝐺𝑘+1).
We assume that path 𝜋𝑘 overlaps with 𝑝𝑝𝑙𝑘+1. Otherwise, it is

not affected by the summarization and the invariant trivially holds.

Without loss of generality, we partition 𝜋𝑘 as 𝑣0 ... { 𝑣𝑠 ... {
𝑣𝑒 ... { 𝑣 𝑓 , where 𝑣𝑠 and 𝑣𝑒 denotes the entry and exit points of

𝑝𝑝𝑙𝑘+1, respectively. We also assume a concrete execution, where

the state transitions from 𝑠0 to 𝑠𝑠 , 𝑠𝑒 , 𝑠𝑓 , respectively.

Lemma 1 (Public pre-condition encapsulates all valid paths to 𝑣𝑠).
Any valid concrete execution from 𝑣0 to 𝑣𝑠 must be included in the

public pre-condition. In particular,

𝐶𝑝𝑢𝑏 (𝑠0) ∧ ∀𝑖𝑑,
(
(⟦𝑉𝑝𝑢𝑏⟧𝑠0) (𝑖𝑑) = 𝑠𝑠 (𝑖𝑑) ∨ (⟦𝑉𝑝𝑢𝑏⟧𝑠0) (𝑖𝑑) = ★

)
Proof. Here, (⟦𝑉𝑝𝑢𝑏⟧𝑠0) (𝑖𝑑) = ★means 𝑉𝑝𝑢𝑏 does not specify

the value of 𝑖𝑑 . Assume that the transition from 𝑠0 to 𝑠𝑠 corresponds

to path constraint 𝐶𝑠 and final symbolic state 𝑉𝑠 , where 𝐶𝑠 (𝑠0) ∧
⟦𝑉𝑠⟧𝑠0 = 𝑠𝑠 .

• Since 𝐶𝑝𝑢𝑏 only contains constraints from 𝐶𝑠 that are com-

mon among other valid paths, 𝐶𝑝𝑢𝑏 (𝑠0) must hold.

• Since 𝑉𝑝𝑢𝑏 only contains assignments from 𝑉𝑠 that are com-

mon among other paths, it either agrees with 𝑉𝑠 or does not

specify any value.

□

Lemma 2 (Symbolic execution within 𝑝𝑝𝑙𝑘+1 finds the partial path

𝑣𝑠 { 𝑣𝑒 to be valid). Since the basic symbolic execution discovers

all valid paths (Appendix B), the proof obligation is to show that

𝑣𝑠 { 𝑣𝑒 is indeed valid.

∃𝑠1, 𝑠2, ⟨𝑣𝑠 ... { 𝑣𝑒 ; 𝑠1⟩ → 𝑠2

Proof. It is trivial to show that ⟨𝑣𝑠 ... { 𝑣𝑒 ; 𝑠𝑠 ⟩ → 𝑠𝑒 , since the

execution within a CFG is deterministic. Further, by Lemma 1, the

initial state 𝑠𝑠 satisfies the public pre-condition (𝐶𝑝𝑢𝑏 , 𝑉𝑝𝑢𝑏). Thus,

this path is valid and must be discovered by the symbolic execution

within 𝑝𝑝𝑙𝑘+1. □

Lemma 3 (Replacing 𝑝𝑝𝑙𝑘+1 with its summary preserves the valid

path). Though the partial path 𝑣𝑠 { 𝑣𝑒 is modified by the sum-

marization, it must still allow the same state transition. We use

𝑣𝑠 ↩→ 𝑣𝑒 to denote this summarized path.

⟨𝑣0 ... { 𝑣𝑠 ↩→ 𝑣𝑒 ; 𝑠0⟩ → 𝑠𝑒

Proof. It is trivial to show that ⟨𝑣0 ... { 𝑣𝑠 ↩→ 𝑣𝑒 ; 𝑠0⟩ → ⟨𝑣𝑠 ↩→
𝑣𝑒 ; 𝑠𝑠 ⟩, since the execution before 𝑣𝑠 does not change.

By Lemma 2, the state transition from 𝑠𝑠 to 𝑠𝑒 is discovered by the

local symbolic execution within 𝑝𝑝𝑙𝑘+1, and the overall assignment

effect is captured by a final symbolic state. Algorithm 2 encodes

this effect such that all action nodes represent changes against 𝑠𝑠 .

Thus, ⟨𝑣𝑠 ↩→ 𝑣𝑒 ; 𝑠𝑠 ⟩ → 𝑠𝑒 . □

As the execution after 𝑣𝑒 stays the same, 𝐼𝑁𝑉 (𝐺0,𝐺𝑘+1) holds.
This concludes the proof of the loop invariant.

Corollary 1 (Code summary achieves full path coverage). Given

a CFG G, for any valid path 𝜋 ∈ Π(𝐺), it must be discovered

by Algorithm 2, and the reported path condition 𝐶 satisfies the

following

∀𝑠,𝐶 (𝑠) =⇒ (∃𝑠 ′, ⟨𝜋 ; 𝑠⟩ → 𝑠 ′)

Proof. Algorithm 2 sorts and summarizes all pipelines one by

one, transforming the original CFG to 𝐺𝑛 . By the loop invariant

proved above (Definition 4), 𝐺𝑛 preserves all valid paths and corre-

sponding path constraints from 𝐺 .

Finally, Algorithm 2 invokes the basic symbolic execution on

𝐺𝑛 to output all path constraints. Since any valid path will be

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

discovered and reported with the correct constraint (Appendix B),

this theorem holds. □

4 IMPLEMENTATION
We have built and deployed Meissa in production. Meissa is imple-

mented in JAVA with 16,000 lines of code (LOC), where 12,500 for

frontend (encoding p4 intermediate representation), and 3,500 for

backend (test case template generation). Besides P4 programs, our

implementation allows the integration of manually-encoded com-

ponents, such as encoding of DPDK [6] programs. We have used it

to test a hardware-software (P4-DPDK) co-designed gateway.

The test driver consists of a sender, a receiver and a checker.

The sender reads each test case template and generates concrete

packets satisfying these constraints. After these packets are injected

to the switch, they follow the corresponding execution path and

are captured by the receiver. Each packet carries a unique ID in

its payload, such that the checker can relate the sent packet with

the received one (or mark as absent). The checker validates packet

checksums, checks whether the sent and received packets follow

the high-level intent, and reports test results.

Meissa supports recirculation, resubmission, and multi-pipelines,

which can be unrolled into an acyclic graph. Most of data plane

programs already satisfy this requirement so as to achieve line

rate. Operators claim the code and table entry set of each pipeline

in the specification. They also depict topology among pipelines

and traffic manager policies. Meissa parses the specification, code

and table entry sets of each pipeline, encodes them into a directed

acyclic control flow graph. Recirculation and resubmission are sim-

ilar to multi-pipelines, because operators manually name unrolled

pipelines. However, Meissa is not able to test stateful behaviors

caused by recirculation or resubmission, such as modifying the

same register in different rounds.

Hashing is a widely-used P4 functionality, but it is not well sup-

ported by the state-of-the-art SMT solvers. Our symbolic execution

can not directly push it into condition stack or value stack, be-

cause the SMT solver calculate path satisfiability with these two

stacks. Thus, we directly calculate hashing results if all keys are

constrained with one value, and otherwise leave these fields as

arbitrary values. After generating a complete test packet, Meissa

verifies whether the keys matches the hash value, and removes

unmatched ones.

Although Meissa does not aim to test stateful behaviors imple-

mented with registers and register actions, it still models registers

to test stateless register arithmetic behaviors. Meissa’s frontend

regards registers as header fields. For example, the register reg[0]
is modeled as a header field REG:reg-POS:0. The register action
hdr.tcp.dst_port = reg[0] is modeled as an action statement

hdr.tcp.dst_port ← REG:reg-POS:0. It is worth mentioning

that Meissa can only model registers when their indexes are con-

stant. We will discuss our scope detailly in §7.

5 EVALUATION
5.1 Methodology
Data Plane Programs. Table 1 shows eight data plane programs

used in our evaluation. mTag [17] and switch.p4 [7] are representa-

tive open-source programs. Router and ACL are simplified versions

of switch.p4. We remove some features from switch.p4 that are not

supported by p4pktgen [61] in order to compare Meissa with it. We

also use four production-scale data plane programs deployed in our

production edge networks. gw-4 uses all eight pipes of two Intel

Barefoot Tofino switches, and it is one of the most complex data

plane programs in our production practice.

Table rule sets. We generate random table rule sets for Router,

mTag, ACL and switch.p4. We collect four table rule sets (set-1, set-

2, set-3 and set-4) from actual switches deployed in our production

networks for gw-1, gw-2, gw-3 and gw-4. gw-1, gw-2 and gw-3 use

parts of table rule sets because of their small scale, while gw-4 fully

uses the entire table rule sets. Specifically, set-2 supports twice the

number of elastic IPs than that in set-1, set-3 twice of that in set-2,

and set-4 twice of that in set-3. set-4 is more than 200,000 LOC,

representing a large table rule set for production programs.

Baselines. We compare Meissa with four baselines, including

p4pktgen [61], PTA [18], Gauntlet [68] andAquila [79]. p4pktgen [61],

PTA [18] and Gauntlet [68] are testing solutions, and Aquila [79] is

a verification solution. All experiments (based on Meissa and the

four baselines) are conducted on a bare metal server with 96 cores

and 768 GB memory.

5.2 Experimental Results
Scalability. This experiment evaluates the scalability of Meissa in

terms of the time to generate test cases for data plane programs. In

this experiment, we use the model-based testing mode of Gaunt-

let [68], which can generate test cases for a given program. The

fuzzing mode of Gauntlet fuzzes small programs to test the P4

compiler, which is not relevant to the goal of testing large-scale

data plane programs in this experiment. We modify the model-

based testing mode of Gauntlet to traverse all possible table rules

to achieve full coverage for fair comparison, instead of ignoring
rules and actions in its original Python implementation. Because

Gauntlet and p4pktgen do not support custom table rules and other

production features, we skip their evaluation on the last four pro-

duction programs shown in Table 1. PTA [18] requires engineers to

handwrite test cases. It is not comparable in this experiment that

focuses on the capability to automatically generate test cases for

full coverage.

Figure 9 shows that Meissa generates test cases for Router, mTag,

ACL and switch.p4 in less than 100 seconds, which is 1.6–400× faster
than p4pktgen and Gauntlet. For complex production programs

gw-1 and gw-2, Meissa is 22.9× and 26.5× faster than Aquila. For

gw-3 and gw-4, Aquila fails to verify them with one-hour time

budget, while Meissa generates test cases with full coverage within

150 seconds.

In addition to different programs, we also vary the table rule sets

of the programs as the table rule sets also affect the complexity of

testing and verifying data plane programs. Because Gauntlet and

p4pktgen cannot handle custom table rule sets and Aquila runs out

of time on gw-3 and gw-4, we use gw-1 and gw-2 in this experiment.

Figure 10 shows the running time of Meissa and Aquila on different

table rule sets for gw-1 and gw-2. Meissa is 6.7–41.2× faster than
Aquila under different table rule sets.

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

Name Descriptions on functionality LOC # of
pipes

of
switches

Router A simple router based on switch.p4 that only contains layer-3 routing. 256 1 1

mTag [17] mTag-edge [17] that inserts and removes tags in switches attached to hosts. 227 1 1

ACL ACL filtering on 𝑑𝑠𝑡_𝑎𝑑𝑑𝑟 , 𝑠𝑟𝑐_𝑎𝑑𝑑𝑟 and ECN, based on Router. 400 1 1

switch.p4 [7]

Multifunctional data plane program, including L2 switching,

L3 routing, ECMP, tunnel, ACLs, MPLS, etc. 7086 1 1

gw-1 Production program for hardware gateway, processing VXLAN. > 1000 1 1

gw-2

Production program for hardware gateway,

processing VXLAN, ACL, routing, etc. > 3000 2 1

gw-3

Production program for hardware gateway,

including proprietary protocols and switch.p4.

> 10000 4 1

gw-4

Production program for hardware gateway,

using two switches for higher availability and throughput.

> 20000 8 2

Table 1: Data plane programs used in evaluation.

Effectiveness of code summary.We evaluate the effectiveness

of code summary under different programs and table rule sets. Fig-

ure 11a shows that code summary reduces the running time of

Meissa by 1.2–5.0× when varying the data plane programs. Fig-

ure 12a shows that code summary reduces the running time of

Meissa by 2.2–4.5× on gw-4 with different table rule sets. Note

that the majority of the complexity in gw-4 with set-4 is inside the

fifth pipeline 𝑝𝑝𝑙5, so both Meissa with code summary and Meissa

without code summary spend the majority of their time (~80%) on

searching in 𝑝𝑝𝑙5, which reduces the gap between the two com-

pared to other cases. To further understand how code summary

improves performance, we show the number of calls to the SMT

solver and the number of paths examined by DFS. Figure 11b and

Figure 12b show that code summary reduces the number of calls to

the SMT solver by 1.8–14.9× for different programs and rule sets.

Figure 11c and Figure 12c show that code summary reduces the

number of paths in the CFG by 10
60
–10

390× for different programs

and rule sets.

Finding real bugs. In addition to the formal proof that Meissa

achieves 100% path coverage (§3.4), we select 16 representative pro-
grams to demonstrate the bug finding capability of Meissa. Table 2

shows these bugs. These bugs are related to a variety of data plane

features such as parser, checksum and SALU. These bugs represent

a wide range of issues, from basic bugs in the code logic all the way

to the bugs in the backend and compiler configurations. All code

bugs have been reported to our developers, and all non-code bugs

have been reported to the vendor. All bugs have been confirmed

and resolved.

Meissa successfully detects bug 1, 2, 3, 4 and 5 that can be de-

tected by Aquila. Meissa also detects bug 7, 8, 9, 10 and 11 that

can be detected by Gauntlet. p4pktgen only tests a small subset

of P4 functionalities, and it cannot detect bugs related to P4 com-

piler. PTA requires handwritten unit tests, and it does not support

P4-16 in which bug 7–16 are written. Gauntlet did not detect bug

12–16 before, and it cannot scale to complex production data plane

programs. Aquila verifies program logics, so it cannot detect com-

pilation misconfigurations and compiler bugs.

Bugs shown in Table 2 are just a few representative examples in

our bug finding evaluation. Besides them, we have used Meissa to

Router mTag ACL switch.p4 gw-1 gw-2 gw-3 gw-4

1
10
102
103
104

Ti
m
e(
s)

XX XX XX XXO OO OO

Meissa Aquila p4pktgen Gauntlet

Figure 9: Running time on different data plane programs. ◦
indicates timeout; × indicates no-support.

set-1 set-2 set-3 set-4
gw-1

50

100

150

200

Ti
m
e(
s)

Meissa Aquila

set-1 set-2 set-3 set-4
gw-2

100
200
300
400
500

Ti
m
e(
s)

Meissa Aquila

Figure 10: Running time on gw-1 and gw-2 under different
table rule sets.

test both open-source and production-scale data plane programs

that have been evaluated by Aquila in Tian et al. [79]. Meissa has

successfully identified all code bugs found by Aquila. Similarly, we

have reproduced all compiler bugs found by Gauntlet [68] and these

compiler bugs can also be detected by Meissa.

More importantly, Meissa is able to find bug 2, 6, 12, 13, 14, 15,

and 16 that were previously undisclosed. We have deployed Meissa

in production and it has detected bug 2, 6, 14, 15, and 16 in our

production data plane programs. We discuss bug 6, 14 and 15 in

detail in §6.

6 DEPLOYMENT EXPERIENCE
Deployment of Meissa. Meissa has been used by our network

engineers to test data plane programs in production edge networks

for three months. Before Meissa was developed, network engineers

maintained a set of test cases, each describing a usage scenario

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

gw-1 gw-2 gw-3 gw-4

150

300

450

600

Ti
m

e(
s)

w/ code summary w/o code summary

(a) Running time.

gw-1 gw-2 gw-3 gw-4

3
6
9

12
15

of

 S
M

T
ca

lls

×105
w/ code summary w/o code summary

(b) Number of SMT calls.

gw-1 gw-2 gw-3 gw-4

1020

1040

1060

1080

of

 p
at

hs

10100 10197 10390
w/ code summary w/o code summary

(c) Number of paths.

Figure 11: Effectiveness of code summary on different data plane programs.

set-1 set-2 set-3 set-40

1000

2000

3000

4000

5000

Ti
m

e(
s)

w/ code summary w/o code summary

(a) Running time.

set-1 set-2 set-3 set-4

10
20
30
40
50

of

 S
M

T
ca

lls
×105

w/ code summary w/o code summary

(b) Number of SMT calls.

10390

10400

w/ code summary w/o code summary

set-1 set-2 set-3 set-4

1010

1020

of

 p
at

hs

(c) Number of paths.

Figure 12: Effectiveness of code summary on different table rule sets.

Type Index Bug Meissa p4pktgen PTA Gauntlet Aquila

Code

Bugs

1 Routing misconfiguration ✓ ✗ ✗ ✗ ✓

2 Unrestricted ACL rules ✓ ✗ ✗ ✗ ✓

3 Parser wrong logic ✓ ✓ ✓ ✓ ✓

4 Ingress wrong logic ✓ ✓ ✓ ✓ ✓

5 Wrong deparser emit ✓ ✗ ✓ ✗ ✓

6 Checksum fail-to-update ✓ ✗ ✗ ✗ ✗

Non-code

Bugs

7 p4c frontend bug 2147 [4] ✓ ✓ ✗ ✓ ✗

8 p4c frontend bug 2343 [5] ✓ ✓ ✗ ✓ ✗

9 bf-p4c backend bug 1 [1] ✓ ✗ ✗ ✓ ✗

10 bf-p4c backend bug 3 [2] ✓ ✗ ✗ ✓ ✗

11 bf-p4c backend bug 6 [3] ✓ ✗ ✗ ✓ ✗

12

bf-p4c backend bug A

(incorrect arithmetic comparison)

✓ ✗ ✗ ✗ ✗

13

bf-p4c backend bug B

(incorrect assignment)

✓ ✗ ✗ ✗ ✗

14

bf-p4c backend bug C

(setValid)

✓ ✗ ✗ ✗ ✗

15 Misuse of optimization pragmas ✓ ✗ ✗ ✗ ✗

16 Missing compilation flags ✓ ✗ ✗ ✗ ✗

Table 2: Comparison of the capability to find bugs of different solutions. All code bugs have been reported to our developers,
and all non-code bugs have been reported to the vendor. All bugs have been confirmed and resolved.

corroborated by requirement analysis engineers. A test case was ex-

ecuted by first calling the control plane interface and then invoking

tools (e.g., iperf3) to test corresponding data plane behaviors.

After Meissa was deployed, instead of relying on arbitrary tools

such as iperf3, network engineers break down the data plane be-

haviors and instruct Meissa to test each of them. For example, a

NAT gateway processes packets going both ways (in and out), sup-

ports three protocols (TCP, UDP, and ICMP), and thus results in

six sub-cases. For each sub-case, Meissa provides a set of base con-

straints on the input packet, e.g., a valid IPv4 packet must satisfy

ethernet.type == 0x800. Then, network engineers specify test-case-

specific constraints, e.g., ipv4.dst_addr must equal the NAT public

address. Specifying the end-to-end behavior is also straightforward:

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

1 a c t i o n na t _encap_ ip (. . .) {

2 / / add VXLAN , i n n e r _ i p
3 hdr . i n n e r I p v 4 . s rcAddr = hdr . i pv4 . s rcAddr ;

4

5 }

6

7 a c t i o n na t_encap_ t cp (. . .) {

8 / / s e t i n n e r TCP p a c k e t
9 hdr . innerTcp . ackno = hdr . t c p . ackno ;

10

11 }

12

13 c o n t r o l {

14

15 / / encap i n g r e s s TCP p a c k e t s
16 na t _encap_ ip () ;

17 na t _ encap_ t cp () ;

18

19 }

Figure 13: Code snippet related to issue #15 in Table 2.

the received packet should contain the same headers as the input,

except that certain IP address and port number are updated accord-

ing to the NAT rule. In this way, it is easy for network engineers

without a formal method background to attach Meissa to existing

test cases. They benefit from the full-path-coverage testing and

indeed discover previously-hidden bugs. We detail three real, rep-

resentative bugs detected by Meissa in the production deployment.

Issue #6 in Table 2: Checksum fail-to-update. Our elastic IP
product offloads ingress packet tunneling to a Tofino switch at

gateways. In our network, a <IPv4 TCP> packet is encapsulated to

a <IPv4-out UDP-out VXLAN-out IPv4-in TCP-in> packet, and
then sent to virtual machines. In this case, the inner header’s IP and

port are modified, so its layer-4 checksum needs to be updated. In

order to fit such complex P4 program into the actual hardware, we

split the inner checksum update into two pipelines in practice. The

ingress calculates the layer-4 checksum. The egress pipeline identi-

fies packet type by header validity, and puts the layer-4 checksum

into the corresponding position. However, our engineers forgot to

parse inner TCP in the egress pipeline, so inner TCP would never

be valid and its checksum would never be updated.

Verification tools such as p4v [56] could not detect this bug, be-

cause verifying checksum is not well supported by SMT solvers.

Meissa generated test cases that covered the tunnel logic, and re-

portedNo Pass due to inner TCP checksum error.Moreover,Meissa’s

test report also indicated that inner TCP header is invalid in all

paths.

Issue #14 in Table 2: bf-p4c backend bug C (setValid). One of
our applications of programmable data planes is to implement a

custom traffic generator. It takes as input a seed packet, adds some

variations, and outputs the altered packet. This program relies on

invoking the standard P4 function 𝑠𝑒𝑡𝑉𝑎𝑙𝑖𝑑 to alter the output

packet structure as desired. However, when the compiled program

executes certain program path, the invocation of setValid does not

take effect and the corresponding headers remain 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 . As a

result, our traffic generator does not work with these kinds of seed

packets.

Verification tools such as Aquila [79] and p4v [56] cannot detect

this bug, because the code logic is correct. This bug was not detected

by the state-of-the-art compiler tester (e.g., Gauntlet [68]) because

its model-based testing does not scale to large programs. Our exist-

ing test suites did not find this bug, because this program was under

early development and lacked comprehensive test cases at that time.

As a comparison, Meissa generates test cases for the buggy path

and detects inconsistency between the expected output and the

actual output. In addition, Meissa concludes that this bug is not in

the P4 program’s code logics. Our developers then worked with the

vendor to confirm that this was indeed caused by the compiler and

finally resolved this issue. The vendor accepted this bug and fixed it

in the latest release of P4 compiler. It is worth mentioning that this

bug did not appear in previous or later versions of our program.

Our experiences show that many compiler bugs are only triggered

by specific versions of programs, and they are hard to reproduce

in other programs. Thus, it is important to generate extensive test

cases to fully cover the paths of a program.

Issue #15 in Table 2: Misuse of optimization pragmas. The
ingress pipeline of our elastic IP program encapsulates incom-

ing packets into VXLAN tunnels. Figure 13 shows its logic for

processing TCP packets. However, the compiled program does

not behave as specified by its P4 code logics. The reason is that,

our developers employed optimization pragmas to guide the pro-

gram’s compilation, which in turn disabled safety checks. As a

result, hdr.tcp.ackno overlapped with hdr.innerTcp.srcAddr,
while they should hold independent values simultaneously. Thus,

nat_encap_ip incorrectly modified ACKNO of TCP header, and

nat_encap_tcp propagated this buggy update to inner TCP header.

Verification tools such as Aquila [79] could not detect this bug,

because the code logic is correct. This bug was not detected by our

existing test cases because it only happened to packets with specific

types, and existing tests do not check ACK number. The state-of-

the-art P4 compiler tester (e.g., Gauntlet [68]) did not detect this

bug before, because its fuzz testing does not provide full coverage

and its model-based testing does not scale to programs that are

large enough to trigger this bug. Meissa generated test cases for the

buggy path, detected an inconsistency between the expected output

and the actual output, and implied that this bug was outside of P4

specifications, and the ACK number of the inner TCP packet header

was incorrect. With help from Meissa, our developers finally found

that this bug was caused by misuse of pragmas. They carefully

adjusted pragmas in the program and fixed this bug.

7 DISCUSSION
This section clarifies Meissa’s scope and limitations.

Performance bugs. One limitation of Meissa is that it does not

support detecting performance bugs, i.e., it cannot identify packet

patterns that incur long latency or low overall bandwidth. This

is because the source code of a data plane program only defines

its functional behavior, but not execution time. An execution time

analysis relies on the generated binary code and a comprehensive

model of the underlying hardware, which is not publicly avail-

able. There are works that synthesize network performance with

verification [22, 23, 39], which are orthogonal to Meissa.

Bug localization. Once a bug is reported, i.e., a pair of buggy con-

crete input and output packets (or its absence) is found, Meissa

symbolically executes this concrete input and generates a trace that

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

shows all executed actions, hit table rules, branching, and assign-

ment statements, along with the values of corresponding arguments

at each statement. It also identifies code bugs by comparing the

symbolic output packet with user-defined specifications. Then en-

gineers manually review this trace to identify the root cause of

this bug. Usually, for code bugs, such a trace is sufficient for its

localization. However, for compiler bugs and compilation miscon-

figurations, engineers need to inject the same input and collect a

physical trace from the programmable device to check where the

physical execution diverges from its source code.

Testing stateful programs.Meissa does not test the interactive

behaviors of stateful programs. In particular, its high-level intent

only allows specifying single-packet processing behaviors, and it

treats stateful registers as unbounded stateless variables. The reason

is twofold. (𝑖) Our production programmable data planes mostly

contain stateless processing logic. (𝑖𝑖) Interactive behaviors usually
allow infinite packet sequences, which is orthogonal to the full

path coverage this paper focuses on. Recent work p4wn [43] uses

probabilistic methods to test stateful processing behaviors (without

guaranteeing full coverage), which is complementary to Meissa.

Testing control plane behaviors. Meissa does not test control

plane behaviors such as BGP peering and MAC learning. Meissa

is used to test data planes and static table rules. Moreover, testing

control plane behaviors is hard. It is very tricky to model these

behaviors and control plane logics are much more complex than

data plane logics. We leave it a future work to model interactions

between control plane modules and generate test cases.

Checking the program, not the compiler/ASIC. The goal of
Meissa is to check the correctness of data plane programs for pro-
gram developers and network operators. It detects code bugs in

programs, and non-code bugs triggered by those programs; it does

not actively search for compile bugs that are not triggered. Com-

piler bugs that are not manifested by a program are not concerns

for developing and deploying this particular program. Compre-

hensively testing compilers is a non-goal for Meissa. Recent work

Gauntlet [68] focuses on testing compilers for compiler developers,

which is orthogonal to Meissa.

Potential path explosion. Although evaluation results prove

Meissa scales to large and complex programs, path explosion is

still theoretically possible. For example, a program with few public

pre-conditions weakens inter-pipeline public pre-condition filtering.

In practice, we only test one type of packets at a time to avoid path

explosion. Besides, when too few public pre-conditions weaken

code summary, we group pre-conditions according to packet type,

conduct summary seperately and merge them into a full summary.

8 RELATEDWORK
Programmable data plane testing. Many efforts have been pro-

posed to test programmable data planes, but none of them man-

aged to test programs with production scales and functionalities.

p4pktgen [61] uses symbolic execution to generate test cases for P4

programs. Path explosion makes it impracticable to test large-scaled

programs. It also does not test table rules and other production func-

tionalities. PTA [18] translates P4 programs (with assumptions and

assertions) into packet sender and checker programs. It requires

engineers to handwrite unit tests in programs, while providing

unit tests for complex data plane programs is probably costly and

incomprehensive. Gauntlet [68] focuses on testing compilers with

small input programs. Its model-based testing mode is too rudimen-

tary to test production-scale programs. Compared to them, Meissa

supports commonly used functionalities, scales to large programs

and achieves full path coverage. p4wn [43] profiles stateful pro-

grams with a probabilistic method to perform adversarial testing

with no guarantee of full coverage, which is complementary to

Meissa (§7). Yardstick [86] defines and computes network-wide

coverage metrics, while Meissa focuses on testing individual data

plane programs.

Network verification. Many verification techniques have been

proposed for data plane programs [27, 28, 31, 56, 60, 76, 79]. Aquila [79]

focuses on scalability and specification complexity for production-

level data plane programs. p4v [56] formally check P4 program

correctness with a classic verification approach. Vera [76] leverages

symbolic execution for scalable, exhaustive verification of P4 pro-

gram snapshots. bf4 [27] searches possible bugs, and avoids them

in runtime by adding table rules. Besides, there is a lot of work

on verifying network protocols [9, 11, 29, 30, 69, 73, 77, 85] and

configurations [13, 14, 16, 21, 32, 34, 37, 38, 41, 42, 44, 45, 49, 58, 63,

64, 66, 71, 74, 78, 80, 82, 88–90, 93, 94, 96–98].

Applications of programmable data planes. Many network

applications are implemented on programmable data planes. Some

of them improve network performance or fault tolerance [48, 55, 91,

92]. Many efforts are proposed to offload functionalities to the data

plane for better performance [40, 47, 52, 54, 57, 59, 62, 70, 95, 102].

Network telemetry leverages the flexibility of programmable data

planes to monitor network status [15, 25, 35, 36, 99–101]. Meissa

helps developers test data planes to ensure the correctness of these

applications.

9 CONCLUSION
We present Meissa, a scalable network testing system for pro-

grammable data planes. Meissa leverages a domain-specific code
summary technique to guarantee full path coverage. Meissa is able

to test large data plane programs that cannot be supported by state-

of-the-art solutions, and identify both existing and new bugs. We

have deployed Meissa in production, which serves as a vital tool in

the development and operation of our data plane products.

This work does not raise any ethical issues.

Acknowledgments. This work was supported by the National

Key Research and Development Program of China under the grant

number 2020YFB2104100 and the National Natural Science Foun-

dation of China under the grant number 62172008. We thank the

anonymous reviewers for their valuable feedback on this paper.

We thank Vladimir Gurevich, Jeongkeun Lee, and Yiqun Cai for

confirming the bugs and providing comments on this the paper. Xin

Jin (xinjinpku@pku.edu.cn) is the corresponding author. Naiqian

Zheng, Xuanzhe Liu, and Xin Jin are also with the Key Laboratory

of High Confidence Software Technologies (Peking University),

Ministry of Education.

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

REFERENCES
[1] 2020. bf-p4c backend bug 1 detected by Gauntlet. https://github.com/p4gauntlet/

gauntlet/blob/master/bugs/tofino/semantic/semantic_bug1.p4.

[2] 2020. bf-p4c backend bug 3 detected by Gauntlet. https://github.com/p4gauntlet/

gauntlet/blob/master/bugs/tofino/semantic/semantic_bug3.p4.

[3] 2020. bf-p4c backend bug 6 detected by Gauntlet. https://github.com/p4gauntlet/

gauntlet/blob/master/bugs/tofino/semantic/semantic_bug6.p4.

[4] 2020. P4c issue 2147. https://github.com/p4lang/p4c/issues/2147.

[5] 2020. P4c issue 2343. https://github.com/p4lang/p4c/issues/2343.

[6] 2021. Data Plane Development Kit. https://www.dpdk.org.

[7] 2021. Open Tofino. https://github.com/barefootnetworks/Open-Tofino.

[8] 2021. PTF: Packet testing framework. https://github.com/p4lang/ptf.

[9] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast multilayer network verification. In USENIX NSDI.
[10] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.

[11] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh,

and Hari Balakrishnan. 2021. Toward formally verifying congestion control

behavior. In ACM SIGCOMM.

[12] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. Cvc4. In

International Conference on Computer Aided Verification.
[13] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general

approach to network configuration verification. In ACM SIGCOMM.

[14] Ryan Beckett, Ratul Mahajan, ToddMillstein, Jitendra Padhye, and DavidWalker.

2016. Don’t mind the gap: Bridging network-wide objectives and device-level

configurations. In ACM SIGCOMM.

[15] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,

Minian Yu, andMichael Mitzenmacher. 2020. Pint: Probabilistic in-band network

telemetry. In ACM SIGCOMM.

[16] Rudiger Birkner, Tobias Brodmann, Petar Tsankov, Laurent Vanbever, and Mar-

tin T Vechev. 2021. Metha: Network Verifiers Need To Be Correct Too!. In

USENIX NSDI.
[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and

David Walker. 2014. P4: Programming protocol-independent packet processors.

ACM SIGCOMM Computer Communication Review (2014).

[18] Pietro Bressana, Noa Zilberman, and Robert Soule. 2020. Finding hard-to-find

data plane bugs with a PTA. In ACM CoNEXT.
[19] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. Klee: unassisted

and automatic generation of high-coverage tests for complex systems programs.

In USENIX OSDI.
[20] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:

three decades later. Commun. ACM (2013).

[21] Eric Hayden Campbell, William T Hallahan, Priya Srikumar, Carmelo Cascone,

Jed Liu, Vignesh Ramamurthy, Hossein Hojjat, Ruzica Piskac, Robert Soule, and

Nate Foster. 2021. Avenir: Managing Data Plane Diversity with Control Plane

Synthesis. In USENIX NSDI.
[22] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay Rao, and Mohit Tawar-

malani. 2019. Lancet: Better network resilience by designing for pruned failure

sets. Proceedings of the ACM on Measurement and Analysis of Computing Systems
(2019).

[23] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. 2017. Robust validation of

network designs under uncertain demands and failures. In USENIX NSDI.
[24] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,

and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In

International Conference on Software Engineering.
[25] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. 2020.

Beaucoup: Answering many network traffic queries, one memory update at a

time. In ACM SIGCOMM.

[26] Leonardo De Moura and Nikolaj Bjorner. 2008. Z3: An efficient SMT solver.

In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems.

[27] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. 2020.

bf4: towards bug-free P4 programs. In ACM SIGCOMM.

[28] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2019. Dataplane equivalence and its applications. In USENIX
NSDI.

[29] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. 2021. Verifying

learning-augmented systems. In ACM SIGCOMM.

[30] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021.

Prognosis: closed-box analysis of network protocol implementations. In ACM
SIGCOMM.

[31] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-

Filho, and Marinho Barcellos. 2018. Uncovering bugs in p4 programs with

assertion-based verification. In Symposium on SDN Research.

[32] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-

jan. 2016. Fast control plane analysis using an abstract representation. In ACM
SIGCOMM.

[33] Patrice Godefroid. 2007. Compositional Dynamic Test Generation. SIGPLAN
Not. (2007).

[34] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time

network verification using atoms. In USENIX NSDI.
[35] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang, Yanwei Xu,

and Gong Zhang. 2021. Toward nearly-zero-error sketching via compressive

sensing. In USENIX NSDI.
[36] Qun Huang, Haifeng Sun, Patrick PC Lee, Wei Bai, Feng Zhu, and Yungang Bao.

2020. Omnimon: Re-architecting network telemetry with resource efficiency

and full accuracy. In ACM SIGCOMM.

[37] Karthick Jayaraman, Nikolaj Bjorner, Geoff Outhred, and Charlie Kaufman. 2014.

Automated analysis and debugging of network connectivity policies. Microsoft
Research (2014).

[38] Karthick Jayaraman, Nikolaj Bjorner, Jitu Padhye, Amar Agrawal, Ashish Bhar-

gava, Paul-Andre C Bissonnette, Shane Foster, Andrew Helwer, Mark Kasten,

Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pin-

namraju, Adrian Power, Neha Milind Raje, and Parag Sharma. 2019. Validating

datacenters at scale. In ACM SIGCOMM.

[39] Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani. 2020. PCF: provably resilient

flexible routing. In ACM SIGCOMM.

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores

with fast in-network caching. In ACM SOSP.
[41] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Millstein, and

George Varghese. 2020. GRooT: Proactive Verification of DNS Configurations.

In ACM SIGCOMM.

[42] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett, Karthick Jayaraman,

Todd Millstein, Yuval Tamir, and George Varghese. 2020. Finding network

misconfigurations by automatic template inference. In USENIX NSDI.
[43] Qiao Kang, Jiarong Xing, YimingQiu, and Ang Chen. 2021. Probabilistic profiling

of stateful data planes for adversarial testing. In ACM ASPLOS.
[44] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header space

analysis: Static checking for networks. In USENIX NSDI.
[45] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten

Godfrey. 2013. Veriflow: Verifying network-wide invariants in real time. In

USENIX NSDI.
[46] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,

and Lawrence J Wobker. 2015. In-band network telemetry via programmable

dataplanes. In ACM SIGCOMM.

[47] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, Vyas

Sekar, and Srinivasan Seshan. 2020. Tea: Enabling state-intensive network

functions on programmable switches. In ACM SIGCOMM.

[48] Daehyeok Kim, Jacob Nelson, Dan RK Ports, Vyas Sekar, and Srinivasan Seshan.

2021. Redplane: Enabling fault-tolerant stateful in-switch applications. In ACM
SIGCOMM.

[49] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,

and Russ Clark. 2015. Kinetic: Verifiable dynamic network control. In USENIX
NSDI.

[50] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
(1976).

[51] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.

Efficient state merging in symbolic execution. ACM SIGPLAN Notices (2012).
[52] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya

Akella, and Michael M Swift. 2021. ATP: In-network Aggregation for Multi-

tenant Learning. In USENIX NSDI. 741–761.
[53] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via

guided stochastic program mutation. ACM SIGPLAN Notices (2015).
[54] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan RK Ports. 2020. Pegasus:

Tolerating skewed workloads in distributed storage with in-network coherence

directories. In USENIX OSDI.
[55] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.

2019. HPCC: High precision congestion control. In ACM SIGCOMM.

[56] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert

Soule, Han Wang, Cualin Cacscaval, Nick McKeown, and Nate Foster. 2018. P4v:

Practical verification for programmable data planes. In ACM SIGCOMM.

[57] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon

Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen: A

high-performance switch-native approach for detecting and mitigating volumet-

ric ddos attacks with programmable switches. In USENIX Security Symposium.

[58] Nuno P Lopes, Nikolaj Bjorner, Patrice Godefroid, Karthick Jayaraman, and

George Varghese. 2015. Checking beliefs in dynamic networks. In USENIX
NSDI.

[59] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.

Silkroad: Making stateful layer-4 load balancing fast and cheap using switching

https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug1.p4
https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug1.p4
https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug3.p4
https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug3.p4
https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug6.p4
https://github.com/p4gauntlet/gauntlet/blob/master/bugs/tofino/semantic/semantic_bug6.p4
https://github.com/p4lang/p4c/issues/2147
https://github.com/p4lang/p4c/issues/2343
https://www.dpdk.org
https://github.com/barefootnetworks/Open-Tofino
https://github.com/p4lang/ptf

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands N. Zheng et al.

asics. In ACM SIGCOMM.

[60] Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, and Marinho Barcellos.

2018. Verification of p4 programs in feasible time using assertions. In ACM
CoNEXT.

[61] Andres Notzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.

2018. P4pktgen: Automated test case generation for p4 programs. In Symposium
on SDN Research.

[62] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao, Zhiguo

Li, Kun Liu, Jie Lu, Jianyuan Lu, Enge Song, Jiao Zhang, Tao Huang, and Shun-

min Zhu. 2021. Sailfish: Accelerating cloud-scale multi-tenant multi-service

gateways with programmable switches. In ACM SIGCOMM.

[63] Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, and Scott

Shenker. 2015. New directions for network verification. In Summit on Advances
in Programming Languages.

[64] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.

2017. Verifying reachability in networks with mutable datapaths. In USENIX
NSDI.

[65] Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. 2020. AFLNet: a

greybox fuzzer for network protocols. In International Conference on Software
Testing, Validation and Verification.

[66] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and

Matthew Caesar. 2020. Plankton: Scalable network configuration verification

through model checking. In USENIX NSDI.
[67] Jose Miguel Rojas and Corina S Pasareanu. 2013. Compositional symbolic

execution through program specialization. BYTECODE’13 (ETAPS) (2013).
[68] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman. 2020. Gauntlet: Finding bugs

in compilers for programmable packet processing. In USENIX OSDI.
[69] Leonid Ryzhyk, Nikolaj Bjorner, Marco Canini, Jean-Baptiste Jeannin, Cole

Schlesinger, Douglas B Terry, and George Varghese. 2017. Correct by construc-

tion networks using stepwise refinement. In USENIX NSDI.
[70] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,

Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and

Peter Richtarik. 2019. Scaling distributed machine learning with in-network

aggregation. arXiv preprint arXiv:1903.06701 (2019).
[71] Tibor Schneider, Rudiger Birkner, and Laurent Vanbever. 2021. Snowcap: syn-

thesizing network-wide configuration updates. In ACM SIGCOMM.

[72] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing

engine for C. ACM SIGSOFT Software Engineering Notes (2005).
[73] Jinghao Shi, Shuvendu K Lahiri, Ranveer Chandra, and Geoffrey Challen. 2018.

Wireless protocol validation under uncertainty. Formal methods in system design
(2018).

[74] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin

Vechev. 2020. Probabilistic verification of network configurations. In ACM
SIGCOMM.

[75] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting fuzzing through selective symbolic execution. In

ISOC Network and Distributed System Security Symposium.

[76] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2018. Debugging P4 programs with Vera. In ACM SIGCOMM.

[77] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016.

Symnet: Scalable symbolic execution for modern networks. In ACM SIGCOMM.

[78] Alan Tang, Siva Kesava Reddy Kakarla, Ryan Beckett, Ennan Zhai, Matt Brown,

Todd Millstein, Yuval Tamir, and George Varghese. 2021. Campion: debugging

router configuration differences. In ACM SIGCOMM.

[79] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen, Yu Zhou, Li

Dai, Feng Yan, Mengjing Ma, Ming Tang, Jie Lu, Xionglie Wei, Hongqiang Harry

Liu, Ming Zhang, Chen Tian, and Minlan Yu. 2021. Aquila: a practically usable

verification system for production-scale programmable data planes. In ACM
SIGCOMM.

[80] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu, Qiaobo Ye,

Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming Zhang, Da Yu, Chen

Tian, Haitao Zheng, and Ben Y. Zhao. 2019. Safely and automatically updating

in-network acl configurations with intent language. In ACM SIGCOMM.

[81] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation

for. net. In International Conference on Tests and Proofs.
[82] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich, Mooly

Sagiv, Scott Shenker, and Sharon Shoham. 2016. Some complexity results for

stateful network verification. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems.

[83] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. 2013. Characteristic

studies of loop problems for structural test generation via symbolic execution.

In International Conference on Automated Software Engineering.
[84] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009.

Fitness-guided path exploration in dynamic symbolic execution. In IEEE/IFIP
International Conference on Dependable Systems and Networks.

[85] Qiongwen Xu, Michael D. Wong, Tanvi Wagle, Srinivas Narayana, and Anirudh

Sivaraman. 2021. Synthesizing Safe and Efficient Kernel Extensions for Packet

Processing. In ACM SIGCOMM.

[86] Xieyang Xu, Ryan Beckett, Karthick Jayaraman, Ratul Mahajan, and David

Walker. 2021. Test coverage metrics for the network. In ACM SIGCOMM.

[87] Wei Yang, Mukul R Prasad, and Tao Xie. 2013. A grey-box approach for auto-

mated GUI-model generation of mobile applications. In International Conference
on Fundamental Approaches to Software Engineering.

[88] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. 2020.

Aragog: Scalable Runtime Verification of Shardable Networked Systems. In

USENIX OSDI.
[89] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo

Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng Jin, Duncheng She, Qing

Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca.

2020. Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a

Global WAN. In ACM SIGCOMM.

[90] Farnaz Yousefi, Anubhavnidhi Abhashkumar, Kausik Subramanian, Kartik Hans,

Soudeh Ghorbani, and Aditya Akella. 2020. Liveness verification of stateful

network functions. In USENIX NSDI.
[91] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive pro-

grammable switches. In ACM SIGCOMM.

[92] Zhuolong Yu, Chuheng Hu, Jingfeng Wu, Xiao Sun, Vladimir Braverman,

Mosharaf Chowdhury, Zhenhua Liu, and Xin Jin. 2021. Programmable packet

scheduling with a single queue. In ACM SIGCOMM.

[93] Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas Sekar. 2020. NetSMC:

A custom symbolic model checker for stateful network verification. In USENIX
NSDI.

[94] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa,

Katerina Argyraki, and George Candea. 2019. Verifying software network

functions with no verification expertise. In ACM SOSP.
[95] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen

Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, Xiongfei Geng, Tao

Feng, Feng Ning, Kai Chen, and Chuanxiong Guo. 2022. Tiara: A Scalable

and Efficient Hardware Acceleration Architecture for Stateful Layer-4 Load

Balancing. In USENIX NSDI.
[96] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and conquer to

verify forwarding tables in huge networks. In USENIX NSDI.
[97] Ennan Zhai, Ang Chen, Ruzica Piskac, Mahesh Balakrishnan, Bingchuan Tian,

Bo Song, and Haoliang Zhang. 2020. Check before you change: Preventing

correlated failures in service updates. In USENIX NSDI.
[98] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy, and Xi

Wang. 2020. Automated verification of customizable middlebox properties with

gravel. In USENIX NSDI.
[99] Yinda Zhang, Zaoxing Liu, RuixinWang, Tong Yang, Jizhou Li, Ruijie Miao, Peng

Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: high-performance

sketch-based measurement over arbitrary partial key query. In ACM SIGCOMM.

[100] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu, Naiqian

Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, and Nicholas Zhang. 2021. Light-

Guardian: A Full-Visibility, Lightweight, In-band Telemetry System Using

Sketchlets. In USENIX NSDI.
[101] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong

Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng Zhang, Dennis Cai,

Ming Zhang, and Mingwei Xu. 2020. Flow event telemetry on programmable

data plane. In ACM SIGCOMM.

[102] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu, Christos Kozyrakis, Ion

Stoica, and Xin Jin. 2020. Racksched: A microsecond-scale scheduler for rack-

scale computers. In USENIX OSDI.

APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A TIME COMPLEXITY ANALYSIS OF CODE
SUMMARY

Without loss of generality, we assume a data plane program consists

of 𝑘 sequentially concatenated pipelines, and each pipeline contains

𝑚 valid paths out of 𝑛 possible paths.

The time complexity of the basic test case generation framework

(§3.2) is straightforward. It is proportional to the total number of

possible paths in the entire CFG, that is, 𝑂 (𝑛𝑘).
On the other hand, the code summary technique (§3.3) does not

need to traverse all possible paths in the original CFG. It iterates

Meissa: Scalable Network Testing for
Programmable Data Planes SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands

over each pipeline, computes public pre-conditions for it, performs

symbolic execution within this pipeline, and computes its summary.

During each iteration, the computation of public pre-conditions for

a pipeline traverses 𝑂 (𝑘) summarized pipelines with 𝑂 (𝑚) paths
each, resulting in a time complexity of 𝑂 (𝑚𝑘). Then, symbolic

execution within a pipeline has a time complexity of 𝑂 (𝑛), while
computing its summary costs 𝑂 (𝑚) time. In total, iterating over

all pipelines has a time complexity of 𝑂 (𝑘 · 𝑚𝑘 + 𝑘 · 𝑛 + 𝑘 · 𝑚).
The summarized CFG contains 𝑘 pipelines with 𝑂 (𝑚) paths each.
Generating test case templates on the summarized CFG has a time

complexity of 𝑂 (𝑚𝑘). Therefore, the total time complexity is 𝑂 (𝑘 ·
𝑚𝑘 + 𝑘 · 𝑛 + 𝑘 ·𝑚 +𝑚𝑘). In practice, we have 𝑘 ≪ 𝑚 ≪ 𝑚𝑘 ≪ 𝑛.

Thus, the total time complexity for the code summary technique is

𝑂 (𝑘 · 𝑛).

B THE BASIC FRAMEWORK ACHIEVES FULL
PATH COVERAGE

This section formally proves that the basic symbolic execution

framework (Algorithm 1) achieves 100% path coverage (Defini-

tion 3).

Theorem 4 (The basic algorithm achieves full path coverage).
Given a CFG G, for any of its valid path 𝜋 , it must be discovered

by Algorithm 1, and the reported path condition 𝐶 satisfies the

following

∀𝑠,𝐶 (𝑠) =⇒ (∃𝑠 ′, ⟨𝜋 ; 𝑠⟩ → 𝑠 ′)

Proof. By Definition 2, any valid path 𝜋 must also be a possible

path, which is discovered by DFS. Thus, the proof obligation is

to show that Algorithm 1 indeed symbolically executes along 𝜋

(i.e., it does not early terminate) and accumulates the correct path

constraint.

Assume that path 𝜋 is of length 𝑙𝜋 . We generalize the above

theorem to discuss the partial evaluation along its prefix of length

𝑙 .

Assume that at length 𝑙 , the current symbolic state 𝑉𝑙 , path

condition 𝐶𝑙 and the partial trace 𝜋 [0 : 𝑙] satisfies the following
∀𝑠,𝐶𝑙 (𝑠) =⇒ ⟨𝜋 [0 : 𝑙]; 𝑠⟩ → ⟦𝑉𝑙⟧𝑠

At length 𝑙 +1, the current vertex corresponds to either an action

statement or a predicate statement.

(1) The current vertex is of 𝑖𝑑1 := 𝑎𝑒𝑥𝑝1. In this case, 𝐶𝑙+1 = 𝐶𝑙 ,

while 𝑉𝑙+1 equals 𝑉𝑙 [𝑖𝑑1 ← ⟦𝑉𝑙⟧𝑎𝑒𝑥𝑝1]. By the assumption,

any initial state s satisfying𝐶𝑙+1 (𝑠) must execute along 𝜋 [0 :

𝑙], and further 𝜋 [0 : 𝑙 + 1], since the current vertex is not

a predicate. In addition, the resulting symbolic state also

equals ⟦𝑉𝑙+1⟧𝑠 .
(2) The current vertex is of 𝑎𝑠𝑠𝑢𝑚𝑒 𝑏𝑒𝑥𝑝1. In this case,𝑉𝑙+1 = 𝑉𝑙 ,

while 𝐶𝑙+1 = 𝐶𝑙 && ⟦𝑉𝑙⟧𝑏𝑒𝑥𝑝1. By the assumption, any

initial state s satisfying 𝐶𝑙 (𝑠) must execute along 𝜋 [0 : 𝑙]
and result in ⟦𝑉𝑙⟧𝑠 . Further, since (⟦𝑉𝑙⟧𝑏𝑒𝑥𝑝1)𝑠 must hold,

the current predicate 𝑏𝑒𝑥𝑝1 (⟦𝑉𝑙⟧𝑠) must evaluate to True,

and the initial state s executes along 𝜋 [0 : 𝑙 + 1].
Thus, the induction hypothesis holds.

Applying this hypothesis with 𝑙 := 𝑙𝜋 proves the theorem. □

	Abstract
	1 Introduction
	2 Motivation
	2.1 Testing Data Plane Programs
	2.2 Key Challenge: Scalability

	3 Meissa Design
	3.1 Control Flow Graph (CFG)
	3.2 Basic Test Case Generation Framework
	3.3 Code Summary
	3.4 Code Coverage Guarantee

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Experimental Results

	6 Deployment experience
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Time Complexity Analysis of Code Summary
	B The Basic Framework Achieves Full Path Coverage

